".github/vscode:/vscode.git/clone" did not exist on "32389c6384294fea492dbfcd7a31bfa7072b64c8"
Unverified Commit 27bf7fcd authored by kaixuanliu's avatar kaixuanliu Committed by GitHub
Browse files

adjust tolerance criteria for `test_float16_inference` in unit test (#11809)


Signed-off-by: default avatarLiu, Kaixuan <kaixuan.liu@intel.com>
parent a185e1ab
...@@ -22,6 +22,7 @@ from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokeni ...@@ -22,6 +22,7 @@ from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokeni
from diffusers import AmusedInpaintPipeline, AmusedScheduler, UVit2DModel, VQModel from diffusers import AmusedInpaintPipeline, AmusedScheduler, UVit2DModel, VQModel
from diffusers.utils import load_image from diffusers.utils import load_image
from diffusers.utils.testing_utils import ( from diffusers.utils.testing_utils import (
Expectations,
enable_full_determinism, enable_full_determinism,
require_torch_accelerator, require_torch_accelerator,
slow, slow,
...@@ -246,5 +247,35 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase): ...@@ -246,5 +247,35 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase):
image_slice = image[0, -3:, -3:, -1].flatten() image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3) assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0227, 0.0157, 0.0098, 0.0213, 0.0250, 0.0127, 0.0280, 0.0380, 0.0095]) expected_slices = Expectations(
{
("xpu", 3): np.array(
[
0.0274,
0.0211,
0.0154,
0.0257,
0.0299,
0.0170,
0.0326,
0.0420,
0.0150,
]
),
("cuda", 7): np.array(
[
0.0227,
0.0157,
0.0098,
0.0213,
0.0250,
0.0127,
0.0280,
0.0380,
0.0095,
]
),
}
)
expected_slice = expected_slices.get_expectation()
assert np.abs(image_slice - expected_slice).max() < 0.003 assert np.abs(image_slice - expected_slice).max() < 0.003
...@@ -1396,7 +1396,7 @@ class PipelineTesterMixin: ...@@ -1396,7 +1396,7 @@ class PipelineTesterMixin:
output_fp16 = pipe_fp16(**fp16_inputs)[0] output_fp16 = pipe_fp16(**fp16_inputs)[0]
max_diff = numpy_cosine_similarity_distance(output.flatten(), output_fp16.flatten()) max_diff = numpy_cosine_similarity_distance(output.flatten(), output_fp16.flatten())
assert max_diff < 2e-4 assert max_diff < 1e-2
@unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU") @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
@require_accelerator @require_accelerator
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment