Unverified Commit 2625fb59 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

[Versatile Diffusion] Add versatile diffusion model (#1283)



* up

* convert dual unet

* revert dual attn

* adapt for vd-official

* test the full pipeline

* mixed inference

* mixed inference for text2img

* add image prompting

* fix clip norm

* split text2img and img2img

* fix format

* refactor text2img

* mega pipeline

* add optimus

* refactor image var

* wip text_unet

* text unet end to end

* update tests

* reshape

* fix image to text

* add some first docs

* dual guided pipeline

* fix token ratio

* propose change

* dual transformer as a native module

* DualTransformer(nn.Module)

* DualTransformer(nn.Module)

* correct unconditional image

* save-load with mega pipeline

* remove image to text

* up

* uP

* fix

* up

* final fix

* remove_unused_weights

* test updates

* save progress

* uP

* fix dual prompts

* some fixes

* finish

* style

* finish renaming

* up

* fix

* fix

* fix

* finish
Co-authored-by: default avataranton-l <anton@huggingface.co>
parent 0eb507f2
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class VersatileDiffusionImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pass
@slow
@require_torch_gpu
class VersatileDiffusionImageVariationPipelineIntegrationTests(unittest.TestCase):
def test_inference_image_variations(self):
pipe = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion")
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
image_prompt = load_image(
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe(
image=image_prompt,
generator=generator,
guidance_scale=7.5,
num_inference_steps=50,
output_type="numpy",
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0113, 0.2241, 0.4024, 0.0839, 0.0871, 0.2725, 0.2581, 0.0, 0.1096])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class VersatileDiffusionMegaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pass
@slow
@require_torch_gpu
class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_from_pretrained_save_pretrained(self):
pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt_image = load_image(
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe.dual_guided(
prompt="first prompt",
image=prompt_image,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=2,
output_type="numpy",
).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = VersatileDiffusionPipeline.from_pretrained(tmpdirname, torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = generator.manual_seed(0)
new_image = pipe.dual_guided(
prompt="first prompt",
image=prompt_image,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=2,
output_type="numpy",
).images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"
def test_inference_dual_guided_then_text_to_image(self):
pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "cyberpunk 2077"
init_image = load_image(
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe.dual_guided(
prompt=prompt,
image=init_image,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=50,
output_type="numpy",
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.014, 0.0112, 0.0136, 0.0145, 0.0107, 0.0113, 0.0272, 0.0215, 0.0216])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
prompt = "A painting of a squirrel eating a burger "
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe.text_to_image(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0408, 0.0181, 0.0, 0.0388, 0.0046, 0.0461, 0.0411, 0.0, 0.0222])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
image = pipe.image_variation(init_image, generator=generator, output_type="numpy").images[0]
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0657, 0.0529, 0.0455, 0.0802, 0.0570, 0.0179, 0.0267, 0.0483, 0.0769])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import require_torch_gpu, slow, torch_device
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class VersatileDiffusionTextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pass
@slow
@require_torch_gpu
class VersatileDiffusionTextToImagePipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_remove_unused_weights_save_load(self):
pipe = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion")
# remove text_unet
pipe.remove_unused_weights()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger "
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy"
).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = VersatileDiffusionTextToImagePipeline.from_pretrained(tmpdirname)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = generator.manual_seed(0)
new_image = pipe(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy"
).images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"
def test_inference_text2img(self):
pipe = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion")
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger "
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0408, 0.0181, 0.0, 0.0388, 0.0046, 0.0461, 0.0411, 0.0, 0.0222])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment