Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
23d50522
"vscode:/vscode.git/clone" did not exist on "ec6d4592d59c136ea1d2cac3b4e2a7ea004a0ce3"
Commit
23d50522
authored
Jun 15, 2022
by
patil-suraj
Browse files
remove unused files
parent
be736cb2
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
0 additions
and
1005 deletions
+0
-1005
src/diffusers/pipelines/configuration_ldmbert.py
src/diffusers/pipelines/configuration_ldmbert.py
+0
-146
src/diffusers/pipelines/modeling_vae.py
src/diffusers/pipelines/modeling_vae.py
+0
-859
No files found.
src/diffusers/pipelines/configuration_ldmbert.py
deleted
100644 → 0
View file @
be736cb2
# coding=utf-8
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LDMBERT model configuration"""
from
transformers.configuration_utils
import
PretrainedConfig
from
transformers.utils
import
logging
logger
=
logging
.
get_logger
(
__name__
)
LDMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
=
{
"ldm-bert"
:
"https://huggingface.co/ldm-bert/resolve/main/config.json"
,
}
class
LDMBertConfig
(
PretrainedConfig
):
r
"""
This is the configuration class to store the configuration of a [`LDMBertModel`]. It is used to instantiate a
LDMBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the LDMBERT
[facebook/ldmbert-large](https://huggingface.co/facebook/ldmbert-large) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the LDMBERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`LDMBertModel`] or [`TFLDMBertModel`].
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop: (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop: (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(d_model).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
num_labels: (`int`, *optional*, defaults to 3):
The number of labels to use in [`LDMBertForSequenceClassification`].
forced_eos_token_id (`int`, *optional*, defaults to 2):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
Example:
```python
>>> from transformers import LDMBertModel, LDMBertConfig
>>> # Initializing a LDMBERT facebook/ldmbert-large style configuration
>>> configuration = LDMBertConfig()
>>> # Initializing a model from the facebook/ldmbert-large style configuration
>>> model = LDMBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type
=
"ldmbert"
keys_to_ignore_at_inference
=
[
"past_key_values"
]
attribute_map
=
{
"num_attention_heads"
:
"encoder_attention_heads"
,
"hidden_size"
:
"d_model"
}
def
__init__
(
self
,
vocab_size
=
30522
,
max_position_embeddings
=
77
,
encoder_layers
=
32
,
encoder_ffn_dim
=
5120
,
encoder_attention_heads
=
8
,
head_dim
=
64
,
encoder_layerdrop
=
0.0
,
activation_function
=
"gelu"
,
d_model
=
1280
,
dropout
=
0.1
,
attention_dropout
=
0.0
,
activation_dropout
=
0.0
,
init_std
=
0.02
,
classifier_dropout
=
0.0
,
scale_embedding
=
False
,
use_cache
=
True
,
pad_token_id
=
0
,
**
kwargs
,
):
self
.
vocab_size
=
vocab_size
self
.
max_position_embeddings
=
max_position_embeddings
self
.
d_model
=
d_model
self
.
encoder_ffn_dim
=
encoder_ffn_dim
self
.
encoder_layers
=
encoder_layers
self
.
encoder_attention_heads
=
encoder_attention_heads
self
.
head_dim
=
head_dim
self
.
dropout
=
dropout
self
.
attention_dropout
=
attention_dropout
self
.
activation_dropout
=
activation_dropout
self
.
activation_function
=
activation_function
self
.
init_std
=
init_std
self
.
encoder_layerdrop
=
encoder_layerdrop
self
.
classifier_dropout
=
classifier_dropout
self
.
use_cache
=
use_cache
self
.
num_hidden_layers
=
encoder_layers
self
.
scale_embedding
=
scale_embedding
# scale factor will be sqrt(d_model) if True
super
().
__init__
(
pad_token_id
=
pad_token_id
,
**
kwargs
)
src/diffusers/pipelines/modeling_vae.py
deleted
100644 → 0
View file @
be736cb2
# pytorch_diffusion + derived encoder decoder
import
math
import
numpy
as
np
import
torch
import
torch.nn
as
nn
import
tqdm
from
diffusers
import
DiffusionPipeline
from
diffusers.configuration_utils
import
ConfigMixin
from
diffusers.modeling_utils
import
ModelMixin
def
get_timestep_embedding
(
timesteps
,
embedding_dim
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models:
From Fairseq.
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
assert
len
(
timesteps
.
shape
)
==
1
half_dim
=
embedding_dim
//
2
emb
=
math
.
log
(
10000
)
/
(
half_dim
-
1
)
emb
=
torch
.
exp
(
torch
.
arange
(
half_dim
,
dtype
=
torch
.
float32
)
*
-
emb
)
emb
=
emb
.
to
(
device
=
timesteps
.
device
)
emb
=
timesteps
.
float
()[:,
None
]
*
emb
[
None
,
:]
emb
=
torch
.
cat
([
torch
.
sin
(
emb
),
torch
.
cos
(
emb
)],
dim
=
1
)
if
embedding_dim
%
2
==
1
:
# zero pad
emb
=
torch
.
nn
.
functional
.
pad
(
emb
,
(
0
,
1
,
0
,
0
))
return
emb
def
nonlinearity
(
x
):
# swish
return
x
*
torch
.
sigmoid
(
x
)
def
Normalize
(
in_channels
):
return
torch
.
nn
.
GroupNorm
(
num_groups
=
32
,
num_channels
=
in_channels
,
eps
=
1e-6
,
affine
=
True
)
class
Upsample
(
nn
.
Module
):
def
__init__
(
self
,
in_channels
,
with_conv
):
super
().
__init__
()
self
.
with_conv
=
with_conv
if
self
.
with_conv
:
self
.
conv
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
def
forward
(
self
,
x
):
x
=
torch
.
nn
.
functional
.
interpolate
(
x
,
scale_factor
=
2.0
,
mode
=
"nearest"
)
if
self
.
with_conv
:
x
=
self
.
conv
(
x
)
return
x
class
Downsample
(
nn
.
Module
):
def
__init__
(
self
,
in_channels
,
with_conv
):
super
().
__init__
()
self
.
with_conv
=
with_conv
if
self
.
with_conv
:
# no asymmetric padding in torch conv, must do it ourselves
self
.
conv
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
3
,
stride
=
2
,
padding
=
0
)
def
forward
(
self
,
x
):
if
self
.
with_conv
:
pad
=
(
0
,
1
,
0
,
1
)
x
=
torch
.
nn
.
functional
.
pad
(
x
,
pad
,
mode
=
"constant"
,
value
=
0
)
x
=
self
.
conv
(
x
)
else
:
x
=
torch
.
nn
.
functional
.
avg_pool2d
(
x
,
kernel_size
=
2
,
stride
=
2
)
return
x
class
ResnetBlock
(
nn
.
Module
):
def
__init__
(
self
,
*
,
in_channels
,
out_channels
=
None
,
conv_shortcut
=
False
,
dropout
,
temb_channels
=
512
):
super
().
__init__
()
self
.
in_channels
=
in_channels
out_channels
=
in_channels
if
out_channels
is
None
else
out_channels
self
.
out_channels
=
out_channels
self
.
use_conv_shortcut
=
conv_shortcut
self
.
norm1
=
Normalize
(
in_channels
)
self
.
conv1
=
torch
.
nn
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
if
temb_channels
>
0
:
self
.
temb_proj
=
torch
.
nn
.
Linear
(
temb_channels
,
out_channels
)
self
.
norm2
=
Normalize
(
out_channels
)
self
.
dropout
=
torch
.
nn
.
Dropout
(
dropout
)
self
.
conv2
=
torch
.
nn
.
Conv2d
(
out_channels
,
out_channels
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
if
self
.
in_channels
!=
self
.
out_channels
:
if
self
.
use_conv_shortcut
:
self
.
conv_shortcut
=
torch
.
nn
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
else
:
self
.
nin_shortcut
=
torch
.
nn
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
def
forward
(
self
,
x
,
temb
):
h
=
x
h
=
self
.
norm1
(
h
)
h
=
nonlinearity
(
h
)
h
=
self
.
conv1
(
h
)
if
temb
is
not
None
:
h
=
h
+
self
.
temb_proj
(
nonlinearity
(
temb
))[:,
:,
None
,
None
]
h
=
self
.
norm2
(
h
)
h
=
nonlinearity
(
h
)
h
=
self
.
dropout
(
h
)
h
=
self
.
conv2
(
h
)
if
self
.
in_channels
!=
self
.
out_channels
:
if
self
.
use_conv_shortcut
:
x
=
self
.
conv_shortcut
(
x
)
else
:
x
=
self
.
nin_shortcut
(
x
)
return
x
+
h
class
AttnBlock
(
nn
.
Module
):
def
__init__
(
self
,
in_channels
):
super
().
__init__
()
self
.
in_channels
=
in_channels
self
.
norm
=
Normalize
(
in_channels
)
self
.
q
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
k
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
v
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
proj_out
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
def
forward
(
self
,
x
):
h_
=
x
h_
=
self
.
norm
(
h_
)
q
=
self
.
q
(
h_
)
k
=
self
.
k
(
h_
)
v
=
self
.
v
(
h_
)
# compute attention
b
,
c
,
h
,
w
=
q
.
shape
q
=
q
.
reshape
(
b
,
c
,
h
*
w
)
q
=
q
.
permute
(
0
,
2
,
1
)
# b,hw,c
k
=
k
.
reshape
(
b
,
c
,
h
*
w
)
# b,c,hw
w_
=
torch
.
bmm
(
q
,
k
)
# b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_
=
w_
*
(
int
(
c
)
**
(
-
0.5
))
w_
=
torch
.
nn
.
functional
.
softmax
(
w_
,
dim
=
2
)
# attend to values
v
=
v
.
reshape
(
b
,
c
,
h
*
w
)
w_
=
w_
.
permute
(
0
,
2
,
1
)
# b,hw,hw (first hw of k, second of q)
h_
=
torch
.
bmm
(
v
,
w_
)
# b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_
=
h_
.
reshape
(
b
,
c
,
h
,
w
)
h_
=
self
.
proj_out
(
h_
)
return
x
+
h_
class
Model
(
nn
.
Module
):
def
__init__
(
self
,
*
,
ch
,
out_ch
,
ch_mult
=
(
1
,
2
,
4
,
8
),
num_res_blocks
,
attn_resolutions
,
dropout
=
0.0
,
resamp_with_conv
=
True
,
in_channels
,
resolution
,
use_timestep
=
True
,
):
super
().
__init__
()
self
.
ch
=
ch
self
.
temb_ch
=
self
.
ch
*
4
self
.
num_resolutions
=
len
(
ch_mult
)
self
.
num_res_blocks
=
num_res_blocks
self
.
resolution
=
resolution
self
.
in_channels
=
in_channels
self
.
use_timestep
=
use_timestep
if
self
.
use_timestep
:
# timestep embedding
self
.
temb
=
nn
.
Module
()
self
.
temb
.
dense
=
nn
.
ModuleList
(
[
torch
.
nn
.
Linear
(
self
.
ch
,
self
.
temb_ch
),
torch
.
nn
.
Linear
(
self
.
temb_ch
,
self
.
temb_ch
),
]
)
# downsampling
self
.
conv_in
=
torch
.
nn
.
Conv2d
(
in_channels
,
self
.
ch
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
curr_res
=
resolution
in_ch_mult
=
(
1
,)
+
tuple
(
ch_mult
)
self
.
down
=
nn
.
ModuleList
()
for
i_level
in
range
(
self
.
num_resolutions
):
block
=
nn
.
ModuleList
()
attn
=
nn
.
ModuleList
()
block_in
=
ch
*
in_ch_mult
[
i_level
]
block_out
=
ch
*
ch_mult
[
i_level
]
for
i_block
in
range
(
self
.
num_res_blocks
):
block
.
append
(
ResnetBlock
(
in_channels
=
block_in
,
out_channels
=
block_out
,
temb_channels
=
self
.
temb_ch
,
dropout
=
dropout
)
)
block_in
=
block_out
if
curr_res
in
attn_resolutions
:
attn
.
append
(
AttnBlock
(
block_in
))
down
=
nn
.
Module
()
down
.
block
=
block
down
.
attn
=
attn
if
i_level
!=
self
.
num_resolutions
-
1
:
down
.
downsample
=
Downsample
(
block_in
,
resamp_with_conv
)
curr_res
=
curr_res
//
2
self
.
down
.
append
(
down
)
# middle
self
.
mid
=
nn
.
Module
()
self
.
mid
.
block_1
=
ResnetBlock
(
in_channels
=
block_in
,
out_channels
=
block_in
,
temb_channels
=
self
.
temb_ch
,
dropout
=
dropout
)
self
.
mid
.
attn_1
=
AttnBlock
(
block_in
)
self
.
mid
.
block_2
=
ResnetBlock
(
in_channels
=
block_in
,
out_channels
=
block_in
,
temb_channels
=
self
.
temb_ch
,
dropout
=
dropout
)
# upsampling
self
.
up
=
nn
.
ModuleList
()
for
i_level
in
reversed
(
range
(
self
.
num_resolutions
)):
block
=
nn
.
ModuleList
()
attn
=
nn
.
ModuleList
()
block_out
=
ch
*
ch_mult
[
i_level
]
skip_in
=
ch
*
ch_mult
[
i_level
]
for
i_block
in
range
(
self
.
num_res_blocks
+
1
):
if
i_block
==
self
.
num_res_blocks
:
skip_in
=
ch
*
in_ch_mult
[
i_level
]
block
.
append
(
ResnetBlock
(
in_channels
=
block_in
+
skip_in
,
out_channels
=
block_out
,
temb_channels
=
self
.
temb_ch
,
dropout
=
dropout
,
)
)
block_in
=
block_out
if
curr_res
in
attn_resolutions
:
attn
.
append
(
AttnBlock
(
block_in
))
up
=
nn
.
Module
()
up
.
block
=
block
up
.
attn
=
attn
if
i_level
!=
0
:
up
.
upsample
=
Upsample
(
block_in
,
resamp_with_conv
)
curr_res
=
curr_res
*
2
self
.
up
.
insert
(
0
,
up
)
# prepend to get consistent order
# end
self
.
norm_out
=
Normalize
(
block_in
)
self
.
conv_out
=
torch
.
nn
.
Conv2d
(
block_in
,
out_ch
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
def
forward
(
self
,
x
,
t
=
None
):
# assert x.shape[2] == x.shape[3] == self.resolution
if
self
.
use_timestep
:
# timestep embedding
assert
t
is
not
None
temb
=
get_timestep_embedding
(
t
,
self
.
ch
)
temb
=
self
.
temb
.
dense
[
0
](
temb
)
temb
=
nonlinearity
(
temb
)
temb
=
self
.
temb
.
dense
[
1
](
temb
)
else
:
temb
=
None
# downsampling
hs
=
[
self
.
conv_in
(
x
)]
for
i_level
in
range
(
self
.
num_resolutions
):
for
i_block
in
range
(
self
.
num_res_blocks
):
h
=
self
.
down
[
i_level
].
block
[
i_block
](
hs
[
-
1
],
temb
)
if
len
(
self
.
down
[
i_level
].
attn
)
>
0
:
h
=
self
.
down
[
i_level
].
attn
[
i_block
](
h
)
hs
.
append
(
h
)
if
i_level
!=
self
.
num_resolutions
-
1
:
hs
.
append
(
self
.
down
[
i_level
].
downsample
(
hs
[
-
1
]))
# middle
h
=
hs
[
-
1
]
h
=
self
.
mid
.
block_1
(
h
,
temb
)
h
=
self
.
mid
.
attn_1
(
h
)
h
=
self
.
mid
.
block_2
(
h
,
temb
)
# upsampling
for
i_level
in
reversed
(
range
(
self
.
num_resolutions
)):
for
i_block
in
range
(
self
.
num_res_blocks
+
1
):
h
=
self
.
up
[
i_level
].
block
[
i_block
](
torch
.
cat
([
h
,
hs
.
pop
()],
dim
=
1
),
temb
)
if
len
(
self
.
up
[
i_level
].
attn
)
>
0
:
h
=
self
.
up
[
i_level
].
attn
[
i_block
](
h
)
if
i_level
!=
0
:
h
=
self
.
up
[
i_level
].
upsample
(
h
)
# end
h
=
self
.
norm_out
(
h
)
h
=
nonlinearity
(
h
)
h
=
self
.
conv_out
(
h
)
return
h
class
Encoder
(
nn
.
Module
):
def
__init__
(
self
,
*
,
ch
,
out_ch
,
ch_mult
=
(
1
,
2
,
4
,
8
),
num_res_blocks
,
attn_resolutions
,
dropout
=
0.0
,
resamp_with_conv
=
True
,
in_channels
,
resolution
,
z_channels
,
double_z
=
True
,
**
ignore_kwargs
,
):
super
().
__init__
()
self
.
ch
=
ch
self
.
temb_ch
=
0
self
.
num_resolutions
=
len
(
ch_mult
)
self
.
num_res_blocks
=
num_res_blocks
self
.
resolution
=
resolution
self
.
in_channels
=
in_channels
# downsampling
self
.
conv_in
=
torch
.
nn
.
Conv2d
(
in_channels
,
self
.
ch
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
curr_res
=
resolution
in_ch_mult
=
(
1
,)
+
tuple
(
ch_mult
)
self
.
down
=
nn
.
ModuleList
()
for
i_level
in
range
(
self
.
num_resolutions
):
block
=
nn
.
ModuleList
()
attn
=
nn
.
ModuleList
()
block_in
=
ch
*
in_ch_mult
[
i_level
]
block_out
=
ch
*
ch_mult
[
i_level
]
for
i_block
in
range
(
self
.
num_res_blocks
):
block
.
append
(
ResnetBlock
(
in_channels
=
block_in
,
out_channels
=
block_out
,
temb_channels
=
self
.
temb_ch
,
dropout
=
dropout
)
)
block_in
=
block_out
if
curr_res
in
attn_resolutions
:
attn
.
append
(
AttnBlock
(
block_in
))
down
=
nn
.
Module
()
down
.
block
=
block
down
.
attn
=
attn
if
i_level
!=
self
.
num_resolutions
-
1
:
down
.
downsample
=
Downsample
(
block_in
,
resamp_with_conv
)
curr_res
=
curr_res
//
2
self
.
down
.
append
(
down
)
# middle
self
.
mid
=
nn
.
Module
()
self
.
mid
.
block_1
=
ResnetBlock
(
in_channels
=
block_in
,
out_channels
=
block_in
,
temb_channels
=
self
.
temb_ch
,
dropout
=
dropout
)
self
.
mid
.
attn_1
=
AttnBlock
(
block_in
)
self
.
mid
.
block_2
=
ResnetBlock
(
in_channels
=
block_in
,
out_channels
=
block_in
,
temb_channels
=
self
.
temb_ch
,
dropout
=
dropout
)
# end
self
.
norm_out
=
Normalize
(
block_in
)
self
.
conv_out
=
torch
.
nn
.
Conv2d
(
block_in
,
2
*
z_channels
if
double_z
else
z_channels
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
def
forward
(
self
,
x
):
# assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)
# timestep embedding
temb
=
None
# downsampling
hs
=
[
self
.
conv_in
(
x
)]
for
i_level
in
range
(
self
.
num_resolutions
):
for
i_block
in
range
(
self
.
num_res_blocks
):
h
=
self
.
down
[
i_level
].
block
[
i_block
](
hs
[
-
1
],
temb
)
if
len
(
self
.
down
[
i_level
].
attn
)
>
0
:
h
=
self
.
down
[
i_level
].
attn
[
i_block
](
h
)
hs
.
append
(
h
)
if
i_level
!=
self
.
num_resolutions
-
1
:
hs
.
append
(
self
.
down
[
i_level
].
downsample
(
hs
[
-
1
]))
# middle
h
=
hs
[
-
1
]
h
=
self
.
mid
.
block_1
(
h
,
temb
)
h
=
self
.
mid
.
attn_1
(
h
)
h
=
self
.
mid
.
block_2
(
h
,
temb
)
# end
h
=
self
.
norm_out
(
h
)
h
=
nonlinearity
(
h
)
h
=
self
.
conv_out
(
h
)
return
h
class
Decoder
(
nn
.
Module
):
def
__init__
(
self
,
*
,
ch
,
out_ch
,
ch_mult
=
(
1
,
2
,
4
,
8
),
num_res_blocks
,
attn_resolutions
,
dropout
=
0.0
,
resamp_with_conv
=
True
,
in_channels
,
resolution
,
z_channels
,
give_pre_end
=
False
,
**
ignorekwargs
,
):
super
().
__init__
()
self
.
ch
=
ch
self
.
temb_ch
=
0
self
.
num_resolutions
=
len
(
ch_mult
)
self
.
num_res_blocks
=
num_res_blocks
self
.
resolution
=
resolution
self
.
in_channels
=
in_channels
self
.
give_pre_end
=
give_pre_end
# compute in_ch_mult, block_in and curr_res at lowest res
in_ch_mult
=
(
1
,)
+
tuple
(
ch_mult
)
block_in
=
ch
*
ch_mult
[
self
.
num_resolutions
-
1
]
curr_res
=
resolution
//
2
**
(
self
.
num_resolutions
-
1
)
self
.
z_shape
=
(
1
,
z_channels
,
curr_res
,
curr_res
)
print
(
"Working with z of shape {} = {} dimensions."
.
format
(
self
.
z_shape
,
np
.
prod
(
self
.
z_shape
)))
# z to block_in
self
.
conv_in
=
torch
.
nn
.
Conv2d
(
z_channels
,
block_in
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
# middle
self
.
mid
=
nn
.
Module
()
self
.
mid
.
block_1
=
ResnetBlock
(
in_channels
=
block_in
,
out_channels
=
block_in
,
temb_channels
=
self
.
temb_ch
,
dropout
=
dropout
)
self
.
mid
.
attn_1
=
AttnBlock
(
block_in
)
self
.
mid
.
block_2
=
ResnetBlock
(
in_channels
=
block_in
,
out_channels
=
block_in
,
temb_channels
=
self
.
temb_ch
,
dropout
=
dropout
)
# upsampling
self
.
up
=
nn
.
ModuleList
()
for
i_level
in
reversed
(
range
(
self
.
num_resolutions
)):
block
=
nn
.
ModuleList
()
attn
=
nn
.
ModuleList
()
block_out
=
ch
*
ch_mult
[
i_level
]
for
i_block
in
range
(
self
.
num_res_blocks
+
1
):
block
.
append
(
ResnetBlock
(
in_channels
=
block_in
,
out_channels
=
block_out
,
temb_channels
=
self
.
temb_ch
,
dropout
=
dropout
)
)
block_in
=
block_out
if
curr_res
in
attn_resolutions
:
attn
.
append
(
AttnBlock
(
block_in
))
up
=
nn
.
Module
()
up
.
block
=
block
up
.
attn
=
attn
if
i_level
!=
0
:
up
.
upsample
=
Upsample
(
block_in
,
resamp_with_conv
)
curr_res
=
curr_res
*
2
self
.
up
.
insert
(
0
,
up
)
# prepend to get consistent order
# end
self
.
norm_out
=
Normalize
(
block_in
)
self
.
conv_out
=
torch
.
nn
.
Conv2d
(
block_in
,
out_ch
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
def
forward
(
self
,
z
):
# assert z.shape[1:] == self.z_shape[1:]
self
.
last_z_shape
=
z
.
shape
# timestep embedding
temb
=
None
# z to block_in
h
=
self
.
conv_in
(
z
)
# middle
h
=
self
.
mid
.
block_1
(
h
,
temb
)
h
=
self
.
mid
.
attn_1
(
h
)
h
=
self
.
mid
.
block_2
(
h
,
temb
)
# upsampling
for
i_level
in
reversed
(
range
(
self
.
num_resolutions
)):
for
i_block
in
range
(
self
.
num_res_blocks
+
1
):
h
=
self
.
up
[
i_level
].
block
[
i_block
](
h
,
temb
)
if
len
(
self
.
up
[
i_level
].
attn
)
>
0
:
h
=
self
.
up
[
i_level
].
attn
[
i_block
](
h
)
if
i_level
!=
0
:
h
=
self
.
up
[
i_level
].
upsample
(
h
)
# end
if
self
.
give_pre_end
:
return
h
h
=
self
.
norm_out
(
h
)
h
=
nonlinearity
(
h
)
h
=
self
.
conv_out
(
h
)
return
h
class
VectorQuantizer
(
nn
.
Module
):
"""
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
"""
# NOTE: due to a bug the beta term was applied to the wrong term. for
# backwards compatibility we use the buggy version by default, but you can
# specify legacy=False to fix it.
def
__init__
(
self
,
n_e
,
e_dim
,
beta
,
remap
=
None
,
unknown_index
=
"random"
,
sane_index_shape
=
False
,
legacy
=
True
):
super
().
__init__
()
self
.
n_e
=
n_e
self
.
e_dim
=
e_dim
self
.
beta
=
beta
self
.
legacy
=
legacy
self
.
embedding
=
nn
.
Embedding
(
self
.
n_e
,
self
.
e_dim
)
self
.
embedding
.
weight
.
data
.
uniform_
(
-
1.0
/
self
.
n_e
,
1.0
/
self
.
n_e
)
self
.
remap
=
remap
if
self
.
remap
is
not
None
:
self
.
register_buffer
(
"used"
,
torch
.
tensor
(
np
.
load
(
self
.
remap
)))
self
.
re_embed
=
self
.
used
.
shape
[
0
]
self
.
unknown_index
=
unknown_index
# "random" or "extra" or integer
if
self
.
unknown_index
==
"extra"
:
self
.
unknown_index
=
self
.
re_embed
self
.
re_embed
=
self
.
re_embed
+
1
print
(
f
"Remapping
{
self
.
n_e
}
indices to
{
self
.
re_embed
}
indices. "
f
"Using
{
self
.
unknown_index
}
for unknown indices."
)
else
:
self
.
re_embed
=
n_e
self
.
sane_index_shape
=
sane_index_shape
def
remap_to_used
(
self
,
inds
):
ishape
=
inds
.
shape
assert
len
(
ishape
)
>
1
inds
=
inds
.
reshape
(
ishape
[
0
],
-
1
)
used
=
self
.
used
.
to
(
inds
)
match
=
(
inds
[:,
:,
None
]
==
used
[
None
,
None
,
...]).
long
()
new
=
match
.
argmax
(
-
1
)
unknown
=
match
.
sum
(
2
)
<
1
if
self
.
unknown_index
==
"random"
:
new
[
unknown
]
=
torch
.
randint
(
0
,
self
.
re_embed
,
size
=
new
[
unknown
].
shape
).
to
(
device
=
new
.
device
)
else
:
new
[
unknown
]
=
self
.
unknown_index
return
new
.
reshape
(
ishape
)
def
unmap_to_all
(
self
,
inds
):
ishape
=
inds
.
shape
assert
len
(
ishape
)
>
1
inds
=
inds
.
reshape
(
ishape
[
0
],
-
1
)
used
=
self
.
used
.
to
(
inds
)
if
self
.
re_embed
>
self
.
used
.
shape
[
0
]:
# extra token
inds
[
inds
>=
self
.
used
.
shape
[
0
]]
=
0
# simply set to zero
back
=
torch
.
gather
(
used
[
None
,
:][
inds
.
shape
[
0
]
*
[
0
],
:],
1
,
inds
)
return
back
.
reshape
(
ishape
)
def
forward
(
self
,
z
,
temp
=
None
,
rescale_logits
=
False
,
return_logits
=
False
):
assert
temp
is
None
or
temp
==
1.0
,
"Only for interface compatible with Gumbel"
assert
rescale_logits
==
False
,
"Only for interface compatible with Gumbel"
assert
return_logits
==
False
,
"Only for interface compatible with Gumbel"
# reshape z -> (batch, height, width, channel) and flatten
z
=
rearrange
(
z
,
"b c h w -> b h w c"
).
contiguous
()
z_flattened
=
z
.
view
(
-
1
,
self
.
e_dim
)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d
=
(
torch
.
sum
(
z_flattened
**
2
,
dim
=
1
,
keepdim
=
True
)
+
torch
.
sum
(
self
.
embedding
.
weight
**
2
,
dim
=
1
)
-
2
*
torch
.
einsum
(
"bd,dn->bn"
,
z_flattened
,
rearrange
(
self
.
embedding
.
weight
,
"n d -> d n"
))
)
min_encoding_indices
=
torch
.
argmin
(
d
,
dim
=
1
)
z_q
=
self
.
embedding
(
min_encoding_indices
).
view
(
z
.
shape
)
perplexity
=
None
min_encodings
=
None
# compute loss for embedding
if
not
self
.
legacy
:
loss
=
self
.
beta
*
torch
.
mean
((
z_q
.
detach
()
-
z
)
**
2
)
+
torch
.
mean
((
z_q
-
z
.
detach
())
**
2
)
else
:
loss
=
torch
.
mean
((
z_q
.
detach
()
-
z
)
**
2
)
+
self
.
beta
*
torch
.
mean
((
z_q
-
z
.
detach
())
**
2
)
# preserve gradients
z_q
=
z
+
(
z_q
-
z
).
detach
()
# reshape back to match original input shape
z_q
=
rearrange
(
z_q
,
"b h w c -> b c h w"
).
contiguous
()
if
self
.
remap
is
not
None
:
min_encoding_indices
=
min_encoding_indices
.
reshape
(
z
.
shape
[
0
],
-
1
)
# add batch axis
min_encoding_indices
=
self
.
remap_to_used
(
min_encoding_indices
)
min_encoding_indices
=
min_encoding_indices
.
reshape
(
-
1
,
1
)
# flatten
if
self
.
sane_index_shape
:
min_encoding_indices
=
min_encoding_indices
.
reshape
(
z_q
.
shape
[
0
],
z_q
.
shape
[
2
],
z_q
.
shape
[
3
])
return
z_q
,
loss
,
(
perplexity
,
min_encodings
,
min_encoding_indices
)
def
get_codebook_entry
(
self
,
indices
,
shape
):
# shape specifying (batch, height, width, channel)
if
self
.
remap
is
not
None
:
indices
=
indices
.
reshape
(
shape
[
0
],
-
1
)
# add batch axis
indices
=
self
.
unmap_to_all
(
indices
)
indices
=
indices
.
reshape
(
-
1
)
# flatten again
# get quantized latent vectors
z_q
=
self
.
embedding
(
indices
)
if
shape
is
not
None
:
z_q
=
z_q
.
view
(
shape
)
# reshape back to match original input shape
z_q
=
z_q
.
permute
(
0
,
3
,
1
,
2
).
contiguous
()
return
z_q
class
VQModel
(
ModelMixin
,
ConfigMixin
):
def
__init__
(
self
,
ch
,
out_ch
,
num_res_blocks
,
attn_resolutions
,
in_channels
,
resolution
,
z_channels
,
n_embed
,
embed_dim
,
remap
=
None
,
sane_index_shape
=
False
,
# tell vector quantizer to return indices as bhw
ch_mult
=
(
1
,
2
,
4
,
8
),
dropout
=
0.0
,
double_z
=
True
,
resamp_with_conv
=
True
,
give_pre_end
=
False
,
):
super
().
__init__
()
# register all __init__ params with self.register
self
.
register
(
ch
=
ch
,
out_ch
=
out_ch
,
num_res_blocks
=
num_res_blocks
,
attn_resolutions
=
attn_resolutions
,
in_channels
=
in_channels
,
resolution
=
resolution
,
z_channels
=
z_channels
,
n_embed
=
n_embed
,
embed_dim
=
embed_dim
,
remap
=
remap
,
sane_index_shape
=
sane_index_shape
,
ch_mult
=
ch_mult
,
dropout
=
dropout
,
double_z
=
double_z
,
resamp_with_conv
=
resamp_with_conv
,
give_pre_end
=
give_pre_end
,
)
# pass init params to Encoder
self
.
encoder
=
Encoder
(
ch
=
ch
,
out_ch
=
out_ch
,
num_res_blocks
=
num_res_blocks
,
attn_resolutions
=
attn_resolutions
,
in_channels
=
in_channels
,
resolution
=
resolution
,
z_channels
=
z_channels
,
ch_mult
=
ch_mult
,
dropout
=
dropout
,
resamp_with_conv
=
resamp_with_conv
,
double_z
=
double_z
,
give_pre_end
=
give_pre_end
,
)
self
.
quantize
=
VectorQuantizer
(
n_embed
,
embed_dim
,
beta
=
0.25
,
remap
=
remap
,
sane_index_shape
=
sane_index_shape
)
# pass init params to Decoder
self
.
decoder
=
Decoder
(
ch
=
ch
,
out_ch
=
out_ch
,
num_res_blocks
=
num_res_blocks
,
attn_resolutions
=
attn_resolutions
,
in_channels
=
in_channels
,
resolution
=
resolution
,
z_channels
=
z_channels
,
ch_mult
=
ch_mult
,
dropout
=
dropout
,
resamp_with_conv
=
resamp_with_conv
,
give_pre_end
=
give_pre_end
,
)
def
encode
(
self
,
x
):
h
=
self
.
encoder
(
x
)
h
=
self
.
quant_conv
(
h
)
return
h
def
decode
(
self
,
h
,
force_not_quantize
=
False
):
# also go through quantization layer
if
not
force_not_quantize
:
quant
,
emb_loss
,
info
=
self
.
quantize
(
h
)
else
:
quant
=
h
quant
=
self
.
post_quant_conv
(
quant
)
dec
=
self
.
decoder
(
quant
)
return
dec
class
DiagonalGaussianDistribution
(
object
):
def
__init__
(
self
,
parameters
,
deterministic
=
False
):
self
.
parameters
=
parameters
self
.
mean
,
self
.
logvar
=
torch
.
chunk
(
parameters
,
2
,
dim
=
1
)
self
.
logvar
=
torch
.
clamp
(
self
.
logvar
,
-
30.0
,
20.0
)
self
.
deterministic
=
deterministic
self
.
std
=
torch
.
exp
(
0.5
*
self
.
logvar
)
self
.
var
=
torch
.
exp
(
self
.
logvar
)
if
self
.
deterministic
:
self
.
var
=
self
.
std
=
torch
.
zeros_like
(
self
.
mean
).
to
(
device
=
self
.
parameters
.
device
)
def
sample
(
self
):
x
=
self
.
mean
+
self
.
std
*
torch
.
randn
(
self
.
mean
.
shape
).
to
(
device
=
self
.
parameters
.
device
)
return
x
def
kl
(
self
,
other
=
None
):
if
self
.
deterministic
:
return
torch
.
Tensor
([
0.0
])
else
:
if
other
is
None
:
return
0.5
*
torch
.
sum
(
torch
.
pow
(
self
.
mean
,
2
)
+
self
.
var
-
1.0
-
self
.
logvar
,
dim
=
[
1
,
2
,
3
])
else
:
return
0.5
*
torch
.
sum
(
torch
.
pow
(
self
.
mean
-
other
.
mean
,
2
)
/
other
.
var
+
self
.
var
/
other
.
var
-
1.0
-
self
.
logvar
+
other
.
logvar
,
dim
=
[
1
,
2
,
3
],
)
def
nll
(
self
,
sample
,
dims
=
[
1
,
2
,
3
]):
if
self
.
deterministic
:
return
torch
.
Tensor
([
0.0
])
logtwopi
=
np
.
log
(
2.0
*
np
.
pi
)
return
0.5
*
torch
.
sum
(
logtwopi
+
self
.
logvar
+
torch
.
pow
(
sample
-
self
.
mean
,
2
)
/
self
.
var
,
dim
=
dims
)
def
mode
(
self
):
return
self
.
mean
class
AutoencoderKL
(
ModelMixin
,
ConfigMixin
):
def
__init__
(
self
,
ch
,
out_ch
,
num_res_blocks
,
attn_resolutions
,
in_channels
,
resolution
,
z_channels
,
embed_dim
,
remap
=
None
,
sane_index_shape
=
False
,
# tell vector quantizer to return indices as bhw
ch_mult
=
(
1
,
2
,
4
,
8
),
dropout
=
0.0
,
double_z
=
True
,
resamp_with_conv
=
True
,
give_pre_end
=
False
,
):
super
().
__init__
()
# register all __init__ params with self.register
self
.
register
(
ch
=
ch
,
out_ch
=
out_ch
,
num_res_blocks
=
num_res_blocks
,
attn_resolutions
=
attn_resolutions
,
in_channels
=
in_channels
,
resolution
=
resolution
,
z_channels
=
z_channels
,
embed_dim
=
embed_dim
,
remap
=
remap
,
sane_index_shape
=
sane_index_shape
,
ch_mult
=
ch_mult
,
dropout
=
dropout
,
double_z
=
double_z
,
resamp_with_conv
=
resamp_with_conv
,
give_pre_end
=
give_pre_end
,
)
# pass init params to Encoder
self
.
encoder
=
Encoder
(
ch
=
ch
,
out_ch
=
out_ch
,
num_res_blocks
=
num_res_blocks
,
attn_resolutions
=
attn_resolutions
,
in_channels
=
in_channels
,
resolution
=
resolution
,
z_channels
=
z_channels
,
ch_mult
=
ch_mult
,
dropout
=
dropout
,
resamp_with_conv
=
resamp_with_conv
,
double_z
=
double_z
,
give_pre_end
=
give_pre_end
,
)
# pass init params to Decoder
self
.
decoder
=
Decoder
(
ch
=
ch
,
out_ch
=
out_ch
,
num_res_blocks
=
num_res_blocks
,
attn_resolutions
=
attn_resolutions
,
in_channels
=
in_channels
,
resolution
=
resolution
,
z_channels
=
z_channels
,
ch_mult
=
ch_mult
,
dropout
=
dropout
,
resamp_with_conv
=
resamp_with_conv
,
give_pre_end
=
give_pre_end
,
)
self
.
quant_conv
=
torch
.
nn
.
Conv2d
(
2
*
z_channels
,
2
*
embed_dim
,
1
)
self
.
post_quant_conv
=
torch
.
nn
.
Conv2d
(
embed_dim
,
z_channels
,
1
)
def
encode
(
self
,
x
):
h
=
self
.
encoder
(
x
)
moments
=
self
.
quant_conv
(
h
)
posterior
=
DiagonalGaussianDistribution
(
moments
)
return
posterior
def
decode
(
self
,
z
):
z
=
self
.
post_quant_conv
(
z
)
dec
=
self
.
decoder
(
z
)
return
dec
def
forward
(
self
,
input
,
sample_posterior
=
True
):
posterior
=
self
.
encode
(
input
)
if
sample_posterior
:
z
=
posterior
.
sample
()
else
:
z
=
posterior
.
mode
()
dec
=
self
.
decode
(
z
)
return
dec
,
posterior
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment