Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
1dc856e5
Commit
1dc856e5
authored
Apr 06, 2023
by
William Berman
Committed by
Will Berman
Apr 09, 2023
Browse files
ddpm scheduler variance fixes
parent
2cbdc586
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
4 additions
and
3 deletions
+4
-3
src/diffusers/schedulers/scheduling_ddpm.py
src/diffusers/schedulers/scheduling_ddpm.py
+4
-3
No files found.
src/diffusers/schedulers/scheduling_ddpm.py
View file @
1dc856e5
...
@@ -214,16 +214,17 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
...
@@ -214,16 +214,17 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
# and sample from it to get previous sample
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
variance
=
(
1
-
alpha_prod_t_prev
)
/
(
1
-
alpha_prod_t
)
*
current_beta_t
variance
=
(
1
-
alpha_prod_t_prev
)
/
(
1
-
alpha_prod_t
)
*
current_beta_t
variance
=
torch
.
clamp
(
variance
,
min
=
1e-20
)
if
variance_type
is
None
:
if
variance_type
is
None
:
variance_type
=
self
.
config
.
variance_type
variance_type
=
self
.
config
.
variance_type
# hacks - were probably added for training stability
# hacks - were probably added for training stability
if
variance_type
==
"fixed_small"
:
if
variance_type
==
"fixed_small"
:
variance
=
torch
.
clamp
(
variance
,
min
=
1e-20
)
variance
=
variance
# for rl-diffuser https://arxiv.org/abs/2205.09991
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif
variance_type
==
"fixed_small_log"
:
elif
variance_type
==
"fixed_small_log"
:
variance
=
torch
.
log
(
torch
.
clamp
(
variance
,
min
=
1e-20
)
)
variance
=
torch
.
log
(
variance
,
min
=
1e-20
)
variance
=
torch
.
exp
(
0.5
*
variance
)
variance
=
torch
.
exp
(
0.5
*
variance
)
elif
variance_type
==
"fixed_large"
:
elif
variance_type
==
"fixed_large"
:
variance
=
current_beta_t
variance
=
current_beta_t
...
@@ -234,7 +235,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
...
@@ -234,7 +235,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
return
predicted_variance
return
predicted_variance
elif
variance_type
==
"learned_range"
:
elif
variance_type
==
"learned_range"
:
min_log
=
torch
.
log
(
variance
)
min_log
=
torch
.
log
(
variance
)
max_log
=
torch
.
log
(
self
.
betas
[
t
]
)
max_log
=
torch
.
log
(
current_beta_t
)
frac
=
(
predicted_variance
+
1
)
/
2
frac
=
(
predicted_variance
+
1
)
/
2
variance
=
frac
*
max_log
+
(
1
-
frac
)
*
min_log
variance
=
frac
*
max_log
+
(
1
-
frac
)
*
min_log
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment