Unverified Commit 1afc2185 authored by Junsong Chen's avatar Junsong Chen Committed by GitHub
Browse files

SANA-Video Image to Video pipeline `SanaImageToVideoPipeline` support (#12634)



* move sana-video to a new dir and add `SanaImageToVideoPipeline` with no modify;

* fix bug and run text/image-to-vidoe success;

* make style; quality; fix-copies;

* add sana image-to-video pipeline in markdown;

* add test case for sana image-to-video;

* make style;

* add a init file in sana-video test dir;

* Update src/diffusers/pipelines/sana_video/pipeline_sana_video_i2v.py
Co-authored-by: default avatardg845 <58458699+dg845@users.noreply.github.com>

* Update tests/pipelines/sana_video/test_sana_video_i2v.py
Co-authored-by: default avatardg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana_video/pipeline_sana_video_i2v.py
Co-authored-by: default avatardg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana_video/pipeline_sana_video_i2v.py
Co-authored-by: default avatardg845 <58458699+dg845@users.noreply.github.com>

* Update tests/pipelines/sana_video/test_sana_video_i2v.py
Co-authored-by: default avatardg845 <58458699+dg845@users.noreply.github.com>

* minor update;

* fix bug and skip fp16 save test;
Co-authored-by: default avatarYuyang Zhao <43061147+HeliosZhao@users.noreply.github.com>

* Update src/diffusers/pipelines/sana_video/pipeline_sana_video_i2v.py
Co-authored-by: default avatardg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana_video/pipeline_sana_video_i2v.py
Co-authored-by: default avatardg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana_video/pipeline_sana_video_i2v.py
Co-authored-by: default avatardg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana_video/pipeline_sana_video_i2v.py
Co-authored-by: default avatardg845 <58458699+dg845@users.noreply.github.com>

* add copied from for `encode_prompt`

* Apply style fixes

---------
Co-authored-by: default avatardg845 <58458699+dg845@users.noreply.github.com>
Co-authored-by: default avatarYuyang Zhao <43061147+HeliosZhao@users.noreply.github.com>
Co-authored-by: default avatargithub-actions[bot] <github-actions[bot]@users.noreply.github.com>
parent 0c35b580
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License. -->
# SanaVideoPipeline
# Sana-Video
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
......@@ -37,6 +37,85 @@ Refer to [this](https://huggingface.co/collections/Efficient-Large-Model/sana-vi
Note: The recommended dtype mentioned is for the transformer weights. The text encoder and VAE weights must stay in `torch.bfloat16` or `torch.float32` for the model to work correctly. Please refer to the inference example below to see how to load the model with the recommended dtype.
## Generation Pipelines
<hfoptions id="generation pipelines">`
<hfoption id="Text-to-Video">
The example below demonstrates how to use the text-to-video pipeline to generate a video using a text descriptio and a starting frame.
```python
model_id =
pipe = SanaVideoPipeline.from_pretrained("Efficient-Large-Model/SANA-Video_2B_480p_diffusers", torch_dtype=torch.bfloat16)
pipe.text_encoder.to(torch.bfloat16)
pipe.vae.to(torch.float32)
pipe.to("cuda")
prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
negative_prompt = "A chaotic sequence with misshapen, deformed limbs in heavy motion blur, sudden disappearance, jump cuts, jerky movements, rapid shot changes, frames out of sync, inconsistent character shapes, temporal artifacts, jitter, and ghosting effects, creating a disorienting visual experience."
motion_scale = 30
motion_prompt = f" motion score: {motion_scale}."
prompt = prompt + motion_prompt
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=480,
width=832,
frames=81,
guidance_scale=6,
num_inference_steps=50,
generator=torch.Generator(device="cuda").manual_seed(0),
).frames[0]
export_to_video(video, "sana_video.mp4", fps=16)
```
</hfoption>
<hfoption id="Image-to-Video">
The example below demonstrates how to use the image-to-video pipeline to generate a video using a text descriptio and a starting frame.
```python
model_id = "Efficient-Large-Model/SANA-Video_2B_480p_diffusers"
pipe = SanaImageToVideoPipeline.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
)
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.vae.to(torch.float32)
pipe.text_encoder.to(torch.bfloat16)
pipe.to("cuda")
image = load_image("https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/samples/i2v-1.png")
prompt = "A woman stands against a stunning sunset backdrop, her long, wavy brown hair gently blowing in the breeze. She wears a sleeveless, light-colored blouse with a deep V-neckline, which accentuates her graceful posture. The warm hues of the setting sun cast a golden glow across her face and hair, creating a serene and ethereal atmosphere. The background features a blurred landscape with soft, rolling hills and scattered clouds, adding depth to the scene. The camera remains steady, capturing the tranquil moment from a medium close-up angle."
negative_prompt = "A chaotic sequence with misshapen, deformed limbs in heavy motion blur, sudden disappearance, jump cuts, jerky movements, rapid shot changes, frames out of sync, inconsistent character shapes, temporal artifacts, jitter, and ghosting effects, creating a disorienting visual experience."
motion_scale = 30
motion_prompt = f" motion score: {motion_scale}."
prompt = prompt + motion_prompt
motion_scale = 30.0
video = pipe(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
height=480,
width=832,
frames=81,
guidance_scale=6,
num_inference_steps=50,
generator=torch.Generator(device="cuda").manual_seed(0),
).frames[0]
export_to_video(video, "sana-i2v.mp4", fps=16)
```
</hfoption>
</hfoptions>
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
......@@ -97,6 +176,13 @@ export_to_video(output, "sana-video-output.mp4", fps=16)
- __call__
## SanaImageToVideoPipeline
[[autodoc]] SanaImageToVideoPipeline
- all
- __call__
## SanaVideoPipelineOutput
[[autodoc]] pipelines.sana.pipeline_sana_video.SanaVideoPipelineOutput
[[autodoc]] pipelines.sana_video.pipeline_sana_video.SanaVideoPipelineOutput
......@@ -80,6 +80,8 @@ def main(args):
# scheduler
flow_shift = 8.0
if args.task == "i2v":
assert args.scheduler_type == "flow-euler", "Scheduler type must be flow-euler for i2v task."
# model config
layer_num = 20
......@@ -312,6 +314,7 @@ if __name__ == "__main__":
choices=["flow-dpm_solver", "flow-euler", "uni-pc"],
help="Scheduler type to use.",
)
parser.add_argument("--task", default="t2v", type=str, required=True, help="Task to convert, t2v or i2v.")
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
parser.add_argument("--save_full_pipeline", action="store_true", help="save all the pipeline elements in one.")
parser.add_argument("--dtype", default="fp32", type=str, choices=["fp32", "fp16", "bf16"], help="Weight dtype.")
......
......@@ -545,11 +545,13 @@ else:
"QwenImagePipeline",
"ReduxImageEncoder",
"SanaControlNetPipeline",
"SanaImageToVideoPipeline",
"SanaPAGPipeline",
"SanaPipeline",
"SanaSprintImg2ImgPipeline",
"SanaSprintPipeline",
"SanaVideoPipeline",
"SanaVideoPipeline",
"SemanticStableDiffusionPipeline",
"ShapEImg2ImgPipeline",
"ShapEPipeline",
......@@ -1227,6 +1229,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
QwenImagePipeline,
ReduxImageEncoder,
SanaControlNetPipeline,
SanaImageToVideoPipeline,
SanaPAGPipeline,
SanaPipeline,
SanaSprintImg2ImgPipeline,
......
......@@ -237,7 +237,6 @@ class WanRotaryPosEmbed(nn.Module):
return freqs_cos, freqs_sin
# Copied from diffusers.models.transformers.sana_transformer.SanaModulatedNorm
class SanaModulatedNorm(nn.Module):
def __init__(self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6):
super().__init__()
......@@ -247,7 +246,7 @@ class SanaModulatedNorm(nn.Module):
self, hidden_states: torch.Tensor, temb: torch.Tensor, scale_shift_table: torch.Tensor
) -> torch.Tensor:
hidden_states = self.norm(hidden_states)
shift, scale = (scale_shift_table[None] + temb[:, None].to(scale_shift_table.device)).chunk(2, dim=1)
shift, scale = (scale_shift_table[None, None] + temb[:, :, None].to(scale_shift_table.device)).unbind(dim=2)
hidden_states = hidden_states * (1 + scale) + shift
return hidden_states
......@@ -423,8 +422,8 @@ class SanaVideoTransformerBlock(nn.Module):
# 1. Modulation
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
self.scale_shift_table[None, None] + timestep.reshape(batch_size, timestep.shape[1], 6, -1)
).unbind(dim=2)
# 2. Self Attention
norm_hidden_states = self.norm1(hidden_states)
......@@ -635,13 +634,16 @@ class SanaVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, Fro
if guidance is not None:
timestep, embedded_timestep = self.time_embed(
timestep, guidance=guidance, hidden_dtype=hidden_states.dtype
timestep.flatten(), guidance=guidance, hidden_dtype=hidden_states.dtype
)
else:
timestep, embedded_timestep = self.time_embed(
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
timestep.flatten(), batch_size=batch_size, hidden_dtype=hidden_states.dtype
)
timestep = timestep.view(batch_size, -1, timestep.size(-1))
embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.size(-1))
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
......
......@@ -308,7 +308,10 @@ else:
"SanaSprintPipeline",
"SanaControlNetPipeline",
"SanaSprintImg2ImgPipeline",
]
_import_structure["sana_video"] = [
"SanaVideoPipeline",
"SanaImageToVideoPipeline",
]
_import_structure["semantic_stable_diffusion"] = ["SemanticStableDiffusionPipeline"]
_import_structure["shap_e"] = ["ShapEImg2ImgPipeline", "ShapEPipeline"]
......@@ -749,8 +752,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
SanaPipeline,
SanaSprintImg2ImgPipeline,
SanaSprintPipeline,
SanaVideoPipeline,
)
from .sana_video import SanaImageToVideoPipeline, SanaVideoPipeline
from .semantic_stable_diffusion import SemanticStableDiffusionPipeline
from .shap_e import ShapEImg2ImgPipeline, ShapEPipeline
from .stable_audio import StableAudioPipeline, StableAudioProjectionModel
......
......@@ -26,7 +26,6 @@ else:
_import_structure["pipeline_sana_controlnet"] = ["SanaControlNetPipeline"]
_import_structure["pipeline_sana_sprint"] = ["SanaSprintPipeline"]
_import_structure["pipeline_sana_sprint_img2img"] = ["SanaSprintImg2ImgPipeline"]
_import_structure["pipeline_sana_video"] = ["SanaVideoPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
......@@ -40,7 +39,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .pipeline_sana_controlnet import SanaControlNetPipeline
from .pipeline_sana_sprint import SanaSprintPipeline
from .pipeline_sana_sprint_img2img import SanaSprintImg2ImgPipeline
from .pipeline_sana_video import SanaVideoPipeline
else:
import sys
......
......@@ -3,7 +3,6 @@ from typing import List, Union
import numpy as np
import PIL.Image
import torch
from ...utils import BaseOutput
......@@ -20,18 +19,3 @@ class SanaPipelineOutput(BaseOutput):
"""
images: Union[List[PIL.Image.Image], np.ndarray]
@dataclass
class SanaVideoPipelineOutput(BaseOutput):
r"""
Output class for Sana-Video pipelines.
Args:
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
`(batch_size, num_frames, channels, height, width)`.
"""
frames: torch.Tensor
from typing import TYPE_CHECKING
from ...utils import (
DIFFUSERS_SLOW_IMPORT,
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_torch_available,
is_transformers_available,
)
_dummy_objects = {}
_import_structure = {}
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils import dummy_torch_and_transformers_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_sana_video"] = ["SanaVideoPipeline"]
_import_structure["pipeline_sana_video_i2v"] = ["SanaImageToVideoPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_sana_video import SanaVideoPipeline
from .pipeline_sana_video_i2v import SanaImageToVideoPipeline
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)
from dataclasses import dataclass
import torch
from ...utils import BaseOutput
@dataclass
class SanaVideoPipelineOutput(BaseOutput):
r"""
Output class for Sana-Video pipelines.
Args:
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
`(batch_size, num_frames, channels, height, width)`.
"""
frames: torch.Tensor
......@@ -95,17 +95,16 @@ EXAMPLE_DOC_STRING = """
>>> from diffusers import SanaVideoPipeline
>>> from diffusers.utils import export_to_video
>>> model_id = "Efficient-Large-Model/SANA-Video_2B_480p_diffusers"
>>> pipe = SanaVideoPipeline.from_pretrained(model_id)
>>> pipe = SanaVideoPipeline.from_pretrained("Efficient-Large-Model/SANA-Video_2B_480p_diffusers")
>>> pipe.transformer.to(torch.bfloat16)
>>> pipe.text_encoder.to(torch.bfloat16)
>>> pipe.vae.to(torch.float32)
>>> pipe.to("cuda")
>>> model_score = 30
>>> motion_score = 30
>>> prompt = "Evening, backlight, side lighting, soft light, high contrast, mid-shot, centered composition, clean solo shot, warm color. A young Caucasian man stands in a forest, golden light glimmers on his hair as sunlight filters through the leaves. He wears a light shirt, wind gently blowing his hair and collar, light dances across his face with his movements. The background is blurred, with dappled light and soft tree shadows in the distance. The camera focuses on his lifted gaze, clear and emotional."
>>> negative_prompt = "A chaotic sequence with misshapen, deformed limbs in heavy motion blur, sudden disappearance, jump cuts, jerky movements, rapid shot changes, frames out of sync, inconsistent character shapes, temporal artifacts, jitter, and ghosting effects, creating a disorienting visual experience."
>>> motion_prompt = f" motion score: {model_score}."
>>> motion_prompt = f" motion score: {motion_score}."
>>> prompt = prompt + motion_prompt
>>> output = pipe(
......@@ -231,6 +230,7 @@ class SanaVideoPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
# Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline._get_gemma_prompt_embeds
def _get_gemma_prompt_embeds(
self,
prompt: Union[str, List[str]],
......@@ -827,9 +827,9 @@ class SanaVideoPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
Examples:
Returns:
[`~pipelines.sana.pipeline_output.SanaVideoPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.sana.pipeline_output.SanaVideoPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated videos
[`~pipelines.sana_video.pipeline_output.SanaVideoPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.sana_video.pipeline_output.SanaVideoPipelineOutput`] is
returned, otherwise a `tuple` is returned where the first element is a list with the generated videos
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
......
# Copyright 2025 SANA-Video Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import html
import inspect
import re
import urllib.parse as ul
import warnings
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import PIL
import torch
from transformers import Gemma2PreTrainedModel, GemmaTokenizer, GemmaTokenizerFast
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...image_processor import PipelineImageInput
from ...loaders import SanaLoraLoaderMixin
from ...models import AutoencoderDC, AutoencoderKLWan, SanaVideoTransformer3DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import (
BACKENDS_MAPPING,
USE_PEFT_BACKEND,
is_bs4_available,
is_ftfy_available,
is_torch_xla_available,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from ...utils.torch_utils import get_device, is_torch_version, randn_tensor
from ...video_processor import VideoProcessor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import SanaVideoPipelineOutput
from .pipeline_sana_video import ASPECT_RATIO_480_BIN, ASPECT_RATIO_720_BIN
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
if is_bs4_available():
from bs4 import BeautifulSoup
if is_ftfy_available():
import ftfy
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import SanaImageToVideoPipeline
>>> from diffusers.utils import export_to_video, load_image
>>> pipe = SanaImageToVideoPipeline.from_pretrained("Efficient-Large-Model/SANA-Video_2B_480p_diffusers")
>>> pipe.transformer.to(torch.bfloat16)
>>> pipe.text_encoder.to(torch.bfloat16)
>>> pipe.vae.to(torch.float32)
>>> pipe.to("cuda")
>>> motion_score = 30
>>> prompt = "A woman stands against a stunning sunset backdrop, her long, wavy brown hair gently blowing in the breeze. She wears a sleeveless, light-colored blouse with a deep V-neckline, which accentuates her graceful posture. The warm hues of the setting sun cast a golden glow across her face and hair, creating a serene and ethereal atmosphere. The background features a blurred landscape with soft, rolling hills and scattered clouds, adding depth to the scene. The camera remains steady, capturing the tranquil moment from a medium close-up angle."
>>> negative_prompt = "A chaotic sequence with misshapen, deformed limbs in heavy motion blur, sudden disappearance, jump cuts, jerky movements, rapid shot changes, frames out of sync, inconsistent character shapes, temporal artifacts, jitter, and ghosting effects, creating a disorienting visual experience."
>>> motion_prompt = f" motion score: {motion_score}."
>>> prompt = prompt + motion_prompt
>>> image = load_image("https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/samples/i2v-1.png")
>>> output = pipe(
... image=image,
... prompt=prompt,
... negative_prompt=negative_prompt,
... height=480,
... width=832,
... frames=81,
... guidance_scale=6,
... num_inference_steps=50,
... generator=torch.Generator(device="cuda").manual_seed(42),
... ).frames[0]
>>> export_to_video(output, "sana-ti2v-output.mp4", fps=16)
```
"""
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
class SanaImageToVideoPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
r"""
Pipeline for image/text-to-video generation using [Sana](https://huggingface.co/papers/2509.24695). This model
inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all
pipelines (downloading, saving, running on a particular device, etc.).
Args:
tokenizer ([`GemmaTokenizer`] or [`GemmaTokenizerFast`]):
The tokenizer used to tokenize the prompt.
text_encoder ([`Gemma2PreTrainedModel`]):
Text encoder model to encode the input prompts.
vae ([`AutoencoderKLWan` or `AutoencoderDCAEV`]):
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
transformer ([`SanaVideoTransformer3DModel`]):
Conditional Transformer to denoise the input latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
"""
# fmt: off
bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}")
# fmt: on
model_cpu_offload_seq = "text_encoder->transformer->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
def __init__(
self,
tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast],
text_encoder: Gemma2PreTrainedModel,
vae: Union[AutoencoderDC, AutoencoderKLWan],
transformer: SanaVideoTransformer3DModel,
scheduler: FlowMatchEulerDiscreteScheduler,
):
super().__init__()
self.register_modules(
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
)
self.vae_scale_factor_temporal = self.vae.config.scale_factor_temporal if getattr(self, "vae", None) else 4
self.vae_scale_factor_spatial = self.vae.config.scale_factor_spatial if getattr(self, "vae", None) else 8
self.vae_scale_factor = self.vae_scale_factor_spatial
self.transformer_spatial_patch_size = (
self.transformer.config.patch_size[1] if getattr(self, "transformer", None) is not None else 1
)
self.transformer_temporal_patch_size = (
self.transformer.config.patch_size[0] if getattr(self, "transformer") is not None else 1
)
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
# Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline._get_gemma_prompt_embeds
def _get_gemma_prompt_embeds(
self,
prompt: Union[str, List[str]],
device: torch.device,
dtype: torch.dtype,
clean_caption: bool = False,
max_sequence_length: int = 300,
complex_human_instruction: Optional[List[str]] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`, *optional*):
torch device to place the resulting embeddings on
clean_caption (`bool`, defaults to `False`):
If `True`, the function will preprocess and clean the provided caption before encoding.
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
the prompt.
"""
prompt = [prompt] if isinstance(prompt, str) else prompt
if getattr(self, "tokenizer", None) is not None:
self.tokenizer.padding_side = "right"
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
# prepare complex human instruction
if not complex_human_instruction:
max_length_all = max_sequence_length
else:
chi_prompt = "\n".join(complex_human_instruction)
prompt = [chi_prompt + p for p in prompt]
num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
max_length_all = num_chi_prompt_tokens + max_sequence_length - 2
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_length_all,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_attention_mask = text_inputs.attention_mask
prompt_attention_mask = prompt_attention_mask.to(device)
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
prompt_embeds = prompt_embeds[0].to(dtype=dtype, device=device)
return prompt_embeds, prompt_attention_mask
# Copied from diffusers.pipelines.sana_video.pipeline_sana_video.SanaVideoPipeline.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
do_classifier_free_guidance: bool = True,
negative_prompt: str = "",
num_videos_per_prompt: int = 1,
device: Optional[torch.device] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
clean_caption: bool = False,
max_sequence_length: int = 300,
complex_human_instruction: Optional[List[str]] = None,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt not to guide the video generation. If not defined, one has to pass `negative_prompt_embeds`
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
PixArt-Alpha, this should be "".
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
whether to use classifier free guidance or not
num_videos_per_prompt (`int`, *optional*, defaults to 1):
number of videos that should be generated per prompt
device: (`torch.device`, *optional*):
torch device to place the resulting embeddings on
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string.
clean_caption (`bool`, defaults to `False`):
If `True`, the function will preprocess and clean the provided caption before encoding.
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
the prompt.
"""
if device is None:
device = self._execution_device
if self.text_encoder is not None:
dtype = self.text_encoder.dtype
else:
dtype = None
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if self.text_encoder is not None and USE_PEFT_BACKEND:
scale_lora_layers(self.text_encoder, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if getattr(self, "tokenizer", None) is not None:
self.tokenizer.padding_side = "right"
# See Section 3.1. of the paper.
max_length = max_sequence_length
select_index = [0] + list(range(-max_length + 1, 0))
if prompt_embeds is None:
prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds(
prompt=prompt,
device=device,
dtype=dtype,
clean_caption=clean_caption,
max_sequence_length=max_sequence_length,
complex_human_instruction=complex_human_instruction,
)
prompt_embeds = prompt_embeds[:, select_index]
prompt_attention_mask = prompt_attention_mask[:, select_index]
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
prompt_attention_mask = prompt_attention_mask.repeat(num_videos_per_prompt, 1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
negative_prompt_embeds, negative_prompt_attention_mask = self._get_gemma_prompt_embeds(
prompt=negative_prompt,
device=device,
dtype=dtype,
clean_caption=clean_caption,
max_sequence_length=max_sequence_length,
complex_human_instruction=False,
)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1)
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_videos_per_prompt, 1)
else:
negative_prompt_embeds = None
negative_prompt_attention_mask = None
if self.text_encoder is not None:
if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
image,
height,
width,
callback_on_step_end_tensor_inputs=None,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_attention_mask=None,
negative_prompt_attention_mask=None,
):
if height % 32 != 0 or width % 32 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
if image is not None and not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image):
raise ValueError(f"`image` has to be of type `torch.Tensor` or `PIL.Image.Image` but is {type(image)}")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and prompt_attention_mask is None:
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
raise ValueError(
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
f" {negative_prompt_attention_mask.shape}."
)
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
def _text_preprocessing(self, text, clean_caption=False):
if clean_caption and not is_bs4_available():
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
logger.warning("Setting `clean_caption` to False...")
clean_caption = False
if clean_caption and not is_ftfy_available():
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
logger.warning("Setting `clean_caption` to False...")
clean_caption = False
if not isinstance(text, (tuple, list)):
text = [text]
def process(text: str):
if clean_caption:
text = self._clean_caption(text)
text = self._clean_caption(text)
else:
text = text.lower().strip()
return text
return [process(t) for t in text]
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
def _clean_caption(self, caption):
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub("<person>", "person", caption)
# urls:
caption = re.sub(
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
caption = re.sub(
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
# html:
caption = BeautifulSoup(caption, features="html.parser").text
# @<nickname>
caption = re.sub(r"@[\w\d]+\b", "", caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
"-",
caption,
)
# кавычки к одному стандарту
caption = re.sub(r"[`´«»“”¨]", '"', caption)
caption = re.sub(r"[‘’]", "'", caption)
# &quot;
caption = re.sub(r"&quot;?", "", caption)
# &amp
caption = re.sub(r"&amp", "", caption)
# ip addresses:
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
# article ids:
caption = re.sub(r"\d:\d\d\s+$", "", caption)
# \n
caption = re.sub(r"\\n", " ", caption)
# "#123"
caption = re.sub(r"#\d{1,3}\b", "", caption)
# "#12345.."
caption = re.sub(r"#\d{5,}\b", "", caption)
# "123456.."
caption = re.sub(r"\b\d{6,}\b", "", caption)
# filenames:
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
#
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r"(?:\-|\_)")
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, " ", caption)
caption = ftfy.fix_text(caption)
caption = html.unescape(html.unescape(caption))
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
caption = re.sub(r"\s+", " ", caption)
caption.strip()
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
caption = re.sub(r"^\.\S+$", "", caption)
return caption.strip()
def prepare_latents(
self,
image: PipelineImageInput,
batch_size: int,
num_channels_latents: int = 16,
height: int = 480,
width: int = 832,
num_frames: int = 81,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
) -> torch.Tensor:
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
shape = (
batch_size,
num_channels_latents,
num_latent_frames,
int(height) // self.vae_scale_factor_spatial,
int(width) // self.vae_scale_factor_spatial,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device=device, dtype=dtype)
image = image.unsqueeze(2) # [B, C, 1, H, W]
image = image.to(device=device, dtype=self.vae.dtype)
if isinstance(generator, list):
image_latents = [retrieve_latents(self.vae.encode(image), sample_mode="argmax") for _ in generator]
image_latents = torch.cat(image_latents)
else:
image_latents = retrieve_latents(self.vae.encode(image), sample_mode="argmax")
image_latents = image_latents.repeat(batch_size, 1, 1, 1, 1)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, -1, 1, 1, 1)
.to(image_latents.device, image_latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, -1, 1, 1, 1).to(
image_latents.device, image_latents.dtype
)
image_latents = (image_latents - latents_mean) * latents_std
latents[:, :, 0:1] = image_latents.to(dtype)
return latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def attention_kwargs(self):
return self._attention_kwargs
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1.0
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
image: PipelineImageInput,
prompt: Union[str, List[str]] = None,
negative_prompt: str = "",
num_inference_steps: int = 50,
timesteps: List[int] = None,
sigmas: List[float] = None,
guidance_scale: float = 6.0,
num_videos_per_prompt: Optional[int] = 1,
height: int = 480,
width: int = 832,
frames: int = 81,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
clean_caption: bool = False,
use_resolution_binning: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 300,
complex_human_instruction: List[str] = [
"Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for video generation. Evaluate the level of detail in the user prompt:",
"- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, motion, and temporal relationships to create vivid and dynamic scenes.",
"- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.",
"Here are examples of how to transform or refine prompts:",
"- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat slowly settling into a curled position, peacefully falling asleep on a warm sunny windowsill, with gentle sunlight filtering through surrounding pots of blooming red flowers.",
"- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps gradually lighting up, a diverse crowd of people in colorful clothing walking past, and a double-decker bus smoothly passing by towering glass skyscrapers.",
"Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:",
"User Prompt: ",
],
) -> Union[SanaVideoPipelineOutput, Tuple]:
"""
Function invoked when calling the pipeline for generation.
Args:
image (`PipelineImageInput`):
The input image to condition the video generation on. The first frame of the generated video will be
conditioned on this image.
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the video generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the video generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality video at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 4.5):
Guidance scale as defined in [Classifier-Free Diffusion
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
`guidance_scale > 1`. Higher guidance scale encourages to generate videos that are closely linked to
the text `prompt`, usually at the expense of lower video quality.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of videos to generate per prompt.
height (`int`, *optional*, defaults to 480):
The height in pixels of the generated video.
width (`int`, *optional*, defaults to 832):
The width in pixels of the generated video.
frames (`int`, *optional*, defaults to 81):
The number of frames in the generated video.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only
applies to [`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
Pre-generated attention mask for negative text embeddings.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated video. Choose between mp4 or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`SanaVideoPipelineOutput`] instead of a plain tuple.
attention_kwargs:
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
clean_caption (`bool`, *optional*, defaults to `True`):
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
be installed. If the dependencies are not installed, the embeddings will be created from the raw
prompt.
use_resolution_binning (`bool` defaults to `True`):
If set to `True`, the requested height and width are first mapped to the closest resolutions using
`ASPECT_RATIO_480_BIN` or `ASPECT_RATIO_720_BIN`. After the produced latents are decoded into videos,
they are resized back to the requested resolution. Useful for generating non-square videos.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to `300`):
Maximum sequence length to use with the `prompt`.
complex_human_instruction (`List[str]`, *optional*):
Instructions for complex human attention:
https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55.
Examples:
Returns:
[`~pipelines.sana_video.pipeline_output.SanaVideoPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.sana_video.pipeline_output.SanaVideoPipelineOutput`] is
returned, otherwise a `tuple` is returned where the first element is a list with the generated videos
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
if use_resolution_binning:
if self.transformer.config.sample_size == 30:
aspect_ratio_bin = ASPECT_RATIO_480_BIN
elif self.transformer.config.sample_size == 22:
aspect_ratio_bin = ASPECT_RATIO_720_BIN
else:
raise ValueError("Invalid sample size")
orig_height, orig_width = height, width
height, width = self.video_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
self.check_inputs(
prompt,
image,
height,
width,
callback_on_step_end_tensor_inputs,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._interrupt = False
# 2. Default height and width to transformer
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
# 3. Encode input prompt
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
) = self.encode_prompt(
prompt,
self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
num_videos_per_prompt=num_videos_per_prompt,
device=device,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_attention_mask=negative_prompt_attention_mask,
clean_caption=clean_caption,
max_sequence_length=max_sequence_length,
complex_human_instruction=complex_human_instruction,
lora_scale=lora_scale,
)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas
)
# 5. Prepare latents.
latent_channels = self.transformer.config.in_channels
image = self.video_processor.preprocess(image, height=height, width=width).to(device, dtype=torch.float32)
latents = self.prepare_latents(
image,
batch_size * num_videos_per_prompt,
latent_channels,
height,
width,
frames,
torch.float32,
device,
generator,
latents,
)
conditioning_mask = latents.new_zeros(
batch_size,
1,
latents.shape[2] // self.transformer_temporal_patch_size,
latents.shape[3] // self.transformer_spatial_patch_size,
latents.shape[4] // self.transformer_spatial_patch_size,
)
conditioning_mask[:, :, 0] = 1.0
if self.do_classifier_free_guidance:
conditioning_mask = torch.cat([conditioning_mask, conditioning_mask])
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
transformer_dtype = self.transformer.dtype
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(conditioning_mask.shape)
timestep = timestep * (1 - conditioning_mask)
# predict noise model_output
noise_pred = self.transformer(
latent_model_input.to(dtype=transformer_dtype),
encoder_hidden_states=prompt_embeds.to(dtype=transformer_dtype),
encoder_attention_mask=prompt_attention_mask,
timestep=timestep,
return_dict=False,
attention_kwargs=self.attention_kwargs,
)[0]
noise_pred = noise_pred.float()
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
timestep, _ = timestep.chunk(2)
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
noise_pred = noise_pred.chunk(2, dim=1)[0]
noise_pred = noise_pred[:, :, 1:]
noise_latents = latents[:, :, 1:]
pred_latents = self.scheduler.step(
noise_pred, t, noise_latents, **extra_step_kwargs, return_dict=False
)[0]
latents = torch.cat([latents[:, :, :1], pred_latents], dim=2)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if output_type == "latent":
video = latents
else:
latents = latents.to(self.vae.dtype)
torch_accelerator_module = getattr(torch, get_device(), torch.cuda)
oom_error = (
torch.OutOfMemoryError
if is_torch_version(">=", "2.5.0")
else torch_accelerator_module.OutOfMemoryError
)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
latents.device, latents.dtype
)
latents = latents / latents_std + latents_mean
try:
video = self.vae.decode(latents, return_dict=False)[0]
except oom_error as e:
warnings.warn(
f"{e}. \n"
f"Try to use VAE tiling for large images. For example: \n"
f"pipe.vae.enable_tiling(tile_sample_min_width=512, tile_sample_min_height=512)"
)
if use_resolution_binning:
video = self.video_processor.resize_and_crop_tensor(video, orig_width, orig_height)
video = self.video_processor.postprocess_video(video, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return SanaVideoPipelineOutput(frames=video)
......@@ -2147,6 +2147,21 @@ class SanaControlNetPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class SanaImageToVideoPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class SanaPAGPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
......
# Copyright 2025 The HuggingFace Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import Gemma2Config, Gemma2Model, GemmaTokenizer
from diffusers import (
AutoencoderKLWan,
FlowMatchEulerDiscreteScheduler,
SanaImageToVideoPipeline,
SanaVideoTransformer3DModel,
)
from ...testing_utils import (
backend_empty_cache,
enable_full_determinism,
require_torch_accelerator,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SanaImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = SanaImageToVideoPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
test_xformers_attention = False
supports_dduf = False
def get_dummy_components(self):
torch.manual_seed(0)
vae = AutoencoderKLWan(
base_dim=3,
z_dim=16,
dim_mult=[1, 1, 1, 1],
num_res_blocks=1,
temperal_downsample=[False, True, True],
)
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler()
torch.manual_seed(0)
text_encoder_config = Gemma2Config(
head_dim=16,
hidden_size=8,
initializer_range=0.02,
intermediate_size=64,
max_position_embeddings=8192,
model_type="gemma2",
num_attention_heads=2,
num_hidden_layers=1,
num_key_value_heads=2,
vocab_size=8,
attn_implementation="eager",
)
text_encoder = Gemma2Model(text_encoder_config)
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
torch.manual_seed(0)
transformer = SanaVideoTransformer3DModel(
in_channels=16,
out_channels=16,
num_attention_heads=2,
attention_head_dim=12,
num_layers=2,
num_cross_attention_heads=2,
cross_attention_head_dim=12,
cross_attention_dim=24,
caption_channels=8,
mlp_ratio=2.5,
dropout=0.0,
attention_bias=False,
sample_size=8,
patch_size=(1, 2, 2),
norm_elementwise_affine=False,
norm_eps=1e-6,
qk_norm="rms_norm_across_heads",
rope_max_seq_len=32,
)
components = {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
# Create a dummy image input (PIL Image)
image = Image.new("RGB", (32, 32))
inputs = {
"image": image,
"prompt": "",
"negative_prompt": "",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"height": 32,
"width": 32,
"frames": 9,
"max_sequence_length": 16,
"output_type": "pt",
"complex_human_instruction": [],
"use_resolution_binning": False,
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
video = pipe(**inputs).frames
generated_video = video[0]
self.assertEqual(generated_video.shape, (9, 3, 32, 32))
@unittest.skip("Test not supported")
def test_attention_slicing_forward_pass(self):
pass
def test_save_load_local(self, expected_max_difference=5e-4):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
torch.manual_seed(0)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir, safe_serialization=False)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
for component in pipe_loaded.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
torch.manual_seed(0)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(output.detach().cpu().numpy() - output_loaded.detach().cpu().numpy()).max()
self.assertLess(max_diff, expected_max_difference)
# TODO(aryan): Create a dummy gemma model with smol vocab size
@unittest.skip(
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
)
def test_inference_batch_consistent(self):
pass
@unittest.skip(
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
)
def test_inference_batch_single_identical(self):
pass
@unittest.skip("Skipping fp16 test as model is trained with bf16")
def test_float16_inference(self):
# Requires higher tolerance as model seems very sensitive to dtype
super().test_float16_inference(expected_max_diff=0.08)
@unittest.skip("Skipping fp16 test as model is trained with bf16")
def test_save_load_float16(self):
# Requires higher tolerance as model seems very sensitive to dtype
super().test_save_load_float16(expected_max_diff=0.2)
@slow
@require_torch_accelerator
class SanaVideoPipelineIntegrationTests(unittest.TestCase):
prompt = "Evening, backlight, side lighting, soft light, high contrast, mid-shot, centered composition, clean solo shot, warm color. A young Caucasian man stands in a forest."
def setUp(self):
super().setUp()
gc.collect()
backend_empty_cache(torch_device)
def tearDown(self):
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
@unittest.skip("TODO: test needs to be implemented")
def test_sana_video_480p(self):
pass
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment