Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
168e5b7f
Commit
168e5b7f
authored
Jun 27, 2022
by
Patrick von Platen
Browse files
add embeddings
parent
3562a3e6
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
80 additions
and
0 deletions
+80
-0
src/diffusers/models/embeddings.py
src/diffusers/models/embeddings.py
+80
-0
No files found.
src/diffusers/models/embeddings.py
View file @
168e5b7f
...
...
@@ -54,3 +54,83 @@ def timestep_embedding(timesteps, dim, max_period=10000):
if
dim
%
2
:
embedding
=
torch
.
cat
([
embedding
,
torch
.
zeros_like
(
embedding
[:,
:
1
])],
dim
=-
1
)
return
embedding
# unet_grad_tts.py
class
SinusoidalPosEmb
(
torch
.
nn
.
Module
):
def
__init__
(
self
,
dim
):
super
(
SinusoidalPosEmb
,
self
).
__init__
()
self
.
dim
=
dim
def
forward
(
self
,
x
,
scale
=
1000
):
device
=
x
.
device
half_dim
=
self
.
dim
//
2
emb
=
math
.
log
(
10000
)
/
(
half_dim
-
1
)
emb
=
torch
.
exp
(
torch
.
arange
(
half_dim
,
device
=
device
).
float
()
*
-
emb
)
emb
=
scale
*
x
.
unsqueeze
(
1
)
*
emb
.
unsqueeze
(
0
)
emb
=
torch
.
cat
((
emb
.
sin
(),
emb
.
cos
()),
dim
=-
1
)
return
emb
# unet_ldm.py
def
timestep_embedding
(
timesteps
,
dim
,
max_period
=
10000
):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half
=
dim
//
2
freqs
=
torch
.
exp
(
-
math
.
log
(
max_period
)
*
torch
.
arange
(
start
=
0
,
end
=
half
,
dtype
=
torch
.
float32
)
/
half
).
to
(
device
=
timesteps
.
device
)
args
=
timesteps
[:,
None
].
float
()
*
freqs
[
None
]
embedding
=
torch
.
cat
([
torch
.
cos
(
args
),
torch
.
sin
(
args
)],
dim
=-
1
)
if
dim
%
2
:
embedding
=
torch
.
cat
([
embedding
,
torch
.
zeros_like
(
embedding
[:,
:
1
])],
dim
=-
1
)
return
embedding
# unet_rl.py
class
SinusoidalPosEmb
(
nn
.
Module
):
def
__init__
(
self
,
dim
):
super
().
__init__
()
self
.
dim
=
dim
def
forward
(
self
,
x
):
device
=
x
.
device
half_dim
=
self
.
dim
//
2
emb
=
math
.
log
(
10000
)
/
(
half_dim
-
1
)
emb
=
torch
.
exp
(
torch
.
arange
(
half_dim
,
device
=
device
)
*
-
emb
)
emb
=
x
[:,
None
]
*
emb
[
None
,
:]
emb
=
torch
.
cat
((
emb
.
sin
(),
emb
.
cos
()),
dim
=-
1
)
return
emb
# unet_sde_score_estimation.py
def
get_timestep_embedding
(
timesteps
,
embedding_dim
,
max_positions
=
10000
):
assert
len
(
timesteps
.
shape
)
==
1
# and timesteps.dtype == tf.int32
half_dim
=
embedding_dim
//
2
# magic number 10000 is from transformers
emb
=
math
.
log
(
max_positions
)
/
(
half_dim
-
1
)
# emb = math.log(2.) / (half_dim - 1)
emb
=
torch
.
exp
(
torch
.
arange
(
half_dim
,
dtype
=
torch
.
float32
,
device
=
timesteps
.
device
)
*
-
emb
)
# emb = tf.range(num_embeddings, dtype=jnp.float32)[:, None] * emb[None, :]
# emb = tf.cast(timesteps, dtype=jnp.float32)[:, None] * emb[None, :]
emb
=
timesteps
.
float
()[:,
None
]
*
emb
[
None
,
:]
emb
=
torch
.
cat
([
torch
.
sin
(
emb
),
torch
.
cos
(
emb
)],
dim
=
1
)
if
embedding_dim
%
2
==
1
:
# zero pad
emb
=
F
.
pad
(
emb
,
(
0
,
1
),
mode
=
"constant"
)
assert
emb
.
shape
==
(
timesteps
.
shape
[
0
],
embedding_dim
)
return
emb
# unet_sde_score_estimation.py
class
GaussianFourierProjection
(
nn
.
Module
):
"""Gaussian Fourier embeddings for noise levels."""
def
__init__
(
self
,
embedding_size
=
256
,
scale
=
1.0
):
super
().
__init__
()
self
.
W
=
nn
.
Parameter
(
torch
.
randn
(
embedding_size
)
*
scale
,
requires_grad
=
False
)
def
forward
(
self
,
x
):
x_proj
=
x
[:,
None
]
*
self
.
W
[
None
,
:]
*
2
*
np
.
pi
return
torch
.
cat
([
torch
.
sin
(
x_proj
),
torch
.
cos
(
x_proj
)],
dim
=-
1
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment