Unverified Commit 14e3a28c authored by Naoki Ainoya's avatar Naoki Ainoya Committed by GitHub
Browse files

Rename 'CLIPFeatureExtractor' class to 'CLIPImageProcessor' (#2732)

The 'CLIPFeatureExtractor' class name has been renamed to 'CLIPImageProcessor' in order to comply with future deprecation. This commit includes the necessary changes to the affected files.
parent 8e35ef01
...@@ -19,7 +19,7 @@ import numpy as np ...@@ -19,7 +19,7 @@ import numpy as np
import PIL import PIL
import torch import torch
import torch.utils.checkpoint import torch.utils.checkpoint
from transformers import CLIPFeatureExtractor, CLIPVisionModelWithProjection from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from ...models import AutoencoderKL, UNet2DConditionModel from ...models import AutoencoderKL, UNet2DConditionModel
from ...schedulers import KarrasDiffusionSchedulers from ...schedulers import KarrasDiffusionSchedulers
...@@ -48,7 +48,7 @@ class VersatileDiffusionImageVariationPipeline(DiffusionPipeline): ...@@ -48,7 +48,7 @@ class VersatileDiffusionImageVariationPipeline(DiffusionPipeline):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
""" """
image_feature_extractor: CLIPFeatureExtractor image_feature_extractor: CLIPImageProcessor
image_encoder: CLIPVisionModelWithProjection image_encoder: CLIPVisionModelWithProjection
image_unet: UNet2DConditionModel image_unet: UNet2DConditionModel
vae: AutoencoderKL vae: AutoencoderKL
...@@ -56,7 +56,7 @@ class VersatileDiffusionImageVariationPipeline(DiffusionPipeline): ...@@ -56,7 +56,7 @@ class VersatileDiffusionImageVariationPipeline(DiffusionPipeline):
def __init__( def __init__(
self, self,
image_feature_extractor: CLIPFeatureExtractor, image_feature_extractor: CLIPImageProcessor,
image_encoder: CLIPVisionModelWithProjection, image_encoder: CLIPVisionModelWithProjection,
image_unet: UNet2DConditionModel, image_unet: UNet2DConditionModel,
vae: AutoencoderKL, vae: AutoencoderKL,
......
...@@ -17,7 +17,7 @@ from typing import Callable, List, Optional, Union ...@@ -17,7 +17,7 @@ from typing import Callable, List, Optional, Union
import torch import torch
import torch.utils.checkpoint import torch.utils.checkpoint
from transformers import CLIPFeatureExtractor, CLIPTextModelWithProjection, CLIPTokenizer from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer
from ...models import AutoencoderKL, Transformer2DModel, UNet2DConditionModel from ...models import AutoencoderKL, Transformer2DModel, UNet2DConditionModel
from ...schedulers import KarrasDiffusionSchedulers from ...schedulers import KarrasDiffusionSchedulers
...@@ -48,7 +48,7 @@ class VersatileDiffusionTextToImagePipeline(DiffusionPipeline): ...@@ -48,7 +48,7 @@ class VersatileDiffusionTextToImagePipeline(DiffusionPipeline):
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
""" """
tokenizer: CLIPTokenizer tokenizer: CLIPTokenizer
image_feature_extractor: CLIPFeatureExtractor image_feature_extractor: CLIPImageProcessor
text_encoder: CLIPTextModelWithProjection text_encoder: CLIPTextModelWithProjection
image_unet: UNet2DConditionModel image_unet: UNet2DConditionModel
text_unet: UNetFlatConditionModel text_unet: UNetFlatConditionModel
......
...@@ -4,7 +4,7 @@ import unittest ...@@ -4,7 +4,7 @@ import unittest
import torch import torch
from transformers import ( from transformers import (
CLIPFeatureExtractor, CLIPImageProcessor,
CLIPTextConfig, CLIPTextConfig,
CLIPTextModel, CLIPTextModel,
CLIPTokenizer, CLIPTokenizer,
...@@ -36,7 +36,7 @@ class StableUnCLIPImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCas ...@@ -36,7 +36,7 @@ class StableUnCLIPImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCas
# image encoding components # image encoding components
feature_extractor = CLIPFeatureExtractor(crop_size=32, size=32) feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
image_encoder = CLIPVisionModelWithProjection( image_encoder = CLIPVisionModelWithProjection(
CLIPVisionConfig( CLIPVisionConfig(
......
...@@ -31,7 +31,7 @@ import torch ...@@ -31,7 +31,7 @@ import torch
from parameterized import parameterized from parameterized import parameterized
from PIL import Image from PIL import Image
from requests.exceptions import HTTPError from requests.exceptions import HTTPError
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer from transformers import CLIPImageProcessor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import ( from diffusers import (
AutoencoderKL, AutoencoderKL,
...@@ -433,7 +433,7 @@ class CustomPipelineTests(unittest.TestCase): ...@@ -433,7 +433,7 @@ class CustomPipelineTests(unittest.TestCase):
def test_download_from_git(self): def test_download_from_git(self):
clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K" clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id) feature_extractor = CLIPImageProcessor.from_pretrained(clip_model_id)
clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16) clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained( pipeline = DiffusionPipeline.from_pretrained(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment