Unverified Commit 119ad2c3 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

[LoRA] Centralize LoRA tests (#5086)

* [LoRA] Centralize LoRA tests

* [LoRA] Centralize LoRA tests

* [LoRA] Centralize LoRA tests

* [LoRA] Centralize LoRA tests

* [LoRA] Centralize LoRA tests
parent 16b9a57d
...@@ -34,6 +34,11 @@ jobs: ...@@ -34,6 +34,11 @@ jobs:
runner: docker-cpu runner: docker-cpu
image: diffusers/diffusers-pytorch-cpu image: diffusers/diffusers-pytorch-cpu
report: torch_cpu_models_schedulers report: torch_cpu_models_schedulers
- name: LoRA
framework: lora
runner: docker-cpu
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu_lora
- name: Fast Flax CPU tests - name: Fast Flax CPU tests
framework: flax framework: flax
runner: docker-cpu runner: docker-cpu
...@@ -89,6 +94,14 @@ jobs: ...@@ -89,6 +94,14 @@ jobs:
--make-reports=tests_${{ matrix.config.report }} \ --make-reports=tests_${{ matrix.config.report }} \
tests/models tests/schedulers tests/others tests/models tests/schedulers tests/others
- name: Run fast PyTorch LoRA CPU tests
if: ${{ matrix.config.framework == 'lora' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx and not Dependency" \
--make-reports=tests_${{ matrix.config.report }} \
tests/lora
- name: Run fast Flax TPU tests - name: Run fast Flax TPU tests
if: ${{ matrix.config.framework == 'flax' }} if: ${{ matrix.config.framework == 'flax' }}
run: | run: |
...@@ -170,4 +183,4 @@ jobs: ...@@ -170,4 +183,4 @@ jobs:
uses: actions/upload-artifact@v2 uses: actions/upload-artifact@v2
with: with:
name: pr_${{ matrix.config.report }}_test_reports name: pr_${{ matrix.config.report }}_test_reports
path: reports path: reports
\ No newline at end of file
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
# limitations under the License. # limitations under the License.
import copy import copy
import os import os
import random
import tempfile import tempfile
import time import time
import unittest import unittest
...@@ -23,16 +24,22 @@ import torch ...@@ -23,16 +24,22 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from huggingface_hub.repocard import RepoCard from huggingface_hub.repocard import RepoCard
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import ( from diffusers import (
AutoencoderKL, AutoencoderKL,
ControlNetModel,
DDIMScheduler, DDIMScheduler,
DiffusionPipeline, DiffusionPipeline,
EulerDiscreteScheduler, EulerDiscreteScheduler,
PNDMScheduler,
StableDiffusionInpaintPipeline,
StableDiffusionPipeline, StableDiffusionPipeline,
StableDiffusionXLControlNetPipeline,
StableDiffusionXLPipeline, StableDiffusionXLPipeline,
UNet2DConditionModel, UNet2DConditionModel,
UNet3DConditionModel,
) )
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin, PatchedLoraProjection, text_encoder_attn_modules from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin, PatchedLoraProjection, text_encoder_attn_modules
from diffusers.models.attention_processor import ( from diffusers.models.attention_processor import (
...@@ -41,9 +48,38 @@ from diffusers.models.attention_processor import ( ...@@ -41,9 +48,38 @@ from diffusers.models.attention_processor import (
AttnProcessor2_0, AttnProcessor2_0,
LoRAAttnProcessor, LoRAAttnProcessor,
LoRAAttnProcessor2_0, LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor, XFormersAttnProcessor,
) )
from diffusers.utils.testing_utils import floats_tensor, nightly, require_torch_gpu, slow, torch_device from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_image, nightly, require_torch_gpu, slow, torch_device
def create_lora_layers(model, mock_weights: bool = True):
lora_attn_procs = {}
for name in model.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = model.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = model.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
lora_attn_procs[name] = lora_attn_procs[name].to(model.device)
if mock_weights:
# add 1 to weights to mock trained weights
with torch.no_grad():
lora_attn_procs[name].to_q_lora.up.weight += 1
lora_attn_procs[name].to_k_lora.up.weight += 1
lora_attn_procs[name].to_v_lora.up.weight += 1
lora_attn_procs[name].to_out_lora.up.weight += 1
return lora_attn_procs
def create_unet_lora_layers(unet: nn.Module): def create_unet_lora_layers(unet: nn.Module):
...@@ -91,6 +127,39 @@ def create_text_encoder_lora_layers(text_encoder: nn.Module): ...@@ -91,6 +127,39 @@ def create_text_encoder_lora_layers(text_encoder: nn.Module):
return text_encoder_lora_layers return text_encoder_lora_layers
def create_lora_3d_layers(model, mock_weights: bool = True):
lora_attn_procs = {}
for name in model.attn_processors.keys():
has_cross_attention = name.endswith("attn2.processor") and not (
name.startswith("transformer_in") or "temp_attentions" in name.split(".")
)
cross_attention_dim = model.config.cross_attention_dim if has_cross_attention else None
if name.startswith("mid_block"):
hidden_size = model.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = model.config.block_out_channels[block_id]
elif name.startswith("transformer_in"):
# Note that the `8 * ...` comes from: https://github.com/huggingface/diffusers/blob/7139f0e874f10b2463caa8cbd585762a309d12d6/src/diffusers/models/unet_3d_condition.py#L148
hidden_size = 8 * model.config.attention_head_dim
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
lora_attn_procs[name] = lora_attn_procs[name].to(model.device)
if mock_weights:
# add 1 to weights to mock trained weights
with torch.no_grad():
lora_attn_procs[name].to_q_lora.up.weight += 1
lora_attn_procs[name].to_k_lora.up.weight += 1
lora_attn_procs[name].to_v_lora.up.weight += 1
lora_attn_procs[name].to_out_lora.up.weight += 1
return lora_attn_procs
def set_lora_weights(lora_attn_parameters, randn_weight=False, var=1.0): def set_lora_weights(lora_attn_parameters, randn_weight=False, var=1.0):
with torch.no_grad(): with torch.no_grad():
for parameter in lora_attn_parameters: for parameter in lora_attn_parameters:
...@@ -215,6 +284,91 @@ class LoraLoaderMixinTests(unittest.TestCase): ...@@ -215,6 +284,91 @@ class LoraLoaderMixinTests(unittest.TestCase):
) )
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
@unittest.skipIf(not torch.cuda.is_available(), reason="xformers requires cuda")
def test_stable_diffusion_attn_processors(self):
# disable_full_determinism()
device = "cuda" # ensure determinism for the device-dependent torch.Generator
components, _ = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs()
# run normal sd pipe
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run xformers attention
sd_pipe.enable_xformers_memory_efficient_attention()
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run attention slicing
sd_pipe.enable_attention_slicing()
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run vae attention slicing
sd_pipe.enable_vae_slicing()
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run lora attention
attn_processors, _ = create_unet_lora_layers(sd_pipe.unet)
attn_processors = {k: v.to("cuda") for k, v in attn_processors.items()}
sd_pipe.unet.set_attn_processor(attn_processors)
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run lora xformers attention
attn_processors, _ = create_unet_lora_layers(sd_pipe.unet)
attn_processors = {
k: LoRAXFormersAttnProcessor(hidden_size=v.hidden_size, cross_attention_dim=v.cross_attention_dim)
for k, v in attn_processors.items()
}
attn_processors = {k: v.to("cuda") for k, v in attn_processors.items()}
sd_pipe.unet.set_attn_processor(attn_processors)
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# enable_full_determinism()
def test_stable_diffusion_lora(self):
components, _ = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward 1
_, _, inputs = self.get_dummy_inputs()
output = sd_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
# set lora layers
lora_attn_procs = create_lora_layers(sd_pipe.unet)
sd_pipe.unet.set_attn_processor(lora_attn_procs)
sd_pipe = sd_pipe.to(torch_device)
# forward 2
_, _, inputs = self.get_dummy_inputs()
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0})
image = output.images
image_slice_1 = image[0, -3:, -3:, -1]
# forward 3
_, _, inputs = self.get_dummy_inputs()
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5})
image = output.images
image_slice_2 = image[0, -3:, -3:, -1]
assert np.abs(image_slice - image_slice_1).max() < 1e-2
assert np.abs(image_slice - image_slice_2).max() > 1e-2
def test_lora_save_load(self): def test_lora_save_load(self):
pipeline_components, lora_components = self.get_dummy_components() pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**pipeline_components) sd_pipe = StableDiffusionPipeline(**pipeline_components)
...@@ -499,6 +653,126 @@ class LoraLoaderMixinTests(unittest.TestCase): ...@@ -499,6 +653,126 @@ class LoraLoaderMixinTests(unittest.TestCase):
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice))) self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
class SDXInpaintLoraMixinTests(unittest.TestCase):
def get_dummy_inputs(self, device, seed=0, img_res=64, output_pil=True):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
if output_pil:
# Get random floats in [0, 1] as image
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
mask_image = torch.ones_like(image)
# Convert image and mask_image to [0, 255]
image = 255 * image
mask_image = 255 * mask_image
# Convert to PIL image
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((img_res, img_res))
mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB").resize((img_res, img_res))
else:
# Get random floats in [0, 1] as image with spatial size (img_res, img_res)
image = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
# Convert image to [-1, 1]
init_image = 2.0 * image - 1.0
mask_image = torch.ones((1, 1, img_res, img_res), device=device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def test_stable_diffusion_inpaint_lora(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionInpaintPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward 1
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
# set lora layers
lora_attn_procs = create_lora_layers(sd_pipe.unet)
sd_pipe.unet.set_attn_processor(lora_attn_procs)
sd_pipe = sd_pipe.to(torch_device)
# forward 2
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0})
image = output.images
image_slice_1 = image[0, -3:, -3:, -1]
# forward 3
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5})
image = output.images
image_slice_2 = image[0, -3:, -3:, -1]
assert np.abs(image_slice - image_slice_1).max() < 1e-2
assert np.abs(image_slice - image_slice_2).max() > 1e-2
class SDXLLoraLoaderMixinTests(unittest.TestCase): class SDXLLoraLoaderMixinTests(unittest.TestCase):
def get_dummy_components(self): def get_dummy_components(self):
torch.manual_seed(0) torch.manual_seed(0)
...@@ -1051,6 +1325,495 @@ class SDXLLoraLoaderMixinTests(unittest.TestCase): ...@@ -1051,6 +1325,495 @@ class SDXLLoraLoaderMixinTests(unittest.TestCase):
), "The pipeline was serialized with LoRA parameters fused inside of the respected modules. The loaded pipeline should yield proper outputs, henceforth." ), "The pipeline was serialized with LoRA parameters fused inside of the respected modules. The loaded pipeline should yield proper outputs, henceforth."
class UNet2DConditionLoRAModelTests(unittest.TestCase):
model_class = UNet2DConditionModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device)
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}
@property
def input_shape(self):
return (4, 32, 32)
@property
def output_shape(self):
return (4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64),
"down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"),
"up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"),
"cross_attention_dim": 32,
"attention_head_dim": 8,
"out_channels": 4,
"in_channels": 4,
"layers_per_block": 2,
"sample_size": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_lora_processors(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
sample1 = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
# make sure we can set a list of attention processors
model.set_attn_processor(lora_attn_procs)
model.to(torch_device)
# test that attn processors can be set to itself
model.set_attn_processor(model.attn_processors)
with torch.no_grad():
sample2 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
sample3 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
sample4 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample1 - sample2).abs().max() < 3e-3
assert (sample3 - sample4).abs().max() < 3e-3
# sample 2 and sample 3 should be different
assert (sample2 - sample3).abs().max() > 1e-4
def test_lora_save_load(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=False)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname)
with torch.no_grad():
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample - new_sample).abs().max() < 5e-4
# LoRA and no LoRA should NOT be the same
assert (sample - old_sample).abs().max() > 5e-4
def test_lora_save_load_safetensors(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=True)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname)
with torch.no_grad():
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample - new_sample).abs().max() < 1e-4
# LoRA and no LoRA should NOT be the same
assert (sample - old_sample).abs().max() > 1e-4
def test_lora_save_safetensors_load_torch(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_layers(model, mock_weights=False)
model.set_attn_processor(lora_attn_procs)
# Saving as torch, properly reloads with directly filename
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=True)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname, weight_name="pytorch_lora_weights.safetensors")
def test_lora_save_torch_force_load_safetensors_error(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_layers(model, mock_weights=False)
model.set_attn_processor(lora_attn_procs)
# Saving as torch, properly reloads with directly filename
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=False)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
with self.assertRaises(IOError) as e:
new_model.load_attn_procs(tmpdirname, use_safetensors=True)
self.assertIn("Error no file named pytorch_lora_weights.safetensors", str(e.exception))
def test_lora_on_off(self, expected_max_diff=1e-3):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
model.set_default_attn_processor()
with torch.no_grad():
new_sample = model(**inputs_dict).sample
max_diff_new_sample = (sample - new_sample).abs().max()
max_diff_old_sample = (sample - old_sample).abs().max()
assert max_diff_new_sample < expected_max_diff
assert max_diff_old_sample < expected_max_diff
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_lora_xformers_on_off(self, expected_max_diff=1e-3):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
# default
with torch.no_grad():
sample = model(**inputs_dict).sample
model.enable_xformers_memory_efficient_attention()
on_sample = model(**inputs_dict).sample
model.disable_xformers_memory_efficient_attention()
off_sample = model(**inputs_dict).sample
max_diff_on_sample = (sample - on_sample).abs().max()
max_diff_off_sample = (sample - off_sample).abs().max()
assert max_diff_on_sample < expected_max_diff
assert max_diff_off_sample < expected_max_diff
class UNet3DConditionModelTests(unittest.TestCase):
model_class = UNet3DConditionModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
num_frames = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device)
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}
@property
def input_shape(self):
return (4, 4, 32, 32)
@property
def output_shape(self):
return (4, 4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64),
"down_block_types": (
"CrossAttnDownBlock3D",
"DownBlock3D",
),
"up_block_types": ("UpBlock3D", "CrossAttnUpBlock3D"),
"cross_attention_dim": 32,
"attention_head_dim": 8,
"out_channels": 4,
"in_channels": 4,
"layers_per_block": 1,
"sample_size": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_lora_processors(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
sample1 = model(**inputs_dict).sample
lora_attn_procs = create_lora_3d_layers(model)
# make sure we can set a list of attention processors
model.set_attn_processor(lora_attn_procs)
model.to(torch_device)
# test that attn processors can be set to itself
model.set_attn_processor(model.attn_processors)
with torch.no_grad():
sample2 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
sample3 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
sample4 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample1 - sample2).abs().max() < 3e-3
assert (sample3 - sample4).abs().max() < 3e-3
# sample 2 and sample 3 should be different
assert (sample2 - sample3).abs().max() > 3e-3
def test_lora_save_load(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_3d_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=False)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname)
with torch.no_grad():
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample - new_sample).abs().max() < 1e-3
# LoRA and no LoRA should NOT be the same
assert (sample - old_sample).abs().max() > 1e-4
def test_lora_save_load_safetensors(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_3d_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=True)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname)
with torch.no_grad():
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample - new_sample).abs().max() < 3e-3
# LoRA and no LoRA should NOT be the same
assert (sample - old_sample).abs().max() > 1e-4
def test_lora_save_safetensors_load_torch(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_3d_layers(model, mock_weights=False)
model.set_attn_processor(lora_attn_procs)
# Saving as torch, properly reloads with directly filename
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname, weight_name="pytorch_lora_weights.safetensors")
def test_lora_save_torch_force_load_safetensors_error(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_3d_layers(model, mock_weights=False)
model.set_attn_processor(lora_attn_procs)
# Saving as torch, properly reloads with directly filename
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=False)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
with self.assertRaises(IOError) as e:
new_model.load_attn_procs(tmpdirname, use_safetensors=True)
self.assertIn("Error no file named pytorch_lora_weights.safetensors", str(e.exception))
def test_lora_on_off(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_3d_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
model.set_attn_processor(AttnProcessor())
with torch.no_grad():
new_sample = model(**inputs_dict).sample
assert (sample - new_sample).abs().max() < 1e-4
assert (sample - old_sample).abs().max() < 3e-3
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_lora_xformers_on_off(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 4
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_3d_layers(model)
model.set_attn_processor(lora_attn_procs)
# default
with torch.no_grad():
sample = model(**inputs_dict).sample
model.enable_xformers_memory_efficient_attention()
on_sample = model(**inputs_dict).sample
model.disable_xformers_memory_efficient_attention()
off_sample = model(**inputs_dict).sample
assert (sample - on_sample).abs().max() < 1e-4
assert (sample - off_sample).abs().max() < 1e-4
@slow @slow
@require_torch_gpu @require_torch_gpu
class LoraIntegrationTests(unittest.TestCase): class LoraIntegrationTests(unittest.TestCase):
...@@ -1498,6 +2261,29 @@ class LoraIntegrationTests(unittest.TestCase): ...@@ -1498,6 +2261,29 @@ class LoraIntegrationTests(unittest.TestCase):
self.assertTrue(np.allclose(images, expected, atol=1e-3)) self.assertTrue(np.allclose(images, expected, atol=1e-3))
def test_canny_lora(self):
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
)
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors")
pipe.enable_sequential_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "corgi"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images
assert images[0].shape == (768, 512, 3)
original_image = images[0, -3:, -3:, -1].flatten()
expected_image = np.array([0.4574, 0.4461, 0.4435, 0.4462, 0.4396, 0.439, 0.4474, 0.4486, 0.4333])
assert np.allclose(original_image, expected_image, atol=1e-04)
@nightly @nightly
def test_sequential_fuse_unfuse(self): def test_sequential_fuse_unfuse(self):
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
......
...@@ -24,7 +24,7 @@ from parameterized import parameterized ...@@ -24,7 +24,7 @@ from parameterized import parameterized
from pytest import mark from pytest import mark
from diffusers import UNet2DConditionModel from diffusers import UNet2DConditionModel
from diffusers.models.attention_processor import CustomDiffusionAttnProcessor, LoRAAttnProcessor from diffusers.models.attention_processor import CustomDiffusionAttnProcessor
from diffusers.utils import logging from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import ( from diffusers.utils.testing_utils import (
...@@ -45,33 +45,6 @@ logger = logging.get_logger(__name__) ...@@ -45,33 +45,6 @@ logger = logging.get_logger(__name__)
enable_full_determinism() enable_full_determinism()
def create_lora_layers(model, mock_weights: bool = True):
lora_attn_procs = {}
for name in model.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = model.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = model.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
lora_attn_procs[name] = lora_attn_procs[name].to(model.device)
if mock_weights:
# add 1 to weights to mock trained weights
with torch.no_grad():
lora_attn_procs[name].to_q_lora.up.weight += 1
lora_attn_procs[name].to_k_lora.up.weight += 1
lora_attn_procs[name].to_v_lora.up.weight += 1
lora_attn_procs[name].to_out_lora.up.weight += 1
return lora_attn_procs
def create_custom_diffusion_layers(model, mock_weights: bool = True): def create_custom_diffusion_layers(model, mock_weights: bool = True):
train_kv = True train_kv = True
train_q_out = True train_q_out = True
...@@ -527,214 +500,6 @@ class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test ...@@ -527,214 +500,6 @@ class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test
keeplast_out keeplast_out
), "a mask with fewer tokens than condition, will be padded with 'keep' tokens. a 'discard-all' mask missing the final token is thus equivalent to a 'keep last' mask." ), "a mask with fewer tokens than condition, will be padded with 'keep' tokens. a 'discard-all' mask missing the final token is thus equivalent to a 'keep last' mask."
def test_lora_processors(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
sample1 = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
# make sure we can set a list of attention processors
model.set_attn_processor(lora_attn_procs)
model.to(torch_device)
# test that attn processors can be set to itself
model.set_attn_processor(model.attn_processors)
with torch.no_grad():
sample2 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
sample3 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
sample4 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample1 - sample2).abs().max() < 3e-3
assert (sample3 - sample4).abs().max() < 3e-3
# sample 2 and sample 3 should be different
assert (sample2 - sample3).abs().max() > 1e-4
def test_lora_save_load(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=False)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname)
with torch.no_grad():
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample - new_sample).abs().max() < 5e-4
# LoRA and no LoRA should NOT be the same
assert (sample - old_sample).abs().max() > 5e-4
def test_lora_save_load_safetensors(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=True)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname)
with torch.no_grad():
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample - new_sample).abs().max() < 1e-4
# LoRA and no LoRA should NOT be the same
assert (sample - old_sample).abs().max() > 1e-4
def test_lora_save_safetensors_load_torch(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_layers(model, mock_weights=False)
model.set_attn_processor(lora_attn_procs)
# Saving as torch, properly reloads with directly filename
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=True)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname, weight_name="pytorch_lora_weights.safetensors")
def test_lora_save_torch_force_load_safetensors_error(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_layers(model, mock_weights=False)
model.set_attn_processor(lora_attn_procs)
# Saving as torch, properly reloads with directly filename
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=False)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
with self.assertRaises(IOError) as e:
new_model.load_attn_procs(tmpdirname, use_safetensors=True)
self.assertIn("Error no file named pytorch_lora_weights.safetensors", str(e.exception))
def test_lora_on_off(self, expected_max_diff=1e-3):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
model.set_default_attn_processor()
with torch.no_grad():
new_sample = model(**inputs_dict).sample
max_diff_new_sample = (sample - new_sample).abs().max()
max_diff_old_sample = (sample - old_sample).abs().max()
assert max_diff_new_sample < expected_max_diff
assert max_diff_old_sample < expected_max_diff
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_lora_xformers_on_off(self, expected_max_diff=1e-3):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
# default
with torch.no_grad():
sample = model(**inputs_dict).sample
model.enable_xformers_memory_efficient_attention()
on_sample = model(**inputs_dict).sample
model.disable_xformers_memory_efficient_attention()
off_sample = model(**inputs_dict).sample
max_diff_on_sample = (sample - on_sample).abs().max()
max_diff_off_sample = (sample - off_sample).abs().max()
assert max_diff_on_sample < expected_max_diff
assert max_diff_off_sample < expected_max_diff
def test_custom_diffusion_processors(self): def test_custom_diffusion_processors(self):
# enable deterministic behavior for gradient checkpointing # enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
......
...@@ -13,15 +13,12 @@ ...@@ -13,15 +13,12 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import os
import tempfile
import unittest import unittest
import numpy as np import numpy as np
import torch import torch
from diffusers.models import ModelMixin, UNet3DConditionModel from diffusers.models import ModelMixin, UNet3DConditionModel
from diffusers.models.attention_processor import AttnProcessor, LoRAAttnProcessor
from diffusers.utils import logging from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, skip_mps, torch_device from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, skip_mps, torch_device
...@@ -34,39 +31,6 @@ enable_full_determinism() ...@@ -34,39 +31,6 @@ enable_full_determinism()
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
def create_lora_layers(model, mock_weights: bool = True):
lora_attn_procs = {}
for name in model.attn_processors.keys():
has_cross_attention = name.endswith("attn2.processor") and not (
name.startswith("transformer_in") or "temp_attentions" in name.split(".")
)
cross_attention_dim = model.config.cross_attention_dim if has_cross_attention else None
if name.startswith("mid_block"):
hidden_size = model.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = model.config.block_out_channels[block_id]
elif name.startswith("transformer_in"):
# Note that the `8 * ...` comes from: https://github.com/huggingface/diffusers/blob/7139f0e874f10b2463caa8cbd585762a309d12d6/src/diffusers/models/unet_3d_condition.py#L148
hidden_size = 8 * model.config.attention_head_dim
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
lora_attn_procs[name] = lora_attn_procs[name].to(model.device)
if mock_weights:
# add 1 to weights to mock trained weights
with torch.no_grad():
lora_attn_procs[name].to_q_lora.up.weight += 1
lora_attn_procs[name].to_k_lora.up.weight += 1
lora_attn_procs[name].to_v_lora.up.weight += 1
lora_attn_procs[name].to_out_lora.up.weight += 1
return lora_attn_procs
@skip_mps @skip_mps
class UNet3DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): class UNet3DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet3DConditionModel model_class = UNet3DConditionModel
...@@ -197,203 +161,6 @@ class UNet3DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test ...@@ -197,203 +161,6 @@ class UNet3DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test
output = model(**inputs_dict) output = model(**inputs_dict)
assert output is not None assert output is not None
def test_lora_processors(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
sample1 = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
# make sure we can set a list of attention processors
model.set_attn_processor(lora_attn_procs)
model.to(torch_device)
# test that attn processors can be set to itself
model.set_attn_processor(model.attn_processors)
with torch.no_grad():
sample2 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
sample3 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
sample4 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample1 - sample2).abs().max() < 3e-3
assert (sample3 - sample4).abs().max() < 3e-3
# sample 2 and sample 3 should be different
assert (sample2 - sample3).abs().max() > 3e-3
def test_lora_save_load(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=False)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname)
with torch.no_grad():
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample - new_sample).abs().max() < 1e-3
# LoRA and no LoRA should NOT be the same
assert (sample - old_sample).abs().max() > 1e-4
def test_lora_save_load_safetensors(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=True)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname)
with torch.no_grad():
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample - new_sample).abs().max() < 3e-3
# LoRA and no LoRA should NOT be the same
assert (sample - old_sample).abs().max() > 1e-4
def test_lora_save_safetensors_load_torch(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_layers(model, mock_weights=False)
model.set_attn_processor(lora_attn_procs)
# Saving as torch, properly reloads with directly filename
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname, weight_name="pytorch_lora_weights.safetensors")
def test_lora_save_torch_force_load_safetensors_error(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_layers(model, mock_weights=False)
model.set_attn_processor(lora_attn_procs)
# Saving as torch, properly reloads with directly filename
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=False)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
with self.assertRaises(IOError) as e:
new_model.load_attn_procs(tmpdirname, use_safetensors=True)
self.assertIn("Error no file named pytorch_lora_weights.safetensors", str(e.exception))
def test_lora_on_off(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
model.set_attn_processor(AttnProcessor())
with torch.no_grad():
new_sample = model(**inputs_dict).sample
assert (sample - new_sample).abs().max() < 1e-4
assert (sample - old_sample).abs().max() < 3e-3
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_lora_xformers_on_off(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 4
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
# default
with torch.no_grad():
sample = model(**inputs_dict).sample
model.enable_xformers_memory_efficient_attention()
on_sample = model(**inputs_dict).sample
model.disable_xformers_memory_efficient_attention()
off_sample = model(**inputs_dict).sample
assert (sample - on_sample).abs().max() < 1e-4
assert (sample - off_sample).abs().max() < 1e-4
def test_feed_forward_chunking(self): def test_feed_forward_chunking(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["norm_num_groups"] = 32 init_dict["norm_num_groups"] = 32
...@@ -411,6 +178,3 @@ class UNet3DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test ...@@ -411,6 +178,3 @@ class UNet3DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test
self.assertEqual(output.shape, output_2.shape, "Shape doesn't match") self.assertEqual(output.shape, output_2.shape, "Shape doesn't match")
assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2 assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2
# (todo: sayakpaul) implement SLOW tests.
...@@ -775,26 +775,3 @@ class ControlNetSDXLPipelineSlowTests(unittest.TestCase): ...@@ -775,26 +775,3 @@ class ControlNetSDXLPipelineSlowTests(unittest.TestCase):
original_image = images[0, -3:, -3:, -1].flatten() original_image = images[0, -3:, -3:, -1].flatten()
expected_image = np.array([0.4399, 0.5112, 0.5478, 0.4314, 0.472, 0.4823, 0.4647, 0.4957, 0.4853]) expected_image = np.array([0.4399, 0.5112, 0.5478, 0.4314, 0.472, 0.4823, 0.4647, 0.4957, 0.4853])
assert np.allclose(original_image, expected_image, atol=1e-04) assert np.allclose(original_image, expected_image, atol=1e-04)
def test_canny_lora(self):
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
)
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors")
pipe.enable_sequential_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "corgi"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images
assert images[0].shape == (768, 512, 3)
original_image = images[0, -3:, -3:, -1].flatten()
expected_image = np.array([0.4574, 0.4461, 0.4435, 0.4462, 0.4396, 0.439, 0.4474, 0.4486, 0.4333])
assert np.allclose(original_image, expected_image, atol=1e-04)
...@@ -37,7 +37,7 @@ from diffusers import ( ...@@ -37,7 +37,7 @@ from diffusers import (
UNet2DConditionModel, UNet2DConditionModel,
logging, logging,
) )
from diffusers.models.attention_processor import AttnProcessor, LoRAXFormersAttnProcessor from diffusers.models.attention_processor import AttnProcessor
from diffusers.utils.testing_utils import ( from diffusers.utils.testing_utils import (
CaptureLogger, CaptureLogger,
enable_full_determinism, enable_full_determinism,
...@@ -51,8 +51,6 @@ from diffusers.utils.testing_utils import ( ...@@ -51,8 +51,6 @@ from diffusers.utils.testing_utils import (
torch_device, torch_device,
) )
from ...models.test_lora_layers import create_unet_lora_layers
from ...models.test_models_unet_2d_condition import create_lora_layers
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
...@@ -188,40 +186,6 @@ class StableDiffusionPipelineFastTests( ...@@ -188,40 +186,6 @@ class StableDiffusionPipelineFastTests(
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_lora(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward 1
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
# set lora layers
lora_attn_procs = create_lora_layers(sd_pipe.unet)
sd_pipe.unet.set_attn_processor(lora_attn_procs)
sd_pipe = sd_pipe.to(torch_device)
# forward 2
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0})
image = output.images
image_slice_1 = image[0, -3:, -3:, -1]
# forward 3
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5})
image = output.images
image_slice_2 = image[0, -3:, -3:, -1]
assert np.abs(image_slice - image_slice_1).max() < 1e-2
assert np.abs(image_slice - image_slice_2).max() > 1e-2
def test_stable_diffusion_prompt_embeds(self): def test_stable_diffusion_prompt_embeds(self):
components = self.get_dummy_components() components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components) sd_pipe = StableDiffusionPipeline(**components)
...@@ -374,56 +338,6 @@ class StableDiffusionPipelineFastTests( ...@@ -374,56 +338,6 @@ class StableDiffusionPipelineFastTests(
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(not torch.cuda.is_available(), reason="xformers requires cuda")
def test_stable_diffusion_attn_processors(self):
# disable_full_determinism()
device = "cuda" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
# run normal sd pipe
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run xformers attention
sd_pipe.enable_xformers_memory_efficient_attention()
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run attention slicing
sd_pipe.enable_attention_slicing()
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run vae attention slicing
sd_pipe.enable_vae_slicing()
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run lora attention
attn_processors, _ = create_unet_lora_layers(sd_pipe.unet)
attn_processors = {k: v.to("cuda") for k, v in attn_processors.items()}
sd_pipe.unet.set_attn_processor(attn_processors)
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run lora xformers attention
attn_processors, _ = create_unet_lora_layers(sd_pipe.unet)
attn_processors = {
k: LoRAXFormersAttnProcessor(hidden_size=v.hidden_size, cross_attention_dim=v.cross_attention_dim)
for k, v in attn_processors.items()
}
attn_processors = {k: v.to("cuda") for k, v in attn_processors.items()}
sd_pipe.unet.set_attn_processor(attn_processors)
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# enable_full_determinism()
def test_stable_diffusion_no_safety_checker(self): def test_stable_diffusion_no_safety_checker(self):
pipe = StableDiffusionPipeline.from_pretrained( pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
......
...@@ -49,7 +49,6 @@ from diffusers.utils.testing_utils import ( ...@@ -49,7 +49,6 @@ from diffusers.utils.testing_utils import (
torch_device, torch_device,
) )
from ...models.test_models_unet_2d_condition import create_lora_layers
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
...@@ -221,40 +220,6 @@ class StableDiffusionInpaintPipelineFastTests( ...@@ -221,40 +220,6 @@ class StableDiffusionInpaintPipelineFastTests(
assert out_pil.shape == (1, 64, 64, 3) assert out_pil.shape == (1, 64, 64, 3)
assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2 assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2
def test_stable_diffusion_inpaint_lora(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionInpaintPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward 1
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
# set lora layers
lora_attn_procs = create_lora_layers(sd_pipe.unet)
sd_pipe.unet.set_attn_processor(lora_attn_procs)
sd_pipe = sd_pipe.to(torch_device)
# forward 2
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0})
image = output.images
image_slice_1 = image[0, -3:, -3:, -1]
# forward 3
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5})
image = output.images
image_slice_2 = image[0, -3:, -3:, -1]
assert np.abs(image_slice - image_slice_1).max() < 1e-2
assert np.abs(image_slice - image_slice_2).max() > 1e-2
def test_inference_batch_single_identical(self): def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3) super().test_inference_batch_single_identical(expected_max_diff=3e-3)
...@@ -410,10 +375,6 @@ class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipeli ...@@ -410,10 +375,6 @@ class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipeli
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skip("skipped here because area stays unchanged due to mask")
def test_stable_diffusion_inpaint_lora(self):
...
def test_stable_diffusion_inpaint_2_images(self): def test_stable_diffusion_inpaint_2_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components() components = self.get_dummy_components()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment