Unverified Commit 06a042cd authored by Piyush Thakur's avatar Piyush Thakur Committed by GitHub
Browse files

[Model Card] standardize T2I Lora model card (#6940)

standardize model card t2i-lora
parent 87724965
...@@ -45,6 +45,7 @@ from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, StableDif ...@@ -45,6 +45,7 @@ from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, StableDif
from diffusers.optimization import get_scheduler from diffusers.optimization import get_scheduler
from diffusers.training_utils import cast_training_params, compute_snr from diffusers.training_utils import cast_training_params, compute_snr
from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, is_wandb_available from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, is_wandb_available
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module from diffusers.utils.torch_utils import is_compiled_module
...@@ -61,26 +62,31 @@ def save_model_card(repo_id: str, images=None, base_model=str, dataset_name=str, ...@@ -61,26 +62,31 @@ def save_model_card(repo_id: str, images=None, base_model=str, dataset_name=str,
image.save(os.path.join(repo_folder, f"image_{i}.png")) image.save(os.path.join(repo_folder, f"image_{i}.png"))
img_str += f"![img_{i}](./image_{i}.png)\n" img_str += f"![img_{i}](./image_{i}.png)\n"
yaml = f""" model_description = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
"""
model_card = f"""
# LoRA text2image fine-tuning - {repo_id} # LoRA text2image fine-tuning - {repo_id}
These are LoRA adaption weights for {base_model}. The weights were fine-tuned on the {dataset_name} dataset. You can find some example images in the following. \n These are LoRA adaption weights for {base_model}. The weights were fine-tuned on the {dataset_name} dataset. You can find some example images in the following. \n
{img_str} {img_str}
""" """
with open(os.path.join(repo_folder, "README.md"), "w") as f:
f.write(yaml + model_card) model_card = load_or_create_model_card(
repo_id_or_path=repo_id,
from_training=True,
license="creativeml-openrail-m",
base_model=base_model,
model_description=model_description,
inference=True,
)
tags = [
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"diffusers",
"lora",
]
model_card = populate_model_card(model_card, tags=tags)
model_card.save(os.path.join(repo_folder, "README.md"))
def parse_args(): def parse_args():
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment