Unverified Commit 058b4755 authored by Sajad Norouzi's avatar Sajad Norouzi Committed by GitHub
Browse files

Fix mixed precision fine-tuning for text-to-image-lora-sdxl example. (#6751)



* Fix mixed precision fine-tuning for text-to-image-lora-sdxl example.

* fix text_encoder_two bug.

---------
Co-authored-by: default avatarSajad Norouzi <sajadn@dev-dsk-sajadn-2a-87239470.us-west-2.amazon.com>
parent 7f58a76f
...@@ -35,7 +35,7 @@ from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration ...@@ -35,7 +35,7 @@ from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration
from datasets import load_dataset from datasets import load_dataset
from huggingface_hub import create_repo, upload_folder from huggingface_hub import create_repo, upload_folder
from packaging import version from packaging import version
from peft import LoraConfig from peft import LoraConfig, set_peft_model_state_dict
from peft.utils import get_peft_model_state_dict from peft.utils import get_peft_model_state_dict
from torchvision import transforms from torchvision import transforms
from torchvision.transforms.functional import crop from torchvision.transforms.functional import crop
...@@ -51,8 +51,13 @@ from diffusers import ( ...@@ -51,8 +51,13 @@ from diffusers import (
) )
from diffusers.loaders import LoraLoaderMixin from diffusers.loaders import LoraLoaderMixin
from diffusers.optimization import get_scheduler from diffusers.optimization import get_scheduler
from diffusers.training_utils import cast_training_params, compute_snr from diffusers.training_utils import _set_state_dict_into_text_encoder, cast_training_params, compute_snr
from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, is_wandb_available from diffusers.utils import (
check_min_version,
convert_state_dict_to_diffusers,
convert_unet_state_dict_to_peft,
is_wandb_available,
)
from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module from diffusers.utils.torch_utils import is_compiled_module
...@@ -629,14 +634,6 @@ def main(args): ...@@ -629,14 +634,6 @@ def main(args):
text_encoder_one.add_adapter(text_lora_config) text_encoder_one.add_adapter(text_lora_config)
text_encoder_two.add_adapter(text_lora_config) text_encoder_two.add_adapter(text_lora_config)
# Make sure the trainable params are in float32.
if args.mixed_precision == "fp16":
models = [unet]
if args.train_text_encoder:
models.extend([text_encoder_one, text_encoder_two])
# only upcast trainable parameters (LoRA) into fp32
cast_training_params(models, dtype=torch.float32)
def unwrap_model(model): def unwrap_model(model):
model = accelerator.unwrap_model(model) model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model model = model._orig_mod if is_compiled_module(model) else model
...@@ -693,19 +690,35 @@ def main(args): ...@@ -693,19 +690,35 @@ def main(args):
else: else:
raise ValueError(f"unexpected save model: {model.__class__}") raise ValueError(f"unexpected save model: {model.__class__}")
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir) lora_state_dict, _ = LoraLoaderMixin.lora_state_dict(input_dir)
LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_) unet_state_dict = {f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")}
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
text_encoder_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder." in k} incompatible_keys = set_peft_model_state_dict(unet_, unet_state_dict, adapter_name="default")
LoraLoaderMixin.load_lora_into_text_encoder( if incompatible_keys is not None:
text_encoder_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_one_ # check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
logger.warning(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
) )
text_encoder_2_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder_2." in k} if args.train_text_encoder:
LoraLoaderMixin.load_lora_into_text_encoder( _set_state_dict_into_text_encoder(lora_state_dict, prefix="text_encoder.", text_encoder=text_encoder_one_)
text_encoder_2_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_two_
_set_state_dict_into_text_encoder(
lora_state_dict, prefix="text_encoder_2.", text_encoder=text_encoder_two_
) )
# Make sure the trainable params are in float32. This is again needed since the base models
# are in `weight_dtype`. More details:
# https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
if args.mixed_precision == "fp16":
models = [unet_]
if args.train_text_encoder:
models.extend([text_encoder_one_, text_encoder_two_])
cast_training_params(models, dtype=torch.float32)
accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook) accelerator.register_load_state_pre_hook(load_model_hook)
...@@ -725,6 +738,13 @@ def main(args): ...@@ -725,6 +738,13 @@ def main(args):
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
) )
# Make sure the trainable params are in float32.
if args.mixed_precision == "fp16":
models = [unet]
if args.train_text_encoder:
models.extend([text_encoder_one, text_encoder_two])
cast_training_params(models, dtype=torch.float32)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam: if args.use_8bit_adam:
try: try:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment