# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
注意:每次运行前请检查环境变量`HSA_OVERRIDE_GFX_VERSION`是否正确设置。
# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""
```
## 参考资料
Next, create and run the model:
```
ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.
```
For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
## CLI Reference
### Create a model
`ollama create` is used to create a model from a Modelfile.
```
ollama create mymodel -f ./Modelfile
```
### Pull a model
```
ollama pull llama3.1
```
> This command can also be used to update a local model. Only the diff will be pulled.
### Remove a model
```
ollama rm llama3.1
```
### Copy a model
```
ollama cp llama3.1 my-model
```
### Multiline input
For multiline input, you can wrap text with `"""`:
```
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
```
### Multimodal models
```
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.
```
### Pass the prompt as an argument
```
$ ollama run llama3.1 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### Show model information
```
ollama show llama3.1
```
### List models on your computer
```
ollama list
```
### Start Ollama
`ollama serve` is used when you want to start ollama without running the desktop application.
## Building
See the [developer guide](https://github.com/ollama/ollama/blob/main/docs/development.md)
### Running local builds
Next, start the server:
```
./ollama serve
```
Finally, in a separate shell, run a model:
```
./ollama run llama3.1
```
## REST API
Ollama has a REST API for running and managing models.
### Generate a response
```
curl http://localhost:11434/api/generate -d '{
"model": "llama3.1",
"prompt":"Why is the sky blue?"
}'
```
### Chat with a model
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"messages": [
{ "role": "user", "content": "why is the sky blue?" }
]
}'
```
See the [API documentation](./docs/api.md) for all endpoints.
-[MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md)(Connects Ollama models with nearly 200 data platforms and apps)
-[chromem-go](https://github.com/philippgille/chromem-go/blob/v0.5.0/embed_ollama.go) with [example](https://github.com/philippgille/chromem-go/tree/v0.5.0/examples/rag-wikipedia-ollama)
-[LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
-[LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
-[LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
-[LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
-[PromptingTools.jl](https://github.com/svilupp/PromptingTools.jl) with an [example](https://svilupp.github.io/PromptingTools.jl/dev/examples/working_with_ollama)
-[Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
-[Headless Ollama](https://github.com/nischalj10/headless-ollama)(Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
### Supported backends
-[llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
> Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
## Customize a model
### Import from GGUF
Ollama supports importing GGUF models in the Modelfile:
1. Create a file named `Modelfile`, with a `FROM` instruction with the local filepath to the model you want to import.
```
FROM ./vicuna-33b.Q4_0.gguf
```
2. Create the model in Ollama
```
ollama create example -f Modelfile
```
3. Run the model
```
ollama run example
```
### Import from PyTorch or Safetensors
See the [guide](docs/import.md) on importing models for more information.
### Customize a prompt
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3` model:
```
ollama pull llama3
```
Create a `Modelfile`:
```
FROM llama3
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""
```
Next, create and run the model:
```
ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.
```
For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
## CLI Reference
### Create a model
`ollama create` is used to create a model from a Modelfile.
```
ollama create mymodel -f ./Modelfile
```
### Pull a model
```
ollama pull llama3
```
> This command can also be used to update a local model. Only the diff will be pulled.
### Remove a model
```
ollama rm llama3
```
### Copy a model
```
ollama cp llama3 my-model
```
### Multiline input
For multiline input, you can wrap text with `"""`:
```
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
```
### Multimodal models
```
>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.
```
### Pass the prompt as an argument
```
$ ollama run llama3 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### List models on your computer
```
ollama list
```
### Start Ollama
`ollama serve` is used when you want to start ollama without running the desktop application.
## Building
See the [developer guide](https://github.com/ollama/ollama/blob/main/docs/development.md)
### Running local builds
Next, start the server:
```
./ollama serve
```
Finally, in a separate shell, run a model:
```
./ollama run llama3
```
## REST API
Ollama has a REST API for running and managing models.
### Generate a response
```
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"prompt":"Why is the sky blue?"
}'
```
### Chat with a model
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"messages": [
{ "role": "user", "content": "why is the sky blue?" }
]
}'
```
See the [API documentation](./docs/api.md) for all endpoints.
-[MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md)(Connects Ollama models with nearly 200 data platforms and apps)
-[chromem-go](https://github.com/philippgille/chromem-go/blob/v0.5.0/embed_ollama.go) with [example](https://github.com/philippgille/chromem-go/tree/v0.5.0/examples/rag-wikipedia-ollama)
-[LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
-[LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
-[LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
-[PromptingTools.jl](https://github.com/svilupp/PromptingTools.jl) with an [example](https://svilupp.github.io/PromptingTools.jl/dev/examples/working_with_ollama)