"src/diffusers/pipelines/pia/pipeline_pia.py" did not exist on "a517f665a45bc25a24268aad9997c027769220a7"
Commit 0ce8bcfd authored by xuxzh1's avatar xuxzh1 🎱
Browse files

init

parent b0135f4b
set(TARGET lookahead)
set(TARGET llama-lookahead)
add_executable(${TARGET} lookahead.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
......
......@@ -37,7 +37,8 @@ struct ngram_container {
int main(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
......@@ -57,11 +58,11 @@ int main(int argc, char ** argv) {
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model = NULL;
llama_context * ctx = NULL;
// load the target model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
llama_init_result llama_init = llama_init_from_gpt_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
// Tokenize the prompt
std::vector<llama_token> inp;
......
set(TARGET lookup)
set(TARGET llama-lookup)
add_executable(${TARGET} lookup.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
set(TARGET lookup-create)
set(TARGET llama-lookup-create)
add_executable(${TARGET} lookup-create.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
set(TARGET lookup-merge)
set(TARGET llama-lookup-merge)
add_executable(${TARGET} lookup-merge.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
set(TARGET lookup-stats)
set(TARGET llama-lookup-stats)
add_executable(${TARGET} lookup-stats.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
......
......@@ -10,4 +10,3 @@ More info:
https://github.com/ggerganov/llama.cpp/pull/4484
https://github.com/ggerganov/llama.cpp/issues/4226
......@@ -14,17 +14,19 @@ int main(int argc, char ** argv){
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
// init llama.cpp
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model = NULL;
llama_context * ctx = NULL;
// load the model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
llama_init_result llama_init = llama_init_from_gpt_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
GGML_ASSERT(model != nullptr);
// tokenize the prompt
......
......@@ -11,14 +11,14 @@
#include <unordered_map>
#include <vector>
static void print_usage() {
static void print_usage(char* argv0) {
fprintf(stderr, "Merges multiple lookup cache files into a single one.\n");
fprintf(stderr, "Usage: lookup-merge [--help] lookup_part_1.bin lookup_part_2.bin ... lookup_merged.bin\n");
fprintf(stderr, "Usage: %s [--help] lookup_part_1.bin lookup_part_2.bin ... lookup_merged.bin\n", argv0);
}
int main(int argc, char ** argv){
if (argc < 3) {
print_usage();
print_usage(argv[0]);
exit(1);
}
......@@ -27,7 +27,7 @@ int main(int argc, char ** argv){
for (int i = 0; i < argc-1; ++i) {
args[i] = argv[i+1];
if (args[i] == "-h" || args[i] == "--help") {
print_usage();
print_usage(argv[0]);
exit(0);
}
}
......
......@@ -16,6 +16,7 @@ int main(int argc, char ** argv){
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
......@@ -25,12 +26,11 @@ int main(int argc, char ** argv){
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model = NULL;
llama_context * ctx = NULL;
// load the model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
llama_init_result llama_init = llama_init_from_gpt_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
// tokenize the prompt
std::vector<llama_token> inp;
......@@ -64,7 +64,7 @@ int main(int argc, char ** argv){
}
const int n_input = inp.size();
const int n_ctx = params.n_ctx;
const int n_ctx = llama_n_ctx(ctx);
int n_drafted = 0;
int n_accept = 0;
......
......@@ -15,6 +15,7 @@ int main(int argc, char ** argv){
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
......@@ -33,12 +34,11 @@ int main(int argc, char ** argv){
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model = NULL;
llama_context * ctx = NULL;
// load the model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
llama_init_result llama_init = llama_init_from_gpt_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
// tokenize the prompt
std::vector<llama_token> inp;
......
cmake_minimum_required(VERSION 3.12)
project("main-cmake-pkg" C CXX)
set(TARGET main-cmake-pkg)
project("llama-cli-cmake-pkg" C CXX)
set(TARGET llama-cli-cmake-pkg)
find_package(Llama 0.0.1 REQUIRED)
# Bake common functionality in with target. Because applications
# using the relocatable Llama package should be outside of the
# source tree, main-cmake-pkg pretends the dependencies are built-in.
# source tree, llama-cli-cmake-pkg pretends the dependencies are built-in.
set(_common_path "${CMAKE_CURRENT_LIST_DIR}/../../common")
add_library(common OBJECT)
file(GLOB _common_files
......@@ -15,7 +15,7 @@ file(GLOB _common_files
)
target_sources(common PRIVATE ${_common_files})
# If the common project was part of "main-cmake-pkg" the transient
# If the common project was part of "llama-cli-cmake-pkg" the transient
# defines would automatically be attached. Because the common func-
# tionality is separate, but dependent upon the defines, it must be
# explicitly extracted from the "llama" target.
......@@ -30,4 +30,3 @@ target_include_directories(${TARGET} PRIVATE ${_common_path})
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
# llama.cpp/example/main-cmake-pkg
This program builds the [main](../main) application using a relocatable CMake package. It serves as an example of using the `find_package()` CMake command to conveniently include [llama.cpp](https://github.com/ggerganov/llama.cpp) in projects which live outside of the source tree.
This program builds [llama-cli](../main) using a relocatable CMake package. It serves as an example of using the `find_package()` CMake command to conveniently include [llama.cpp](https://github.com/ggerganov/llama.cpp) in projects which live outside of the source tree.
## Building
......@@ -8,26 +8,24 @@ Because this example is "outside of the source tree", it is important to first b
### Considerations
When hardware acceleration libraries are used (e.g. CUDA, Metal, CLBlast, etc.), CMake must be able to locate the associated CMake package. In the example below, when building _main-cmake-pkg_ notice the `CMAKE_PREFIX_PATH` includes the Llama CMake package location _in addition to_ the CLBlast package—which was used when compiling _llama.cpp_.
When hardware acceleration libraries are used (e.g. CUDA, Metal, etc.), CMake must be able to locate the associated CMake package.
### Build llama.cpp and install to C:\LlamaCPP directory
In this case, CLBlast was already installed so the CMake package is referenced in `CMAKE_PREFIX_PATH`.
```cmd
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
cmake -B build -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=C:/CLBlast/lib/cmake/CLBlast -G "Visual Studio 17 2022" -A x64
cmake -B build -DBUILD_SHARED_LIBS=OFF -G "Visual Studio 17 2022" -A x64
cmake --build build --config Release
cmake --install build --prefix C:/LlamaCPP
```
### Build main-cmake-pkg
### Build llama-cli-cmake-pkg
```cmd
cd ..\examples\main-cmake-pkg
cmake -B build -DBUILD_SHARED_LIBS=OFF -DCMAKE_PREFIX_PATH="C:/CLBlast/lib/cmake/CLBlast;C:/LlamaCPP/lib/cmake/Llama" -G "Visual Studio 17 2022" -A x64
cmake -B build -DBUILD_SHARED_LIBS=OFF -DCMAKE_PREFIX_PATH="C:/LlamaCPP/lib/cmake/Llama" -G "Visual Studio 17 2022" -A x64
cmake --build build --config Release
cmake --install build --prefix C:/MyLlamaApp
```
set(TARGET main)
set(TARGET llama-cli)
add_executable(${TARGET} main.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
......
# llama.cpp/example/main
# llama.cpp/examples/main
This example program allows you to use various LLaMA language models in an easy and efficient way. It is specifically designed to work with the [llama.cpp](https://github.com/ggerganov/llama.cpp) project, which provides a plain C/C++ implementation with optional 4-bit quantization support for faster, lower memory inference, and is optimized for desktop CPUs. This program can be used to perform various inference tasks with LLaMA models, including generating text based on user-provided prompts and chat-like interactions with reverse prompts.
This example program allows you to use various LLaMA language models easily and efficiently. It is specifically designed to work with the [llama.cpp](https://github.com/ggerganov/llama.cpp) project, which provides a plain C/C++ implementation with optional 4-bit quantization support for faster, lower memory inference, and is optimized for desktop CPUs. This program can be used to perform various inference tasks with LLaMA models, including generating text based on user-provided prompts and chat-like interactions with reverse prompts.
## Table of Contents
......@@ -17,74 +17,71 @@ This example program allows you to use various LLaMA language models in an easy
To get started right away, run the following command, making sure to use the correct path for the model you have:
#### Unix-based systems (Linux, macOS, etc.):
First, we will need to download a model. In these examples, we will use the Gemma model from the ggml-org repo on Hugging Face.
[https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true](https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true)
```bash
./main -m models/7B/ggml-model.bin --prompt "Once upon a time"
```
Once downloaded, place your model in the models folder in llama.cpp.
#### Windows:
### Unix-based systems (Linux, macOS, etc.):
```powershell
main.exe -m models\7B\ggml-model.bin --prompt "Once upon a time"
```
##### Input prompt (One-and-done)
For an interactive experience, try this command:
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --prompt "Once upon a time"
```
##### Conversation mode (Allow for continuous interaction with the model)
#### Unix-based systems (Linux, macOS, etc.):
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf -cnv --chat-template gemma
```
##### Infinite text from a starting prompt (you can use `Ctrl-C` to stop it):
```bash
./main -m models/7B/ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -i -p \
'User: Hi
AI: Hello. I am an AI chatbot. Would you like to talk?
User: Sure!
AI: What would you like to talk about?
User:'
./llama-cli -m models\gemma-1.1-7b-it.Q4_K_M.gguf --ignore-eos -n -1
```
#### Windows:
### Windows:
##### Input prompt (One-and-done)
```powershell
main.exe -m models\7B\ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -i -e -p "User: Hi\nAI: Hello. I am an AI chatbot. Would you like to talk?\nUser: Sure!\nAI: What would you like to talk about?\nUser:"
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --prompt "Once upon a time"
```
##### Conversation mode (Allow for continuous interaction with the model)
The following command generates "infinite" text from a starting prompt (you can use `Ctrl-C` to stop it):
#### Unix-based systems (Linux, macOS, etc.):
```bash
./main -m models/7B/ggml-model.bin --ignore-eos -n -1 --random-prompt
```powershell
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf -cnv --chat-template gemma
```
#### Windows:
#### Infinite text from a starting prompt (you can use `Ctrl-C` to stop it):
```powershell
main.exe -m models\7B\ggml-model.bin --ignore-eos -n -1 --random-prompt
llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --ignore-eos -n -1
```
## Common Options
In this section, we cover the most commonly used options for running the `main` program with the LLaMA models:
In this section, we cover the most commonly used options for running the `llama-cli` program with the LLaMA models:
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`; inferred from `--model-url` if set).
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf).
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/gemma-1.1-7b-it.Q4_K_M.gguf`; inferred from `--model-url` if set).
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g [https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true](https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true)).
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
- `-ins, --instruct`: Run the program in instruction mode, which is particularly useful when working with Alpaca models.
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference.
- `-mli, --multiline-input`: Allows you to write or paste multiple lines without ending each in '\'
- `-t N, --threads N`: Set the number of threads to use during generation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has.
- - `-ngl N, --n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
## Input Prompts
The `main` program provides several ways to interact with the LLaMA models using input prompts:
The `llama-cli` program provides several ways to interact with the LLaMA models using input prompts:
- `--prompt PROMPT`: Provide a prompt directly as a command-line option.
- `--file FNAME`: Provide a file containing a prompt or multiple prompts.
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
- `--random-prompt`: Start with a randomized prompt.
## Interaction
The `main` program offers a seamless way to interact with LLaMA models, allowing users to engage in real-time conversations or provide instructions for specific tasks. The interactive mode can be triggered using various options, including `--interactive`, `--interactive-first`, and `--instruct`.
The `llama-cli` program offers a seamless way to interact with LLaMA models, allowing users to engage in real-time conversations or provide instructions for specific tasks. The interactive mode can be triggered using various options, including `--interactive` and `--interactive-first`.
In interactive mode, users can participate in text generation by injecting their input during the process. Users can press `Ctrl+C` at any time to interject and type their input, followed by pressing `Return` to submit it to the LLaMA model. To submit additional lines without finalizing input, users can end the current line with a backslash (`\`) and continue typing.
......@@ -92,7 +89,7 @@ In interactive mode, users can participate in text generation by injecting their
- `-i, --interactive`: Run the program in interactive mode, allowing users to engage in real-time conversations or provide specific instructions to the model.
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
- `-ins, --instruct`: Run the program in instruction mode, which is specifically designed to work with Alpaca models that excel in completing tasks based on user instructions.
- `-cnv, --conversation`: Run the program in conversation mode (does not print special tokens and suffix/prefix, use default chat template) (default: false)
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs.
......@@ -110,7 +107,7 @@ To overcome this limitation, you can use the `--in-prefix` flag to add a space o
The `--in-prefix` flag is used to add a prefix to your input, primarily, this is used to insert a space after the reverse prompt. Here's an example of how to use the `--in-prefix` flag in conjunction with the `--reverse-prompt` flag:
```sh
./main -r "User:" --in-prefix " "
./llama-cli -r "User:" --in-prefix " "
```
### In-Suffix
......@@ -118,18 +115,15 @@ The `--in-prefix` flag is used to add a prefix to your input, primarily, this is
The `--in-suffix` flag is used to add a suffix after your input. This is useful for adding an "Assistant:" prompt after the user's input. It's added after the new-line character (`\n`) that's automatically added to the end of the user's input. Here's an example of how to use the `--in-suffix` flag in conjunction with the `--reverse-prompt` flag:
```sh
./main -r "User:" --in-prefix " " --in-suffix "Assistant:"
./llama-cli -r "User:" --in-prefix " " --in-suffix "Assistant:"
```
When --in-prefix or --in-suffix options are enabled the chat template ( --chat-template ) is disabled
### Instruction Mode
Instruction mode is particularly useful when working with Alpaca models, which are designed to follow user instructions for specific tasks:
### Chat templates
- `-ins, --instruct`: Enable instruction mode to leverage the capabilities of Alpaca models in completing tasks based on user-provided instructions.
`--chat-template JINJA_TEMPLATE`: This option sets a custom jinja chat template. It accepts a string, not a file name. Default: template taken from model's metadata. Llama.cpp only supports [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template). These include llama2, llama3, gemma, monarch, chatml, orion, vicuna, vicuna-orca, deepseek, command-r, zephyr. When --in-prefix or --in-suffix options are enabled the chat template ( --chat-template ) is disabled.
Technical detail: the user's input is internally prefixed with the reverse prompt (or `### Instruction:` as the default), and followed by `### Response:` (except if you just press Return without any input, to keep generating a longer response).
By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs.
Example usage: `--chat-template gemma`
## Context Management
......@@ -137,9 +131,7 @@ During text generation, LLaMA models have a limited context size, which means th
### Context Size
The `--ctx-size` option allows you to set the size of the prompt context used by the LLaMA models during text generation. A larger context size helps the model to better comprehend and generate responses for longer input or conversations.
- `-c N, --ctx-size N`: Set the size of the prompt context (default: 512). The LLaMA models were built with a context of 2048, which will yield the best results on longer input/inference. However, increasing the context size beyond 2048 may lead to unpredictable results.
- `-c N, --ctx-size N`: Set the size of the prompt context (default: 0, 0 = loaded from model). The LLaMA models were built with a context of 2048-8192, which will yield the best results on longer input/inference.
### Extended Context Size
......@@ -161,15 +153,15 @@ The following options allow you to control the text generation process and fine-
### Number of Tokens to Predict
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity, -2 = until context filled)
- `-n N, --predict N`: Set the number of tokens to predict when generating text (default: -1, -1 = infinity, -2 = until context filled)
The `--n-predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text.
The `--predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text.
A value of -1 will enable infinite text generation, even though we have a finite context window. When the context window is full, some of the earlier tokens (half of the tokens after `--n-keep`) will be discarded. The context must then be re-evaluated before generation can resume. On large models and/or large context windows, this will result in significant pause in output.
A value of -1 will enable infinite text generation, even though we have a finite context window. When the context window is full, some of the earlier tokens (half of the tokens after `--keep`) will be discarded. The context must then be re-evaluated before generation can resume. On large models and/or large context windows, this will result in a significant pause in output.
If the pause is undesirable, a value of -2 will stop generation immediately when the context is filled.
It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `n-predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter.
It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode, text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `--predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter.
### Temperature
......@@ -177,15 +169,15 @@ It is important to note that the generated text may be shorter than the specifie
Temperature is a hyperparameter that controls the randomness of the generated text. It affects the probability distribution of the model's output tokens. A higher temperature (e.g., 1.5) makes the output more random and creative, while a lower temperature (e.g., 0.5) makes the output more focused, deterministic, and conservative. The default value is 0.8, which provides a balance between randomness and determinism. At the extreme, a temperature of 0 will always pick the most likely next token, leading to identical outputs in each run.
Example usage: `--temp 0.5`
Example usage: `--temp 0`
### Repeat Penalty
- `--repeat-penalty N`: Control the repetition of token sequences in the generated text (default: 1.1).
- `--repeat-penalty N`: Control the repetition of token sequences in the generated text default: 1.0, 1.0 = disabled).
- `--repeat-last-n N`: Last n tokens to consider for penalizing repetition (default: 64, 0 = disabled, -1 = ctx-size).
- `--no-penalize-nl`: Disable penalization for newline tokens when applying the repeat penalty.
The `repeat-penalty` option helps prevent the model from generating repetitive or monotonous text. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. The default value is 1.1.
The `repeat-penalty` option helps prevent the model from generating repetitive or monotonous text. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. The default value is 1.
The `repeat-last-n` option controls the number of tokens in the history to consider for penalizing repetition. A larger value will look further back in the generated text to prevent repetitions, while a smaller value will only consider recent tokens. A value of 0 disables the penalty, and a value of -1 sets the number of tokens considered equal to the context size (`ctx-size`).
......@@ -209,19 +201,19 @@ Top-p sampling, also known as nucleus sampling, is another text generation metho
Example usage: `--top-p 0.95`
### Min P Sampling
### Min-P Sampling
- `--min-p N`: Sets a minimum base probability threshold for token selection (default: 0.05).
- `--min-p N`: Sets a minimum base probability threshold for token selection (default: 0.1).
The Min-P sampling method was designed as an alternative to Top-P, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out.
Example usage: `--min-p 0.05`
### Tail Free Sampling (TFS)
### Tail-Free Sampling (TFS)
- `--tfs N`: Enable tail free sampling with parameter z (default: 1.0, 1.0 = disabled).
Tail free sampling (TFS) is a text generation technique that aims to reduce the impact of less likely tokens, which may be less relevant, less coherent, or nonsensical, on the output. Similar to Top-P it tries to determine the bulk of the most likely tokens dynamically. But TFS filters out logits based on the second derivative of their probabilities. Adding tokens is stopped after the sum of the second derivatives reaches the parameter z. In short: TFS looks how quickly the probabilities of the tokens decrease and cuts off the tail of unlikely tokens using the parameter z. Typical values for z are in the range of 0.9 to 0.95. A value of 1.0 would include all tokens, and thus disables the effect of TFS.
Tail-free sampling (TFS) is a text generation technique that aims to reduce the impact of less likely tokens, which may be less relevant, less coherent, or nonsensical, on the output. Similar to Top-P it tries to determine the bulk of the most likely tokens dynamically. But TFS filters out logits based on the second derivative of their probabilities. Adding tokens is stopped after the sum of the second derivatives reaches the parameter z. In short: TFS looks at how quickly the probabilities of the tokens decrease and cuts off the tail of unlikely tokens using the parameter z. Typical values for z are in the range of 0.9 to 0.95. A value of 1.0 would include all tokens and thus disables the effect of TFS.
Example usage: `--tfs 0.95`
......@@ -320,10 +312,8 @@ These options provide extra functionality and customization when running the LLa
- `-h, --help`: Display a help message showing all available options and their default values. This is particularly useful for checking the latest options and default values, as they can change frequently, and the information in this document may become outdated.
- `--verbose-prompt`: Print the prompt before generating text.
- `-ngl N, --n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used.
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance.
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
- `-hfr URL --hf-repo URL`: The url to the Hugging Face model repository. Used in conjunction with `--hf-file` or `-hff`. The model is downloaded and stored in the file provided by `-m` or `--model`. If `-m` is not provided, the model is auto-stored in the path specified by the `LLAMA_CACHE` environment variable or in an OS-specific local cache.
......@@ -37,14 +37,15 @@ static gpt_params * g_params;
static std::vector<llama_token> * g_input_tokens;
static std::ostringstream * g_output_ss;
static std::vector<llama_token> * g_output_tokens;
static bool is_interacting = false;
static bool is_interacting = false;
static bool need_insert_eot = false;
static bool file_exists(const std::string &path) {
static bool file_exists(const std::string & path) {
std::ifstream f(path.c_str());
return f.good();
}
static bool file_is_empty(const std::string &path) {
static bool file_is_empty(const std::string & path) {
std::ifstream f;
f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
......@@ -99,7 +100,8 @@ static void write_logfile(
static void sigint_handler(int signo) {
if (signo == SIGINT) {
if (!is_interacting && g_params->interactive) {
is_interacting = true;
is_interacting = true;
need_insert_eot = true;
} else {
console::cleanup();
printf("\n");
......@@ -117,13 +119,24 @@ static void llama_log_callback_logTee(ggml_log_level level, const char * text, v
LOG_TEE("%s", text);
}
static std::string chat_add_and_format(struct llama_model * model, std::vector<llama_chat_msg> & chat_msgs, std::string role, std::string content) {
llama_chat_msg new_msg{role, content};
auto formatted = llama_chat_format_single(
model, g_params->chat_template, chat_msgs, new_msg, role == "user");
chat_msgs.push_back({role, content});
LOG("formatted: %s\n", formatted.c_str());
return formatted;
}
int main(int argc, char ** argv) {
gpt_params params;
g_params = &params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
llama_sampling_params & sparams = params.sparams;
#ifndef LOG_DISABLE_LOGS
......@@ -180,9 +193,6 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = string_random_prompt(rng);
}
LOG("%s: llama backend init\n", __func__);
llama_backend_init();
......@@ -191,12 +201,16 @@ int main(int argc, char ** argv) {
llama_model * model;
llama_context * ctx;
llama_context * ctx_guidance = NULL;
std::vector<llama_chat_msg> chat_msgs;
g_model = &model;
g_ctx = &ctx;
// load the model and apply lora adapter, if any
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
std::tie(model, ctx) = llama_init_from_gpt_params(params);
llama_init_result llama_init = llama_init_from_gpt_params(params);
model = llama_init.model;
ctx = llama_init.context;
if (sparams.cfg_scale > 1.f) {
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
ctx_guidance = llama_new_context_with_model(model, lparams);
......@@ -216,6 +230,15 @@ int main(int argc, char ** argv) {
__func__, n_ctx_train, n_ctx);
}
// print chat template example in conversation mode
if (params.conversation) {
if (params.enable_chat_template) {
LOG_TEE("%s: chat template example: %s\n", __func__, llama_chat_format_example(model, params.chat_template).c_str());
} else {
LOG_TEE("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
}
}
// print system information
{
LOG_TEE("\n");
......@@ -245,29 +268,38 @@ int main(int argc, char ** argv) {
}
const bool add_bos = llama_should_add_bos_token(model);
GGML_ASSERT(llama_add_eos_token(model) != 1);
if (!llama_model_has_encoder(model)) {
GGML_ASSERT(llama_add_eos_token(model) != 1);
}
LOG("add_bos: %d\n", add_bos);
std::vector<llama_token> embd_inp;
if (params.interactive_first || params.instruct || params.chatml || !params.prompt.empty() || session_tokens.empty()) {
LOG("tokenize the prompt\n");
if (params.chatml) {
params.prompt = "<|im_start|>system\n" + params.prompt + "<|im_end|>";
{
auto prompt = (params.conversation && params.enable_chat_template && !params.prompt.empty())
? chat_add_and_format(model, chat_msgs, "system", params.prompt) // format the system prompt in conversation mode
: params.prompt;
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
LOG("tokenize the prompt\n");
embd_inp = ::llama_tokenize(ctx, prompt, true, true);
} else {
LOG("use session tokens\n");
embd_inp = session_tokens;
}
embd_inp = ::llama_tokenize(ctx, params.prompt, true, true);
} else {
LOG("use session tokens\n");
embd_inp = session_tokens;
}
LOG("prompt: \"%s\"\n", log_tostr(params.prompt));
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
LOG("prompt: \"%s\"\n", log_tostr(prompt));
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
}
// Should not run without any tokens
if (embd_inp.empty()) {
embd_inp.push_back(llama_token_bos(model));
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
if (add_bos) {
embd_inp.push_back(llama_token_bos(model));
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
} else {
LOG_TEE("error: input is empty\n");
return -1;
}
}
// Tokenize negative prompt
......@@ -332,37 +364,13 @@ int main(int argc, char ** argv) {
}
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct || params.chatml) {
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
params.n_keep = (int)embd_inp.size();
} else {
params.n_keep += add_bos; // always keep the BOS token
}
// prefix & suffix for instruct mode
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true, true);
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
// chatml prefix & suffix
const auto cml_pfx = ::llama_tokenize(ctx, "\n<|im_start|>user\n", true, true);
const auto cml_sfx = ::llama_tokenize(ctx, "<|im_end|>\n<|im_start|>assistant\n", false, true);
LOG("cml_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_pfx).c_str());
LOG("cml_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_sfx).c_str());
// in instruct mode, we inject a prefix and a suffix to each input by the user
if (params.instruct) {
params.interactive_first = true;
params.antiprompt.emplace_back("### Instruction:\n\n");
}
// similar for chatml mode
else if (params.chatml) {
params.interactive_first = true;
params.antiprompt.emplace_back("<|im_start|>user\n");
}
else if (params.conversation) {
if (params.conversation) {
params.interactive_first = true;
}
......@@ -506,6 +514,7 @@ int main(int argc, char ** argv) {
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
std::ostringstream output_ss; g_output_ss = &output_ss;
std::ostringstream assistant_ss; // for storing current assistant message, used in conversation mode
// the first thing we will do is to output the prompt, so set color accordingly
console::set_display(console::prompt);
......@@ -528,6 +537,24 @@ int main(int argc, char ** argv) {
exit(1);
}
if (llama_model_has_encoder(model)) {
int enc_input_size = embd_inp.size();
llama_token * enc_input_buf = embd_inp.data();
if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size, 0, 0))) {
LOG_TEE("%s : failed to eval\n", __func__);
return 1;
}
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
if (decoder_start_token_id == -1) {
decoder_start_token_id = llama_token_bos(model);
}
embd_inp.clear();
embd_inp.push_back(decoder_start_token_id);
}
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
// predict
if (!embd.empty()) {
......@@ -821,17 +848,24 @@ int main(int argc, char ** argv) {
is_antiprompt = true;
}
if (params.enable_chat_template) {
chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str());
}
is_interacting = true;
printf("\n");
} else if (params.instruct || params.chatml) {
is_interacting = true;
}
}
// if current token is not EOG, we add it to current assistant message
if (params.conversation) {
auto id = llama_sampling_last(ctx_sampling);
assistant_ss << llama_token_to_piece(ctx, id, false);
}
if (n_past > 0 && is_interacting) {
LOG("waiting for user input\n");
if (params.conversation || params.instruct || params.chatml) {
if (params.conversation) {
printf("\n> ");
}
......@@ -874,49 +908,41 @@ int main(int argc, char ** argv) {
const size_t original_size = embd_inp.size();
// instruct mode: insert instruction prefix
if (params.instruct && !is_antiprompt) {
LOG("inserting instruction prefix\n");
n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
}
// chatml mode: insert user chat prefix
if (params.chatml && !is_antiprompt) {
LOG("inserting chatml prefix\n");
n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end());
}
if (params.escape) {
string_process_escapes(buffer);
}
bool format_chat = params.conversation && params.enable_chat_template;
std::string user_inp = format_chat
? chat_add_and_format(model, chat_msgs, "user", std::move(buffer))
: std::move(buffer);
// TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
const auto line_inp = ::llama_tokenize(ctx, buffer, false, params.interactive_specials);
const auto line_inp = ::llama_tokenize(ctx, user_inp, false, format_chat);
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
// if user stop generation mid-way, we must add EOT to finish model's last response
if (need_insert_eot && format_chat) {
llama_token eot = llama_token_eot(model);
embd_inp.push_back(eot == -1 ? llama_token_eos(model) : eot);
need_insert_eot = false;
}
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
// instruct mode: insert response suffix
if (params.instruct) {
LOG("inserting instruction suffix\n");
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
}
// chatml mode: insert assistant chat suffix
if (params.chatml) {
LOG("inserting chatml suffix\n");
embd_inp.insert(embd_inp.end(), cml_sfx.begin(), cml_sfx.end());
}
for (size_t i = original_size; i < embd_inp.size(); ++i) {
const llama_token token = embd_inp[i];
output_tokens.push_back(token);
output_ss << llama_token_to_piece(ctx, token);
}
// reset assistant message
assistant_ss.str("");
n_remain -= line_inp.size();
LOG("n_remain: %d\n", n_remain);
} else {
......@@ -935,7 +961,7 @@ int main(int argc, char ** argv) {
}
// end of generation
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.instruct || params.interactive || params.chatml)) {
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.interactive)) {
LOG_TEE(" [end of text]\n");
break;
}
......
set(TARGET parallel)
set(TARGET llama-parallel)
add_executable(${TARGET} parallel.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
......
......@@ -100,7 +100,8 @@ int main(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
......@@ -128,11 +129,11 @@ int main(int argc, char ** argv) {
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model = NULL;
llama_context * ctx = NULL;
// load the target model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
llama_init_result llama_init = llama_init_from_gpt_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
// load the prompts from an external file if there are any
if (params.prompt.empty()) {
......
set(TARGET passkey)
set(TARGET llama-passkey)
add_executable(${TARGET} passkey.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
......
# llama.cpp/example/passkey
A passkey retrieval task is an evaluation method used to measure a language
models ability to recall information from long contexts.
See the following PRs for more info:
- https://github.com/ggerganov/llama.cpp/pull/3856
......@@ -8,5 +11,5 @@ See the following PRs for more info:
### Usage
```bash
make -j && ./passkey ./models/llama-7b-v2/ggml-model-f16.gguf 250
make -j && ./llama-passkey -m ./models/llama-7b-v2/ggml-model-f16.gguf --junk 250
```
......@@ -6,46 +6,32 @@
#include <string>
#include <vector>
int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH N_JUNK N_GRP I_POS SEED\n" , argv[0]);
return 1 ;
}
int seed = -1;
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
int n_junk = 250; // number of times to repeat the junk text
int n_keep = 32; // number of tokens in the prompt prefix
int n_grp = 1; // if more than 1 - perform LongLM SelfExtend
int i_pos = -1; // position of the passkey in the junk text
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
n_junk = std::stoi(argv[2]);
}
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf --junk 250 --pos 90 --keep 32 --grp-attn-n 2 [--seed 1234]\n", argv[0]);
LOG_TEE("\n");
}
if (argc >= 4) {
n_grp = std::stoi(argv[3]);
}
int main(int argc, char ** argv) {
gpt_params params;
if (argc >= 5) {
i_pos = std::stoi(argv[4]);
}
params.n_junk = 250;
params.n_keep = 32;
params.i_pos = -1;
if (argc >= 6) {
seed = std::stoi(argv[5]);
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
}
if (seed == -1) {
seed = time(NULL);
}
srand(params.seed == LLAMA_DEFAULT_SEED ? time(NULL) : params.seed);
srand(seed);
int n_junk = params.n_junk;
int n_keep = params.n_keep;
int n_grp = params.grp_attn_n;
int i_pos = params.i_pos;
if (i_pos == -1) {
i_pos = rand() % n_junk;
......@@ -76,9 +62,7 @@ int main(int argc, char ** argv) {
// initialize the model
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = 99; // offload all layers to the GPU
llama_model_params model_params = llama_model_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
......@@ -89,13 +73,9 @@ int main(int argc, char ** argv) {
// initialize the context
llama_context_params ctx_params = llama_context_default_params();
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
ctx_params.seed = seed;
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
ctx_params.n_batch = 512;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
......@@ -135,7 +115,7 @@ int main(int argc, char ** argv) {
LOG_TEE("prompt tokens: %d\n", n_tokens_all);
//LOG_TEE("prompt: %s\n", params.prompt.c_str());
llama_batch batch = llama_batch_init(512, 0, 1);
llama_batch batch = llama_batch_init(params.n_batch, 0, 1);
int n_past = 0;
......
set(TARGET perplexity)
set(TARGET llama-perplexity)
add_executable(${TARGET} perplexity.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment