/* Copyright (c) 2024 Advanced Micro Devices, Inc. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "EnvVars.hpp" void AllToAllPreset(EnvVars& ev, size_t const numBytesPerTransfer, std::string const presetName) { enum { A2A_COPY = 0, A2A_READ_ONLY = 1, A2A_WRITE_ONLY = 2, A2A_CUSTOM = 3, }; char a2aModeStr[4][20] = {"Copy", "Read-Only", "Write-Only", "Custom"}; // Force single-stream mode for all-to-all benchmark ev.useSingleStream = 1; // Force to gfx unroll 2 unless explicitly set ev.gfxUnroll = EnvVars::GetEnvVar("GFX_UNROLL", 2); int numDetectedGpus = TransferBench::GetNumExecutors(EXE_GPU_GFX); // Collect env vars for this preset int a2aDirect = EnvVars::GetEnvVar("A2A_DIRECT" , 1); int a2aLocal = EnvVars::GetEnvVar("A2A_LOCAL" , 0); int numGpus = EnvVars::GetEnvVar("NUM_GPU_DEVICES", numDetectedGpus); int numQueuePairs = EnvVars::GetEnvVar("NUM_QUEUE_PAIRS", 0); int numSubExecs = EnvVars::GetEnvVar("NUM_SUB_EXEC" , 8); int useDmaExec = EnvVars::GetEnvVar("USE_DMA_EXEC" , 0); int useFineGrain = EnvVars::GetEnvVar("USE_FINE_GRAIN" , 1); int useRemoteRead = EnvVars::GetEnvVar("USE_REMOTE_READ", 0); // A2A_MODE may be 0,1,2 or else custom numSrcs:numDsts int numSrcs, numDsts; int a2aMode = 0; if (getenv("A2A_MODE") && sscanf(getenv("A2A_MODE"), "%d:%d", &numSrcs, &numDsts) == 2) { a2aMode = A2A_CUSTOM; } else { a2aMode = EnvVars::GetEnvVar("A2A_MODE", 0); if (a2aMode < 0 || a2aMode > 2) { printf("[ERROR] a2aMode must be between 0 and 2, or else numSrcs:numDsts\n"); exit(1); } numSrcs = (a2aMode == A2A_WRITE_ONLY ? 0 : 1); numDsts = (a2aMode == A2A_READ_ONLY ? 0 : 1); } // Print off environment variables ev.DisplayEnvVars(); if (!ev.hideEnv) { if (!ev.outputToCsv) printf("[AllToAll Related]\n"); ev.Print("A2A_DIRECT" , a2aDirect , a2aDirect ? "Only using direct links" : "Full all-to-all"); ev.Print("A2A_LOCAL" , a2aLocal , "%s local transfers", a2aLocal ? "Include" : "Exclude"); ev.Print("A2A_MODE" , (a2aMode == A2A_CUSTOM) ? std::to_string(numSrcs) + ":" + std::to_string(numDsts) : std::to_string(a2aMode), (a2aMode == A2A_CUSTOM) ? (std::to_string(numSrcs) + " read(s) " + std::to_string(numDsts) + " write(s)").c_str(): a2aModeStr[a2aMode]); ev.Print("NUM_GPU_DEVICES", numGpus , "Using %d GPUs", numGpus); ev.Print("NUM_QUEUE_PAIRS", numQueuePairs, "Using %d queue pairs for NIC transfers", numQueuePairs); ev.Print("NUM_SUB_EXEC" , numSubExecs , "Using %d subexecutors/CUs per Transfer", numSubExecs); ev.Print("USE_DMA_EXEC" , useDmaExec , "Using %s executor", useDmaExec ? "DMA" : "GFX"); ev.Print("USE_FINE_GRAIN" , useFineGrain , "Using %s-grained memory", useFineGrain ? "fine" : "coarse"); ev.Print("USE_REMOTE_READ", useRemoteRead, "Using %s as executor", useRemoteRead ? "DST" : "SRC"); printf("\n"); } // Validate env vars if (numGpus < 0 || numGpus > numDetectedGpus) { printf("[ERROR] Cannot use %d GPUs. Detected %d GPUs\n", numGpus, numDetectedGpus); exit(1); } if (useDmaExec && (numSrcs != 1 || numDsts != 1)) { printf("[ERROR] DMA execution can only be used for copies (A2A_MODE=0)\n"); exit(1); } // Collect the number of GPU devices to use MemType memType = useFineGrain ? MEM_GPU_FINE : MEM_GPU; ExeType exeType = useDmaExec ? EXE_GPU_DMA : EXE_GPU_GFX; std::map, int> reIndex; std::vector transfers; for (int i = 0; i < numGpus; i++) { for (int j = 0; j < numGpus; j++) { // Check whether or not to execute this pair if (i == j) { if (!a2aLocal) continue; } else if (a2aDirect) { #if !defined(__NVCC__) uint32_t linkType, hopCount; HIP_CALL(hipExtGetLinkTypeAndHopCount(i, j, &linkType, &hopCount)); if (hopCount != 1) continue; #endif } // Build Transfer and add it to list TransferBench::Transfer transfer; transfer.numBytes = numBytesPerTransfer; for (int x = 0; x < numSrcs; x++) transfer.srcs.push_back({memType, i}); // When using multiple destinations, the additional destinations are "local" if (numDsts) transfer.dsts.push_back({memType, j}); for (int x = 1; x < numDsts; x++) transfer.dsts.push_back({memType, i}); transfer.exeDevice = {exeType, (useRemoteRead ? j : i)}; transfer.exeSubIndex = -1; transfer.numSubExecs = numSubExecs; reIndex[std::make_pair(i,j)] = transfers.size(); transfers.push_back(transfer); } } // Create a ring using NICs std::vector nicTransferIdx(numGpus); if (numQueuePairs > 0) { int numNics = TransferBench::GetNumExecutors(EXE_NIC); for (int i = 0; i < numGpus; i++) { TransferBench::Transfer transfer; transfer.numBytes = numBytesPerTransfer; transfer.srcs.push_back({memType, i}); transfer.dsts.push_back({memType, (i+1) % numGpus}); transfer.exeDevice = {TransferBench::EXE_NIC_NEAREST, i}; transfer.exeSubIndex = (i+1) % numGpus; transfer.numSubExecs = numQueuePairs; nicTransferIdx[i] = transfers.size(); transfers.push_back(transfer); } } printf("GPU-GFX All-To-All benchmark:\n"); printf("==========================\n"); printf("- Copying %lu bytes between %s pairs of GPUs using %d CUs (%lu Transfers)\n", numBytesPerTransfer, a2aDirect ? "directly connected" : "all", numSubExecs, transfers.size()); if (transfers.size() == 0) return; // Execute Transfers TransferBench::ConfigOptions cfg = ev.ToConfigOptions(); TransferBench::TestResults results; if (!TransferBench::RunTransfers(cfg, transfers, results)) { for (auto const& err : results.errResults) printf("%s\n", err.errMsg.c_str()); exit(0); } else { PrintResults(ev, 1, transfers, results); } // Print results char separator = (ev.outputToCsv ? ',' : ' '); printf("\nSummary: [%lu bytes per Transfer]\n", numBytesPerTransfer); printf("==========================================================\n"); printf("SRC\\DST "); for (int dst = 0; dst < numGpus; dst++) printf("%cGPU %02d ", separator, dst); if (numQueuePairs > 0) printf("%cNIC(%02d QP)", separator, numQueuePairs); printf(" %cSTotal %cActual\n", separator, separator); double totalBandwidthGpu = 0.0; double minActualBandwidth = std::numeric_limits::max(); double maxActualBandwidth = 0.0; std::vector colTotalBandwidth(numGpus+2, 0.0); for (int src = 0; src < numGpus; src++) { double rowTotalBandwidth = 0; int transferCount = 0; double minBandwidth = std::numeric_limits::max(); printf("GPU %02d", src); for (int dst = 0; dst < numGpus; dst++) { if (reIndex.count(std::make_pair(src, dst))) { int const transferIdx = reIndex[std::make_pair(src,dst)]; TransferBench::TransferResult const& r = results.tfrResults[transferIdx]; colTotalBandwidth[dst] += r.avgBandwidthGbPerSec; rowTotalBandwidth += r.avgBandwidthGbPerSec; totalBandwidthGpu += r.avgBandwidthGbPerSec; minBandwidth = std::min(minBandwidth, r.avgBandwidthGbPerSec); transferCount++; printf("%c%8.3f ", separator, r.avgBandwidthGbPerSec); } else { printf("%c%8s ", separator, "N/A"); } } if (numQueuePairs > 0) { TransferBench::TransferResult const& r = results.tfrResults[nicTransferIdx[src]]; colTotalBandwidth[numGpus] += r.avgBandwidthGbPerSec; rowTotalBandwidth += r.avgBandwidthGbPerSec; totalBandwidthGpu += r.avgBandwidthGbPerSec; minBandwidth = std::min(minBandwidth, r.avgBandwidthGbPerSec); transferCount++; printf("%c%8.3f ", separator, r.avgBandwidthGbPerSec); } double actualBandwidth = minBandwidth * transferCount; printf(" %c%8.3f %c%8.3f\n", separator, rowTotalBandwidth, separator, actualBandwidth); minActualBandwidth = std::min(minActualBandwidth, actualBandwidth); maxActualBandwidth = std::max(maxActualBandwidth, actualBandwidth); colTotalBandwidth[numGpus+1] += rowTotalBandwidth; } printf("\nRTotal"); for (int dst = 0; dst < numGpus; dst++) { printf("%c%8.3f ", separator, colTotalBandwidth[dst]); } if (numQueuePairs > 0) { printf("%c%8.3f ", separator, colTotalBandwidth[numGpus]); } printf(" %c%8.3f %c%8.3f %c%8.3f\n", separator, colTotalBandwidth[numGpus+1], separator, minActualBandwidth, separator, maxActualBandwidth); printf("\n"); printf("Average bandwidth (GPU Timed): %8.3f GB/s\n", totalBandwidthGpu / transfers.size()); printf("Aggregate bandwidth (GPU Timed): %8.3f GB/s\n", totalBandwidthGpu); printf("Aggregate bandwidth (CPU Timed): %8.3f GB/s\n", results.avgTotalBandwidthGbPerSec); PrintErrors(results.errResults); }