/* Copyright (c) 2022-2024 Advanced Micro Devices, Inc. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #pragma once #define PackedFloat_t float4 #define MAX_BLOCKSIZE 512 #define FLOATS_PER_PACK (sizeof(PackedFloat_t) / sizeof(float)) #define MEMSET_CHAR 75 #define MEMSET_VAL 13323083.0f #if defined(__NVCC__) #define warpSize 32 #endif #define MAX_WAVEGROUPS MAX_BLOCKSIZE / warpSize #define MAX_UNROLL 8 #define NUM_WAVEORDERS 6 // Each subExecutor is provided with subarrays to work on #define MAX_SRCS 16 #define MAX_DSTS 16 struct SubExecParam { // Inputs size_t N; // Number of floats this subExecutor works on int numSrcs; // Number of source arrays int numDsts; // Number of destination arrays float* src[MAX_SRCS]; // Source array pointers float* dst[MAX_DSTS]; // Destination array pointers int32_t preferredXccId; // XCC ID to execute on // Prepared int teamSize; // Index of this sub executor amongst team int teamIdx; // Size of team this sub executor is part of // Outputs long long startCycle; // Start timestamp for in-kernel timing (GPU-GFX executor) long long stopCycle; // Stop timestamp for in-kernel timing (GPU-GFX executor) uint32_t hwId; // Hardware ID uint32_t xccId; // XCC ID }; // Macro for collecting HW_REG_HW_ID #if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) #define GetHwId(hwId) \ hwId = 0 #elif defined(__NVCC__) #define GetHwId(hwId) \ asm("mov.u32 %0, %smid;" : "=r"(hwId) ) #else #define GetHwId(hwId) \ asm volatile ("s_getreg_b32 %0, hwreg(HW_REG_HW_ID)" : "=s" (hwId)); #endif // Macro for collecting HW_REG_XCC_ID #if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #define GetXccId(val) \ asm volatile ("s_getreg_b32 %0, hwreg(HW_REG_XCC_ID)" : "=s" (val)); #else #define GetXccId(val) \ val = 0 #endif void CpuReduceKernel(SubExecParam const& p) { int const& numSrcs = p.numSrcs; int const& numDsts = p.numDsts; if (numSrcs == 0) { for (int i = 0; i < numDsts; ++i) memset(p.dst[i], MEMSET_CHAR, p.N * sizeof(float)); } else if (numSrcs == 1) { float const* __restrict__ src = p.src[0]; if (numDsts == 0) { float sum = 0.0; for (int j = 0; j < p.N; j++) sum += p.src[0][j]; // Add a dummy check to ensure the read is not optimized out if (sum != sum) { printf("[ERROR] Nan detected\n"); } } else { for (int i = 0; i < numDsts; ++i) { memcpy(p.dst[i], src, p.N * sizeof(float)); } } } else { float sum = 0.0f; for (int j = 0; j < p.N; j++) { sum = p.src[0][j]; for (int i = 1; i < numSrcs; i++) sum += p.src[i][j]; for (int i = 0; i < numDsts; i++) p.dst[i][j] = sum; } } } std::string PrepSrcValueString() { return "Element i = ((i * 517) modulo 383 + 31) * (srcBufferIdx + 1)"; } __host__ __device__ float PrepSrcValue(int srcBufferIdx, size_t idx) { return (((idx % 383) * 517) % 383 + 31) * (srcBufferIdx + 1); } __global__ void CollectXccIdsKernel(int* xccIds) { int xccId; GetXccId(xccId); xccIds[blockIdx.x] = xccId; } // GPU kernel to prepare src buffer data __global__ void PrepSrcDataKernel(float* ptr, size_t N, int srcBufferIdx) { for (size_t idx = blockIdx.x * blockDim.x + threadIdx.x; idx < N; idx += blockDim.x * gridDim.x) { ptr[idx] = PrepSrcValue(srcBufferIdx, idx); } } __device__ int64_t GetTimestamp() { #if defined(__NVCC__) int64_t result; asm volatile("mov.u64 %0, %%globaltimer;" : "=l"(result)); return result; #else return wall_clock64(); #endif } // Helper function for memset template __device__ __forceinline__ T MemsetVal(); template <> __device__ __forceinline__ float MemsetVal(){ return MEMSET_VAL; }; template <> __device__ __forceinline__ float4 MemsetVal(){ return make_float4(MEMSET_VAL, MEMSET_VAL, MEMSET_VAL, MEMSET_VAL); } template __global__ void __launch_bounds__(BLOCKSIZE) GpuReduceKernel(SubExecParam* params, int waveOrder) { int64_t startCycle; if (threadIdx.x == 0) startCycle = GetTimestamp(); SubExecParam& p = params[blockIdx.y]; // (Experimental) Filter by XCC if desired #if !defined(__NVCC__) int32_t xccId; GetXccId(xccId); if (p.preferredXccId != -1 && xccId != p.preferredXccId) return; #endif // Collect data information int32_t const numSrcs = p.numSrcs; int32_t const numDsts = p.numDsts; float4 const* __restrict__ srcFloat4[MAX_SRCS]; float4* __restrict__ dstFloat4[MAX_DSTS]; for (int i = 0; i < numSrcs; i++) srcFloat4[i] = (float4*)p.src[i]; for (int i = 0; i < numDsts; i++) dstFloat4[i] = (float4*)p.dst[i]; // Operate on wavefront granularity int32_t const nTeams = p.teamSize; // Number of threadblocks working together on this subarray int32_t const teamIdx = p.teamIdx; // Index of this threadblock within the team int32_t const nWaves = BLOCKSIZE / warpSize; // Number of wavefronts within this threadblock int32_t const waveIdx = threadIdx.x / warpSize; // Index of this wavefront within the threadblock int32_t const tIdx = threadIdx.x % warpSize; // Thread index within wavefront size_t const numFloat4 = p.N / 4; int32_t teamStride, waveStride, unrlStride, teamStride2, waveStride2; switch (waveOrder) { case 0: /* U,W,C */ unrlStride = 1; waveStride = UNROLL; teamStride = UNROLL * nWaves; teamStride2 = nWaves; waveStride2 = 1 ; break; case 1: /* U,C,W */ unrlStride = 1; teamStride = UNROLL; waveStride = UNROLL * nTeams; teamStride2 = 1; waveStride2 = nTeams; break; case 2: /* W,U,C */ waveStride = 1; unrlStride = nWaves; teamStride = nWaves * UNROLL; teamStride2 = nWaves; waveStride2 = 1 ; break; case 3: /* W,C,U */ waveStride = 1; teamStride = nWaves; unrlStride = nWaves * nTeams; teamStride2 = nWaves; waveStride2 = 1 ; break; case 4: /* C,U,W */ teamStride = 1; unrlStride = nTeams; waveStride = nTeams * UNROLL; teamStride2 = 1; waveStride2 = nTeams; break; case 5: /* C,W,U */ teamStride = 1; waveStride = nTeams; unrlStride = nTeams * nWaves; teamStride2 = 1; waveStride2 = nTeams; break; } // First loop: Each wavefront in the team works on UNROLL float4s per thread size_t const loop1Stride = nTeams * nWaves * UNROLL * warpSize; size_t const loop1Limit = numFloat4 / loop1Stride * loop1Stride; { float4 val[UNROLL]; if (numSrcs == 0) { #pragma unroll for (int u = 0; u < UNROLL; u++) val[u] = MemsetVal(); } for (size_t idx = (teamIdx * teamStride + waveIdx * waveStride) * warpSize + tIdx; idx < loop1Limit; idx += loop1Stride) { // Read sources into memory and accumulate in registers if (numSrcs) { for (int u = 0; u < UNROLL; u++) val[u] = srcFloat4[0][idx + u * unrlStride * warpSize]; for (int s = 1; s < numSrcs; s++) for (int u = 0; u < UNROLL; u++) val[u] += srcFloat4[s][idx + u * unrlStride * warpSize]; } // Write accumulation to all outputs for (int d = 0; d < numDsts; d++) { #pragma unroll for (int u = 0; u < UNROLL; u++) dstFloat4[d][idx + u * unrlStride * warpSize] = val[u]; } } } // Second loop: Deal with remaining float4s { if (loop1Limit < numFloat4) { float4 val; if (numSrcs == 0) val = MemsetVal(); size_t const loop2Stride = nTeams * nWaves * warpSize; for (size_t idx = loop1Limit + (teamIdx * teamStride2 + waveIdx * waveStride2) * warpSize + tIdx; idx < numFloat4; idx += loop2Stride) { if (numSrcs) { val = srcFloat4[0][idx]; for (int s = 1; s < numSrcs; s++) val += srcFloat4[s][idx]; } for (int d = 0; d < numDsts; d++) dstFloat4[d][idx] = val; } } } // Third loop; Deal with remaining floats { if (numFloat4 * 4 < p.N) { float val; if (numSrcs == 0) val = MemsetVal(); size_t const loop3Stride = nTeams * nWaves * warpSize; for( size_t idx = numFloat4 * 4 + (teamIdx * teamStride2 + waveIdx * waveStride2) * warpSize + tIdx; idx < p.N; idx += loop3Stride) { if (numSrcs) { val = p.src[0][idx]; for (int s = 1; s < numSrcs; s++) val += p.src[s][idx]; } for (int d = 0; d < numDsts; d++) p.dst[d][idx] = val; } } } // Wait for all threads to finish __syncthreads(); if (threadIdx.x == 0) { __threadfence_system(); p.stopCycle = GetTimestamp(); p.startCycle = startCycle; GetHwId(p.hwId); GetXccId(p.xccId); } } typedef void (*GpuKernelFuncPtr)(SubExecParam*, int); #define GPU_KERNEL_UNROLL_DECL(BLOCKSIZE) \ {GpuReduceKernel, \ GpuReduceKernel, \ GpuReduceKernel, \ GpuReduceKernel, \ GpuReduceKernel, \ GpuReduceKernel, \ GpuReduceKernel, \ GpuReduceKernel} GpuKernelFuncPtr GpuKernelTable[MAX_WAVEGROUPS][MAX_UNROLL] = { GPU_KERNEL_UNROLL_DECL(64), GPU_KERNEL_UNROLL_DECL(128), GPU_KERNEL_UNROLL_DECL(192), GPU_KERNEL_UNROLL_DECL(256), GPU_KERNEL_UNROLL_DECL(320), GPU_KERNEL_UNROLL_DECL(384), GPU_KERNEL_UNROLL_DECL(448), GPU_KERNEL_UNROLL_DECL(512) };