/* Copyright (c) 2019-2022 Advanced Micro Devices, Inc. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "EnvVars.hpp" // Helper macro for catching HIP errors #define HIP_CALL(cmd) \ do { \ hipError_t error = (cmd); \ if (error != hipSuccess) \ { \ std::cerr << "Encountered HIP error (" << hipGetErrorString(error) << ") at line " \ << __LINE__ << " in file " << __FILE__ << "\n"; \ exit(-1); \ } \ } while (0) // Simple configuration parameters size_t const DEFAULT_BYTES_PER_TRANSFER = (1<<26); // Amount of data transferred per Transfer // Different src/dst memory types supported typedef enum { MEM_CPU = 0, // Coarse-grained pinned CPU memory MEM_GPU = 1, // Coarse-grained global GPU memory MEM_CPU_FINE = 2, // Fine-grained pinned CPU memory MEM_GPU_FINE = 3 // Fine-grained global GPU memory } MemType; char const MemTypeStr[5] = "CGBF"; typedef enum { MODE_FILL = 0, // Fill data with pattern MODE_CHECK = 1 // Check data against pattern } ModeType; // Each threadblock copies N floats from src to dst struct BlockParam { int N; float* src; float* dst; long long startCycle; long long stopCycle; }; // Each Transfer is a uni-direction operation from a src memory to dst memory struct Transfer { int transferIndex; // Transfer identifier // Transfer config MemType exeMemType; // Transfer executor type (CPU or GPU) int exeIndex; // Executor index (NUMA node for CPU / device ID for GPU) MemType srcMemType; // Source memory type int srcIndex; // Source device index MemType dstMemType; // Destination memory type int dstIndex; // Destination device index int numBlocksToUse; // Number of threadblocks to use for this Transfer // Memory float* srcMem; // Source memory float* dstMem; // Destination memory // How memory is split across threadblocks / CPU cores std::vector blockParam; BlockParam* blockParamGpuPtr; // Results double transferTime; // Prepares src memory and how to divide N elements across threadblocks/threads void PrepareBlockParams(EnvVars const& ev, size_t const N); }; typedef std::pair Executor; struct ExecutorInfo { std::vector transfers; // Transfers to execute // For GPU-Executors int totalBlocks; // Total number of CUs/CPU threads to use BlockParam* blockParamGpu; // Copy of block parameters in GPU device memory std::vector streams; std::vector startEvents; std::vector stopEvents; // Results double totalTime; }; typedef std::map TransferMap; // Display usage instructions void DisplayUsage(char const* cmdName); // Display detected GPU topology / CPU numa nodes void DisplayTopology(bool const outputToCsv); // Build array of test sizes based on sampling factor void PopulateTestSizes(size_t const numBytesPerTransfer, int const samplingFactor, std::vector& valuesofN); void ParseMemType(std::string const& token, int const numCpus, int const numGpus, MemType* memType, int* memIndex); void ParseTransfers(char* line, int numCpus, int numGpus, TransferMap& transferMap); void EnablePeerAccess(int const deviceId, int const peerDeviceId); void AllocateMemory(MemType memType, int devIndex, size_t numBytes, void** memPtr); void DeallocateMemory(MemType memType, void* memPtr); void CheckPages(char* byteArray, size_t numBytes, int targetId); void CheckOrFill(ModeType mode, int N, bool isMemset, bool isHipCall, std::vector const& fillPattern, float* ptr); void RunTransfer(EnvVars const& ev, size_t const N, int const iteration, ExecutorInfo& exeInfo, int const transferIdx); void RunPeerToPeerBenchmarks(EnvVars const& ev, size_t N, int numBlocksToUse, int readMode, int skipCpu); // Return the maximum bandwidth measured for given (src/dst) pair double GetPeakBandwidth(EnvVars const& ev, size_t const N, int const isBidirectional, int const readMode, int const numBlocksToUse, MemType const srcMemType, int const srcIndex, MemType const dstMemType, int const dstIndex); std::string GetLinkTypeDesc(uint32_t linkType, uint32_t hopCount); std::string GetDesc(MemType srcMemType, int srcIndex, MemType dstMemType, int dstIndex); std::string GetTransferDesc(Transfer const& transfer); int RemappedIndex(int const origIdx, MemType const memType); int GetWallClockRate(int deviceId);