/* Copyright (c) Advanced Micro Devices, Inc. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ int PeerToPeerPreset(EnvVars& ev, size_t const numBytesPerTransfer, std::string const presetName) { if (TransferBench::GetNumRanks() > 1) { Utils::Print("[ERROR] Peer-to-peer preset currently not supported for multi-node\n"); return 1; } int numDetectedCpus = TransferBench::GetNumExecutors(EXE_CPU); int numDetectedGpus = TransferBench::GetNumExecutors(EXE_GPU_GFX); // Collect env vars for this preset int useDmaCopy = EnvVars::GetEnvVar("USE_GPU_DMA", 0); int cpuMemTypeIdx = EnvVars::GetEnvVar("CPU_MEM_TYPE", 0); int gpuMemTypeIdx = EnvVars::GetEnvVar("GPU_MEM_TYPE", 0); int numCpuDevices = EnvVars::GetEnvVar("NUM_CPU_DEVICES", numDetectedCpus); int numCpuSubExecs = EnvVars::GetEnvVar("NUM_CPU_SE", 4); int numGpuDevices = EnvVars::GetEnvVar("NUM_GPU_DEVICES", numDetectedGpus); int numGpuSubExecs = EnvVars::GetEnvVar("NUM_GPU_SE", useDmaCopy ? 1 : TransferBench::GetNumSubExecutors({EXE_GPU_GFX, 0})); int p2pMode = EnvVars::GetEnvVar("P2P_MODE", 0); int useFineGrain = EnvVars::GetEnvVar("USE_FINE_GRAIN", -999); // Deprecated int useRemoteRead = EnvVars::GetEnvVar("USE_REMOTE_READ", 0); MemType cpuMemType = Utils::GetCpuMemType(cpuMemTypeIdx); MemType gpuMemType = Utils::GetGpuMemType(gpuMemTypeIdx); // Display environment variables if (Utils::RankDoesOutput()) { ev.DisplayEnvVars(); if (!ev.hideEnv) { int outputToCsv = ev.outputToCsv; if (!outputToCsv) printf("[P2P Related]\n"); ev.Print("CPU_MEM_TYPE" , cpuMemTypeIdx, "Using %s (%s)", Utils::GetCpuMemTypeStr(cpuMemTypeIdx).c_str(), Utils::GetAllCpuMemTypeStr().c_str()); ev.Print("GPU_MEM_TYPE" , gpuMemTypeIdx, "Using %s (%s)", Utils::GetGpuMemTypeStr(gpuMemTypeIdx).c_str(), Utils::GetAllGpuMemTypeStr().c_str()); ev.Print("NUM_CPU_DEVICES", numCpuDevices, "Using %d CPUs", numCpuDevices); ev.Print("NUM_CPU_SE", numCpuSubExecs, "Using %d CPU threads per Transfer", numCpuSubExecs); ev.Print("NUM_GPU_DEVICES", numGpuDevices, "Using %d GPUs", numGpuDevices); ev.Print("NUM_GPU_SE", numGpuSubExecs, "Using %d GPU subexecutors/CUs per Transfer", numGpuSubExecs); ev.Print("P2P_MODE", p2pMode, "Running %s transfers", p2pMode == 0 ? "Uni + Bi" : p2pMode == 1 ? "Unidirectional" : "Bidirectional"); ev.Print("USE_GPU_DMA", useDmaCopy, "Using GPU-%s as GPU executor", useDmaCopy ? "DMA" : "GFX"); ev.Print("USE_REMOTE_READ", useRemoteRead, "Using %s as executor", useRemoteRead ? "DST" : "SRC"); printf("\n"); } } // Check for deprecated env vars if (useFineGrain != -999) { Utils::Print("[ERROR] USE_FINE_GRAIN has been deprecated and replaced by CPU_MEM_TYPE and GPU_MEM_TYPE\n"); return 1; } char const separator = ev.outputToCsv ? ',' : ' '; printf("Bytes Per Direction%c%lu\n", separator, numBytesPerTransfer); TransferBench::ConfigOptions cfg = ev.ToConfigOptions(); TransferBench::TestResults results; // Collect the number of available CPUs/GPUs on this machine int const numDevices = numCpuDevices + numGpuDevices; // Perform unidirectional / bidirectional for (int isBidirectional = 0; isBidirectional <= 1; isBidirectional++) { if ((p2pMode == 1 && isBidirectional == 1) || (p2pMode == 2 && isBidirectional == 0)) continue; printf("%sdirectional copy peak bandwidth GB/s [%s read / %s write] (GPU-Executor: %s)\n", isBidirectional ? "Bi" : "Uni", useRemoteRead ? "Remote" : "Local", useRemoteRead ? "Local" : "Remote", useDmaCopy ? "DMA" : "GFX"); // Print header if (isBidirectional) { printf("%12s", "SRC\\DST"); } else { if (useRemoteRead) printf("%12s", "SRC\\EXE+DST"); else printf("%12s", "SRC+EXE\\DST"); } if (ev.outputToCsv) printf(","); for (int i = 0; i < numCpuDevices; i++) { printf("%7s %02d", "CPU", i); if (ev.outputToCsv) printf(","); } if (numCpuDevices > 0) printf(" "); for (int i = 0; i < numGpuDevices; i++) { printf("%7s %02d", "GPU", i); if (ev.outputToCsv) printf(","); } printf("\n"); double avgBwSum[2][2] = {}; int avgCount[2][2] = {}; ExeType const gpuExeType = useDmaCopy ? EXE_GPU_DMA : EXE_GPU_GFX; // Loop over all possible src/dst pairs for (int src = 0; src < numDevices; src++) { int const srcIdx = (src < numCpuDevices ? 0 : 1); MemType const srcType = (src < numCpuDevices ? cpuMemType : gpuMemType); int const srcIndex = (src < numCpuDevices ? src : src - numCpuDevices); std::vector> avgBandwidth(isBidirectional + 1); std::vector> minBandwidth(isBidirectional + 1); std::vector> maxBandwidth(isBidirectional + 1); std::vector> stdDev(isBidirectional + 1); if (src == numCpuDevices && src != 0) printf("\n"); for (int dst = 0; dst < numDevices; dst++) { int const dstIdx = (dst < numCpuDevices ? 0 : 1); MemType const dstType = (dst < numCpuDevices ? cpuMemType : gpuMemType); int const dstIndex = (dst < numCpuDevices ? dst : dst - numCpuDevices); // Prepare Transfers std::vector transfers(isBidirectional + 1); // SRC -> DST transfers[0].numBytes = numBytesPerTransfer; transfers[0].srcs.push_back({srcType, srcIndex}); transfers[0].dsts.push_back({dstType, dstIndex}); transfers[0].exeDevice = {IsGpuMemType(useRemoteRead ? dstType : srcType) ? gpuExeType : EXE_CPU, (useRemoteRead ? dstIndex : srcIndex)}; transfers[0].exeSubIndex = -1; transfers[0].numSubExecs = (transfers[0].exeDevice.exeType == gpuExeType) ? numGpuSubExecs : numCpuSubExecs; // DST -> SRC if (isBidirectional) { transfers[1].numBytes = numBytesPerTransfer; transfers[1].srcs.push_back({dstType, dstIndex}); transfers[1].dsts.push_back({srcType, srcIndex}); transfers[1].exeDevice = {IsGpuMemType(useRemoteRead ? srcType : dstType) ? gpuExeType : EXE_CPU, (useRemoteRead ? srcIndex : dstIndex)}; transfers[1].exeSubIndex = -1; transfers[1].numSubExecs = (transfers[1].exeDevice.exeType == gpuExeType) ? numGpuSubExecs : numCpuSubExecs; } bool skipTest = false; // Abort if executing on NUMA node with no CPUs for (int i = 0; i <= isBidirectional; i++) { if (transfers[i].exeDevice.exeType == EXE_CPU && TransferBench::GetNumSubExecutors(transfers[i].exeDevice) == 0) { skipTest = true; break; } #if defined(__NVCC__) // NVIDIA platform cannot access GPU memory directly from CPU executors if (transfers[i].exeDevice.exeType == EXE_CPU && (IsGpuMemType(srcType) || IsGpuMemType(dstType))) { skipTest = true; break; } #endif } if (isBidirectional && srcType == dstType && srcIndex == dstIndex) skipTest = true; if (!skipTest) { if (!TransferBench::RunTransfers(cfg, transfers, results)) { for (auto const& err : results.errResults) printf("%s\n", err.errMsg.c_str()); return 1; } for (int dir = 0; dir <= isBidirectional; dir++) { double const avgBw = results.tfrResults[dir].avgBandwidthGbPerSec; avgBandwidth[dir].push_back(avgBw); if (!(srcType == dstType && srcIndex == dstIndex)) { avgBwSum[srcIdx][dstIdx] += avgBw; avgCount[srcIdx][dstIdx]++; } if (ev.showIterations) { double minTime = results.tfrResults[dir].perIterMsec[0]; double maxTime = minTime; double varSum = 0; for (int i = 0; i < results.tfrResults[dir].perIterMsec.size(); i++) { minTime = std::min(minTime, results.tfrResults[dir].perIterMsec[i]); maxTime = std::max(maxTime, results.tfrResults[dir].perIterMsec[i]); double const bw = (transfers[dir].numBytes / 1.0E9) / results.tfrResults[dir].perIterMsec[i] * 1000.0f; double const delta = (avgBw - bw); varSum += delta * delta; } double const minBw = (transfers[dir].numBytes / 1.0E9) / maxTime * 1000.0f; double const maxBw = (transfers[dir].numBytes / 1.0E9) / minTime * 1000.0f; double const stdev = sqrt(varSum / results.tfrResults[dir].perIterMsec.size()); minBandwidth[dir].push_back(minBw); maxBandwidth[dir].push_back(maxBw); stdDev[dir].push_back(stdev); } } } else { for (int dir = 0; dir <= isBidirectional; dir++) { avgBandwidth[dir].push_back(0); minBandwidth[dir].push_back(0); maxBandwidth[dir].push_back(0); stdDev[dir].push_back(-1.0); } } } for (int dir = 0; dir <= isBidirectional; dir++) { printf("%5s %02d %3s", (srcType == cpuMemType) ? "CPU" : "GPU", srcIndex, dir ? "<- " : " ->"); if (ev.outputToCsv) printf(","); for (int dst = 0; dst < numDevices; dst++) { if (dst == numCpuDevices && dst != 0) printf(" "); double const avgBw = avgBandwidth[dir][dst]; if (avgBw == 0.0) printf("%10s", "N/A"); else printf("%10.2f", avgBw); if (ev.outputToCsv) printf(","); } printf("\n"); if (ev.showIterations) { // minBw printf("%5s %02d %3s", (srcType == cpuMemType) ? "CPU" : "GPU", srcIndex, "min"); if (ev.outputToCsv) printf(","); for (int i = 0; i < numDevices; i++) { double const minBw = minBandwidth[dir][i]; if (i == numCpuDevices && i != 0) printf(" "); if (minBw == 0.0) printf("%10s", "N/A"); else printf("%10.2f", minBw); if (ev.outputToCsv) printf(","); } printf("\n"); // maxBw printf("%5s %02d %3s", (srcType == cpuMemType) ? "CPU" : "GPU", srcIndex, "max"); if (ev.outputToCsv) printf(","); for (int i = 0; i < numDevices; i++) { double const maxBw = maxBandwidth[dir][i]; if (i == numCpuDevices && i != 0) printf(" "); if (maxBw == 0.0) printf("%10s", "N/A"); else printf("%10.2f", maxBw); if (ev.outputToCsv) printf(","); } printf("\n"); // stddev printf("%5s %02d %3s", (srcType == cpuMemType) ? "CPU" : "GPU", srcIndex, " sd"); if (ev.outputToCsv) printf(","); for (int i = 0; i < numDevices; i++) { double const sd = stdDev[dir][i]; if (i == numCpuDevices && i != 0) printf(" "); if (sd == -1.0) printf("%10s", "N/A"); else printf("%10.2f", sd); if (ev.outputToCsv) printf(","); } printf("\n"); } fflush(stdout); } if (isBidirectional) { printf("%5s %02d %3s", (srcType == cpuMemType) ? "CPU" : "GPU", srcIndex, "<->"); if (ev.outputToCsv) printf(","); for (int dst = 0; dst < numDevices; dst++) { double const sumBw = avgBandwidth[0][dst] + avgBandwidth[1][dst]; if (dst == numCpuDevices && dst != 0) printf(" "); if (sumBw == 0.0) printf("%10s", "N/A"); else printf("%10.2f", sumBw); if (ev.outputToCsv) printf(","); } printf("\n"); if (src < numDevices - 1) printf("\n"); } } if (!ev.outputToCsv) { printf(" "); for (int srcType = 0; srcType <= 1; srcType++) for (int dstType = 0; dstType <= 1; dstType++) printf(" %cPU->%cPU", srcType == 0 ? 'C' : 'G', dstType == 0 ? 'C' : 'G'); printf("\n"); printf("Averages (During %s):", isBidirectional ? " BiDir" : "UniDir"); for (int srcType = 0; srcType <= 1; srcType++) for (int dstType = 0; dstType <= 1; dstType++) { if (avgCount[srcType][dstType]) printf("%10.2f", avgBwSum[srcType][dstType] / avgCount[srcType][dstType]); else printf("%10s", "N/A"); } printf("\n\n"); } } return 0; }