Unverified Commit 513ce1e3 authored by Swati Rawat's avatar Swati Rawat Committed by GitHub
Browse files

Merge branch 'ROCm:develop' into swraw/docs

parents ebad0b36 fb713d03
/*
Copyright (c) 2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
void LogTransfers(FILE *fp, int const testNum, std::vector<Transfer> const& transfers)
{
fprintf(fp, "# Test %d\n", testNum);
fprintf(fp, "%d", -1 * (int)transfers.size());
for (auto const& transfer : transfers)
{
fprintf(fp, " (%s->%c%d->%s %d %lu)",
MemDevicesToStr(transfer.srcs).c_str(),
ExeTypeStr[transfer.exeDevice.exeType], transfer.exeDevice.exeIndex,
MemDevicesToStr(transfer.dsts).c_str(),
transfer.numSubExecs,
transfer.numBytes);
}
fprintf(fp, "\n");
fflush(fp);
}
void SweepPreset(EnvVars& ev,
size_t const numBytesPerTransfer,
std::string const presetName)
{
bool const isRandom = (presetName == "rsweep");
int numDetectedCpus = TransferBench::GetNumExecutors(EXE_CPU);
int numDetectedGpus = TransferBench::GetNumExecutors(EXE_GPU_GFX);
// Collect env vars and set defaults
int continueOnErr = EnvVars::GetEnvVar("CONTINUE_ON_ERROR" , 0);
int numCpuDevices = EnvVars::GetEnvVar("NUM_CPU_DEVICES" , numDetectedCpus);
int numCpuSubExecs = EnvVars::GetEnvVar("NUM_CPU_SE" , 4);
int numGpuDevices = EnvVars::GetEnvVar("NUM_GPU_DEVICES" , numDetectedGpus);
int numGpuSubExecs = EnvVars::GetEnvVar("NUM_GPU_SE" , 4);
std::string sweepDst = EnvVars::GetEnvVar("SWEEP_DST" , "CG");
std::string sweepExe = EnvVars::GetEnvVar("SWEEP_EXE" , "CDG");
int sweepMax = EnvVars::GetEnvVar("SWEEP_MAX" , 24);
int sweepMin = EnvVars::GetEnvVar("SWEEP_MIN" , 1);
int sweepRandBytes = EnvVars::GetEnvVar("SWEEP_RAND_BYTES" , 0);
int sweepSeed = EnvVars::GetEnvVar("SWEEP_SEED" , time(NULL));
std::string sweepSrc = EnvVars::GetEnvVar("SWEEP_SRC" , "CG");
int sweepTestLimit = EnvVars::GetEnvVar("SWEEP_TEST_LIMIT" , 0);
int sweepTimeLimit = EnvVars::GetEnvVar("SWEEP_TIME_LIMIT" , 0);
int sweepXgmiMin = EnvVars::GetEnvVar("SWEEP_XGMI_MIN" , 0);
int sweepXgmiMax = EnvVars::GetEnvVar("SWEEP_XGMI_MAX" , -1);
auto generator = new std::default_random_engine(sweepSeed);
// Display env var settings
ev.DisplayEnvVars();
if (!ev.hideEnv) {
int outputToCsv = ev.outputToCsv;
if (!outputToCsv) printf("[Sweep Related]\n");
ev.Print("CONTINUE_ON_ERROR", continueOnErr, continueOnErr ? "Continue on mismatch error" : "Stop after first error");
ev.Print("NUM_CPU_DEVICES", numCpuDevices, "Using %d CPUs", numCpuDevices);
ev.Print("NUM_CPU_SE", numCpuSubExecs, "Using %d CPU threads per CPU executed Transfer", numCpuSubExecs);
ev.Print("NUM_GPU_DEVICES", numGpuDevices, "Using %d GPUs", numGpuDevices);
ev.Print("NUM_GPU_SE", numGpuSubExecs, "Using %d subExecutors/CUs per GPU executed Transfer", numGpuSubExecs);
ev.Print("SWEEP_DST", sweepDst.c_str(), "Destination Memory Types to sweep");
ev.Print("SWEEP_EXE", sweepExe.c_str(), "Executor Types to sweep");
ev.Print("SWEEP_MAX", sweepMax, "Max simultaneous transfers (0 = no limit)");
ev.Print("SWEEP_MIN", sweepMin, "Min simultaenous transfers");
ev.Print("SWEEP_RAND_BYTES", sweepRandBytes, "Using %s number of bytes per Transfer", (sweepRandBytes ? "random" : "constant"));
ev.Print("SWEEP_SEED", sweepSeed, "Random seed set to %d", sweepSeed);
ev.Print("SWEEP_SRC", sweepSrc.c_str(), "Source Memory Types to sweep");
ev.Print("SWEEP_TEST_LIMIT", sweepTestLimit, "Max number of tests to run during sweep (0 = no limit)");
ev.Print("SWEEP_TIME_LIMIT", sweepTimeLimit, "Max number of seconds to run sweep for (0 = no limit)");
ev.Print("SWEEP_XGMI_MAX", sweepXgmiMax, "Max number of XGMI hops for Transfers (-1 = no limit)");
ev.Print("SWEEP_XGMI_MIN", sweepXgmiMin, "Min number of XGMI hops for Transfers");
printf("\n");
}
// Validate env vars
for (auto ch : sweepSrc) {
if (!strchr(MemTypeStr, ch)) {
printf("[ERROR] Unrecognized memory type '%c' specified for sweep source\n", ch);
exit(1);
}
if (strchr(sweepSrc.c_str(), ch) != strrchr(sweepSrc.c_str(), ch)) {
printf("[ERROR] Duplicate memory type '%c' specified for sweep source\n", ch);
exit(1);
}
}
for (auto ch : sweepDst) {
if (!strchr(MemTypeStr, ch)) {
printf("[ERROR] Unrecognized memory type '%c' specified for sweep destination\n", ch);
exit(1);
}
if (strchr(sweepDst.c_str(), ch) != strrchr(sweepDst.c_str(), ch)) {
printf("[ERROR] Duplicate memory type '%c' specified for sweep destination\n", ch);
exit(1);
}
}
for (auto ch : sweepExe) {
if (!strchr(ExeTypeStr, ch)) {
printf("[ERROR] Unrecognized executor type '%c' specified for sweep executor\n", ch);
exit(1);
}
if (strchr(sweepExe.c_str(), ch) != strrchr(sweepExe.c_str(), ch)) {
printf("[ERROR] Duplicate executor type '%c' specified for sweep executor\n", ch);
exit(1);
}
}
TransferBench::ConfigOptions cfg = ev.ToConfigOptions();
TransferBench::TestResults results;
// Compute how many possible Transfers are permitted (unique SRC/EXE/DST triplets)
std::vector<ExeDevice> exeList;
for (auto exe : sweepExe) {
ExeType exeType;
CharToExeType(exe, exeType);
if (IsGpuExeType(exeType)) {
for (int exeIndex = 0; exeIndex < numGpuDevices; ++exeIndex)
exeList.push_back({exeType, exeIndex});
}
else if (IsCpuExeType(exeType)) {
for (int exeIndex = 0; exeIndex < numCpuDevices; ++exeIndex) {
// Skip NUMA nodes that have no CPUs (e.g. CXL)
if (TransferBench::GetNumSubExecutors({EXE_CPU, exeIndex}) == 0) continue;
exeList.push_back({exeType, exeIndex});
}
}
}
int numExes = exeList.size();
std::vector<MemDevice> srcList;
for (auto src : sweepSrc) {
MemType srcType;
CharToMemType(src, srcType);
int const numDevices = (srcType == MEM_NULL) ? 1 : IsGpuMemType(srcType) ? numGpuDevices : numCpuDevices;
for (int srcIndex = 0; srcIndex < numDevices; ++srcIndex)
srcList.push_back({srcType, srcIndex});
}
int numSrcs = srcList.size();
std::vector<MemDevice> dstList;
for (auto dst : sweepDst) {
MemType dstType;
CharToMemType(dst, dstType);
int const numDevices = (dstType == MEM_NULL) ? 1 : IsGpuMemType(dstType) ? numGpuDevices : numCpuDevices;
for (int dstIndex = 0; dstIndex < numDevices; ++dstIndex)
dstList.push_back({dstType, dstIndex});
}
int numDsts = dstList.size();
// Build array of possibilities, respecting any additional restrictions (e.g. XGMI hop count)
struct TransferInfo
{
MemDevice srcMem;
ExeDevice exeDevice;
MemDevice dstMem;
};
// If either XGMI minimum is non-zero, or XGMI maximum is specified and non-zero then both links must be XGMI
bool const useXgmiOnly = (sweepXgmiMin > 0 || sweepXgmiMax > 0);
std::vector<TransferInfo> possibleTransfers;
TransferInfo tinfo;
for (int i = 0; i < numExes; ++i) {
// Skip CPU executors if XGMI link must be used
if (useXgmiOnly && !IsGpuExeType(exeList[i].exeType)) continue;
tinfo.exeDevice = exeList[i];
bool isXgmiSrc = false;
int numHopsSrc = 0;
for (int j = 0; j < numSrcs; ++j) {
if (IsGpuExeType(exeList[i].exeType) && IsGpuMemType(srcList[j].memType)) {
if (exeList[i].exeIndex != srcList[j].memIndex) {
#if defined(__NVCC__)
isXgmiSrc = false;
#else
uint32_t exeToSrcLinkType, exeToSrcHopCount;
HIP_CALL(hipExtGetLinkTypeAndHopCount(exeList[i].exeIndex,
srcList[j].memIndex,
&exeToSrcLinkType,
&exeToSrcHopCount));
isXgmiSrc = (exeToSrcLinkType == HSA_AMD_LINK_INFO_TYPE_XGMI);
if (isXgmiSrc) numHopsSrc = exeToSrcHopCount;
#endif
} else {
isXgmiSrc = true;
numHopsSrc = 0;
}
// Skip this SRC if it is not XGMI but only XGMI links may be used
if (useXgmiOnly && !isXgmiSrc) continue;
// Skip this SRC if XGMI distance is already past limit
if (sweepXgmiMax >= 0 && isXgmiSrc && numHopsSrc > sweepXgmiMax) continue;
} else if (srcList[j].memType != MEM_NULL && useXgmiOnly) continue;
tinfo.srcMem = srcList[j];
bool isXgmiDst = false;
int numHopsDst = 0;
for (int k = 0; k < numDsts; ++k) {
if (IsGpuExeType(exeList[i].exeType) && IsGpuMemType(dstList[k].memType)) {
if (exeList[i].exeIndex != dstList[k].memIndex) {
#if defined(__NVCC__)
isXgmiSrc = false;
#else
uint32_t exeToDstLinkType, exeToDstHopCount;
HIP_CALL(hipExtGetLinkTypeAndHopCount(exeList[i].exeIndex,
dstList[k].memIndex,
&exeToDstLinkType,
&exeToDstHopCount));
isXgmiDst = (exeToDstLinkType == HSA_AMD_LINK_INFO_TYPE_XGMI);
if (isXgmiDst) numHopsDst = exeToDstHopCount;
#endif
} else {
isXgmiDst = true;
numHopsDst = 0;
}
}
// Skip this DST if it is not XGMI but only XGMI links may be used
if (dstList[k].memType != MEM_NULL && useXgmiOnly && !isXgmiDst) continue;
// Skip this DST if total XGMI distance (SRC + DST) is less than min limit
if (sweepXgmiMin > 0 && (numHopsSrc + numHopsDst < sweepXgmiMin)) continue;
// Skip this DST if total XGMI distance (SRC + DST) is greater than max limit
if (sweepXgmiMax >= 0 && (numHopsSrc + numHopsDst) > sweepXgmiMax) continue;
#if defined(__NVCC__)
// Skip CPU executors on GPU memory on NVIDIA platform
if (IsCpuExeType(exeList[i].exeType) && (IsGpuMemType(dstList[j].memType) || IsGpuMemType(dstList[k].memType)))
continue;
#endif
tinfo.dstMem = dstList[k];
// Skip if there is no src and dst
if (tinfo.srcMem.memType == MEM_NULL && tinfo.dstMem.memType == MEM_NULL) continue;
possibleTransfers.push_back(tinfo);
}
}
}
int const numPossible = (int)possibleTransfers.size();
int maxParallelTransfers = (sweepMax == 0 ? numPossible : sweepMax);
if (sweepMin > numPossible) {
printf("No valid test configurations exist\n");
return;
}
if (ev.outputToCsv) {
printf("\nTest#,Transfer#,NumBytes,Src,Exe,Dst,CUs,BW(GB/s),Time(ms),"
"ExeToSrcLinkType,ExeToDstLinkType,SrcAddr,DstAddr\n");
}
int numTestsRun = 0;
int M = sweepMin;
std::uniform_int_distribution<int> randSize(1, numBytesPerTransfer / sizeof(float));
std::uniform_int_distribution<int> distribution(sweepMin, maxParallelTransfers);
// Log sweep to configuration file
FILE *fp = fopen("lastSweep.cfg", "w");
if (!fp) {
printf("[ERROR] Unable to open lastSweep.cfg. Check permissions\n");
exit(1);
}
// Create bitmask of numPossible triplets, of which M will be chosen
std::string bitmask(M, 1); bitmask.resize(numPossible, 0);
auto cpuStart = std::chrono::high_resolution_clock::now();
while (1) {
if (isRandom) {
// Pick random number of simultaneous transfers to execute
// NOTE: This currently skews distribution due to some #s having more possibilities than others
M = distribution(*generator);
// Generate a random bitmask
for (int i = 0; i < numPossible; i++)
bitmask[i] = (i < M) ? 1 : 0;
std::shuffle(bitmask.begin(), bitmask.end(), *generator);
}
// Convert bitmask to list of Transfers
std::vector<Transfer> transfers;
for (int value = 0; value < numPossible; ++value) {
if (bitmask[value]) {
// Convert integer value to (SRC->EXE->DST) triplet
Transfer transfer;
if (possibleTransfers[value].srcMem.memType != MEM_NULL)
transfer.srcs.push_back(possibleTransfers[value].srcMem);
transfer.exeDevice = possibleTransfers[value].exeDevice;
if (possibleTransfers[value].dstMem.memType != MEM_NULL)
transfer.dsts.push_back(possibleTransfers[value].dstMem);
transfer.exeSubIndex = -1;
transfer.numSubExecs = IsGpuExeType(transfer.exeDevice.exeType) ? numGpuSubExecs : numCpuSubExecs;
transfer.numBytes = sweepRandBytes ? randSize(*generator) * sizeof(float) : numBytesPerTransfer;
transfers.push_back(transfer);
}
}
LogTransfers(fp, ++numTestsRun, transfers);
if (!TransferBench::RunTransfers(cfg, transfers, results)) {
PrintErrors(results.errResults);
if (!continueOnErr) exit(1);
} else {
PrintResults(ev, numTestsRun, transfers, results);
}
// Check for test limit
if (numTestsRun == sweepTestLimit) {
printf("Test limit reached\n");
break;
}
// Check for time limit
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double totalCpuTime = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count();
if (sweepTimeLimit && totalCpuTime > sweepTimeLimit) {
printf("Time limit exceeded\n");
break;
}
// Increment bitmask if not random sweep
if (!isRandom && !std::prev_permutation(bitmask.begin(), bitmask.end())) {
M++;
// Check for completion
if (M > maxParallelTransfers) {
printf("Sweep complete\n");
break;
}
for (int i = 0; i < numPossible; i++)
bitmask[i] = (i < M) ? 1 : 0;
}
}
fclose(fp);
}
/*
Copyright (c) 2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#pragma once
#include "TransferBench.hpp"
static int RemappedCpuIndex(int origIdx)
{
static std::vector<int> remappingCpu;
// Build CPU remapping on first use
// Skip numa nodes that are not configured
if (remappingCpu.empty()) {
for (int node = 0; node <= numa_max_node(); node++)
if (numa_bitmask_isbitset(numa_get_mems_allowed(), node))
remappingCpu.push_back(node);
}
return remappingCpu[origIdx];
}
void DisplayTopology(bool outputToCsv)
{
int numCpus = TransferBench::GetNumExecutors(EXE_CPU);
int numGpus = TransferBench::GetNumExecutors(EXE_GPU_GFX);
char sep = (outputToCsv ? ',' : '|');
if (outputToCsv) {
printf("NumCpus,%d\n", numCpus);
printf("NumGpus,%d\n", numGpus);
} else {
printf("\nDetected Topology:\n");
printf("==================\n");
printf(" %d configured CPU NUMA node(s) [%d total]\n", numCpus, numa_max_node() + 1);
printf(" %d GPU device(s)\n", numGpus);
}
// Print out detected CPU topology
printf("\n %c", sep);
for (int j = 0; j < numCpus; j++)
printf("NUMA %02d%c", j, sep);
printf(" #Cpus %c Closest GPU(s)\n", sep);
if (!outputToCsv) {
printf("------------+");
for (int j = 0; j <= numCpus; j++)
printf("-------+");
printf("---------------\n");
}
for (int i = 0; i < numCpus; i++) {
int nodeI = RemappedCpuIndex(i);
printf("NUMA %02d (%02d)%c", i, nodeI, sep);
for (int j = 0; j < numCpus; j++) {
int nodeJ = RemappedCpuIndex(j);
int numaDist = numa_distance(nodeI, nodeJ);
printf(" %5d %c", numaDist, sep);
}
int numCpuCores = 0;
for (int j = 0; j < numa_num_configured_cpus(); j++)
if (numa_node_of_cpu(j) == nodeI) numCpuCores++;
printf(" %5d %c", numCpuCores, sep);
for (int j = 0; j < numGpus; j++) {
if (TransferBench::GetClosestCpuNumaToGpu(j) == nodeI) {
printf(" %d", j);
}
}
printf("\n");
}
printf("\n");
// Print out detected GPU topology
#if defined(__NVCC__)
for (int i = 0; i < numGpus; i++) {
hipDeviceProp_t prop;
HIP_CALL(hipGetDeviceProperties(&prop, i));
printf(" GPU %02d | %s\n", i, prop.name);
}
// No further topology detection done for NVIDIA platforms
return;
#else
// Print headers
if (!outputToCsv) {
printf(" |");
for (int j = 0; j < numGpus; j++) {
hipDeviceProp_t prop;
HIP_CALL(hipGetDeviceProperties(&prop, j));
std::string fullName = prop.gcnArchName;
std::string archName = fullName.substr(0, fullName.find(':'));
printf(" %6s |", archName.c_str());
}
printf("\n");
}
printf(" %c", sep);
for (int j = 0; j < numGpus; j++)
printf(" GPU %02d %c", j, sep);
printf(" PCIe Bus ID %c #CUs %c NUMA %c #DMA %c #XCC\n", sep, sep, sep, sep);
if (!outputToCsv) {
for (int j = 0; j <= numGpus; j++)
printf("--------+");
printf("--------------+------+------+------+------\n");
}
// Loop over each GPU device
for (int i = 0; i < numGpus; i++) {
printf(" GPU %02d %c", i, sep);
// Print off link information
for (int j = 0; j < numGpus; j++) {
if (i == j) {
printf(" N/A %c", sep);
} else {
uint32_t linkType, hopCount;
HIP_CALL(hipExtGetLinkTypeAndHopCount(i, j, &linkType, &hopCount));
printf(" %s-%d %c",
linkType == HSA_AMD_LINK_INFO_TYPE_HYPERTRANSPORT ? " HT" :
linkType == HSA_AMD_LINK_INFO_TYPE_QPI ? " QPI" :
linkType == HSA_AMD_LINK_INFO_TYPE_PCIE ? "PCIE" :
linkType == HSA_AMD_LINK_INFO_TYPE_INFINBAND ? "INFB" :
linkType == HSA_AMD_LINK_INFO_TYPE_XGMI ? "XGMI" : "????",
hopCount, sep);
}
}
char pciBusId[20];
HIP_CALL(hipDeviceGetPCIBusId(pciBusId, 20, i));
printf(" %11s %c %4d %c %4d %c %4d %c %4d\n",
pciBusId, sep,
TransferBench::GetNumSubExecutors({EXE_GPU_GFX, i}), sep,
TransferBench::GetClosestCpuNumaToGpu(i), sep,
TransferBench::GetNumExecutorSubIndices({EXE_GPU_DMA, i}), sep,
TransferBench::GetNumExecutorSubIndices({EXE_GPU_GFX, i}));
}
#endif
}
/*
Copyright (c) 2019-2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#pragma once
#include <cstring>
#include <future>
#include <map>
#include <numa.h> // If not found, try installing libnuma-dev (e.g apt-get install libnuma-dev)
#include <numaif.h>
#include <set>
#include <sstream>
#include <stdarg.h>
#include <thread>
#include <unistd.h>
#include <vector>
#if defined(__NVCC__)
#include <cuda_runtime.h>
#else
#include <hip/hip_ext.h>
#include <hip/hip_runtime.h>
#include <hsa/hsa.h>
#include <hsa/hsa_ext_amd.h>
#endif
namespace TransferBench
{
using std::map;
using std::pair;
using std::set;
using std::vector;
constexpr char VERSION[] = "1.58";
/**
* Enumeration of supported Executor types
*
* @note The Executor is the device used to perform a Transfer
* @note IBVerbs executor is currently not implemented yet
*/
enum ExeType
{
EXE_CPU = 0, ///< CPU executor (subExecutor = CPU thread)
EXE_GPU_GFX = 1, ///< GPU kernel-based executor (subExecutor = threadblock/CU)
EXE_GPU_DMA = 2, ///< GPU SDMA executor (subExecutor = not supported)
EXE_IBV = 3, ///< IBVerbs executor (subExecutor = queue pair)
};
char const ExeTypeStr[5] = "CGDI";
inline bool IsCpuExeType(ExeType e){ return e == EXE_CPU; }
inline bool IsGpuExeType(ExeType e){ return e == EXE_GPU_GFX || e == EXE_GPU_DMA; }
/**
* A ExeDevice defines a specific Executor
*/
struct ExeDevice
{
ExeType exeType; ///< Executor type
int32_t exeIndex; ///< Executor index
bool operator<(ExeDevice const& other) const {
return (exeType < other.exeType) || (exeType == other.exeType && exeIndex < other.exeIndex);
}
};
/**
* Enumeration of supported memory types
*
* @note These are possible types of memory to be used as sources/destinations
*/
enum MemType
{
MEM_CPU = 0, ///< Coarse-grained pinned CPU memory
MEM_GPU = 1, ///< Coarse-grained global GPU memory
MEM_CPU_FINE = 2, ///< Fine-grained pinned CPU memory
MEM_GPU_FINE = 3, ///< Fine-grained global GPU memory
MEM_CPU_UNPINNED = 4, ///< Unpinned CPU memory
MEM_NULL = 5, ///< NULL memory - used for empty
MEM_MANAGED = 6 ///< Managed memory
};
char const MemTypeStr[8] = "CGBFUNM";
inline bool IsCpuMemType(MemType m) { return (m == MEM_CPU || m == MEM_CPU_FINE || m == MEM_CPU_UNPINNED); }
inline bool IsGpuMemType(MemType m) { return (m == MEM_GPU || m == MEM_GPU_FINE || m == MEM_MANAGED); }
/**
* A MemDevice indicates a memory type on a specific device
*/
struct MemDevice
{
MemType memType; ///< Memory type
int32_t memIndex; ///< Device index
bool operator<(MemDevice const& other) const {
return (memType < other.memType) || (memType == other.memType && memIndex < other.memIndex);
}
};
/**
* A Transfer adds together data from zero or more sources then writes the sum to zero or more desintations
*/
struct Transfer
{
size_t numBytes = (1<<26); ///< # of bytes to Transfer
vector<MemDevice> srcs = {}; ///< List of source memory devices
vector<MemDevice> dsts = {}; ///< List of destination memory devices
ExeDevice exeDevice = {}; ///< Executor to use
int32_t exeDstIndex = -1; ///< Destination executor index (for RDMA executor only)
int32_t exeSubIndex = -1; ///< Executor subindex
int numSubExecs = 0; ///< Number of subExecutors to use for this Transfer
};
/**
* General options
*/
struct GeneralOptions
{
int numIterations = 10; ///< # of timed iterations to perform. If negative, run for -numIterations seconds instead
int numSubIterations = 1; ///< # of sub-iterations per iteration
int numWarmups = 3; ///< Number of un-timed warmup iterations to perform
int recordPerIteration = 0; ///< Record per-iteration timing information
int useInteractive = 0; ///< Pause for user-input before starting transfer loop
};
/**
* Data options
*/
struct DataOptions
{
int alwaysValidate = 0; ///< Validate after each iteration instead of once at end
int blockBytes = 256; ///< Each subexecutor works on a multiple of this many bytes
int byteOffset = 0; ///< Byte-offset for memory allocations
vector<float> fillPattern = {}; ///< Pattern of floats used to fill source data
int validateDirect = 0; ///< Validate GPU results directly instead of copying to host
int validateSource = 0; ///< Validate src GPU memory immediately after preparation
};
/**
* DMA Executor options
*/
struct DmaOptions
{
int useHipEvents = 1; ///< Use HIP events for timing DMA Executor
int useHsaCopy = 0; ///< Use HSA copy instead of HIP copy to perform DMA
};
/**
* GFX Executor options
*/
struct GfxOptions
{
int blockSize = 256; ///< Size of each threadblock (must be multiple of 64)
vector<uint32_t> cuMask = {}; ///< Bit-vector representing the CU mask
vector<vector<int>> prefXccTable = {}; ///< 2D table with preferred XCD to use for a specific [src][dst] GPU device
int unrollFactor = 4; ///< GFX-kernel unroll factor
int useHipEvents = 1; ///< Use HIP events for timing GFX Executor
int useMultiStream = 0; ///< Use multiple streams for GFX
int useSingleTeam = 0; ///< Team all subExecutors across the data array
int waveOrder = 0; ///< GFX-kernel wavefront ordering
};
/**
* Configuration options for performing Transfers
*/
struct ConfigOptions
{
GeneralOptions general; ///< General options
DataOptions data; ///< Data options
GfxOptions gfx; ///< GFX executor options
DmaOptions dma; ///< DMA executor options
};
/**
* Enumeration of possible error types
*/
enum ErrType
{
ERR_NONE = 0, ///< No errors
ERR_WARN = 1, ///< Warning - results may not be accurate
ERR_FATAL = 2, ///< Fatal error - results are invalid
};
/**
* ErrResult consists of error type and error message
*/
struct ErrResult
{
ErrType errType; ///< Error type
std::string errMsg; ///< Error details
ErrResult() = default;
#if defined(__NVCC__)
ErrResult(cudaError_t err);
#else
ErrResult(hipError_t err);
ErrResult(hsa_status_t err);
#endif
ErrResult(ErrType err);
ErrResult(ErrType errType, const char* format, ...);
};
/**
* Results for a single Executor
*/
struct ExeResult
{
size_t numBytes; ///< Total bytes transferred by this Executor
double avgDurationMsec; ///< Averaged duration for all the Transfers for this Executor
double avgBandwidthGbPerSec; ///< Average bandwidth for this Executor
double sumBandwidthGbPerSec; ///< Naive sum of individual Transfer average bandwidths
vector<int> transferIdx; ///< Indicies of Transfers this Executor executed
};
/**
* Results for a single Transfer
*/
struct TransferResult
{
size_t numBytes; ///< Number of bytes transferred by this Transfer
double avgDurationMsec; ///< Duration for this Transfer, averaged over all timed iterations
double avgBandwidthGbPerSec; ///< Bandwidth for this Transfer based on averaged duration
// Only filled in if recordPerIteration = 1
vector<double> perIterMsec; ///< Duration for each individual iteration
vector<set<pair<int,int>>> perIterCUs; ///< GFX-Executor only. XCC:CU used per iteration
};
/**
* TestResults contain timing results for a set of Transfers as a group as well as per Executor and per Transfer
* timing information
*/
struct TestResults
{
int numTimedIterations; ///< Number of iterations executed
size_t totalBytesTransferred; ///< Total bytes transferred per iteration
double avgTotalDurationMsec; ///< Wall-time (msec) to finish all Transfers (averaged across all timed iterations)
double avgTotalBandwidthGbPerSec; ///< Bandwidth based on all Transfers and average wall time
double overheadMsec; ///< Difference between total wall time and slowest executor
map<ExeDevice, ExeResult> exeResults; ///< Per Executor results
vector<TransferResult> tfrResults; ///< Per Transfer results
vector<ErrResult> errResults; ///< List of any errors/warnings that occurred
};
/**
* Run a set of Transfers
*
* @param[in] config Configuration options
* @param[in] transfers Set of Transfers to execute
* @param[out] results Timing results
* @returns true if and only if Transfers were run successfully without any fatal errors
*/
bool RunTransfers(ConfigOptions const& config,
vector<Transfer> const& transfers,
TestResults& results);
/**
* Enumeration of implementation attributes
*/
enum IntAttribute
{
ATR_GFX_MAX_BLOCKSIZE, ///< Maximum blocksize for GFX executor
ATR_GFX_MAX_UNROLL, ///< Maximum unroll factor for GFX executor
};
enum StrAttribute
{
ATR_SRC_PREP_DESCRIPTION ///< Description of how source memory is prepared
};
/**
* Query attributes (integer)
*
* @note This allows querying of implementation information such as limits
*
* @param[in] attribute Attribute to query
* @returns Value of the attribute
*/
int GetIntAttribute(IntAttribute attribute);
/**
* Query attributes (string)
*
* @note This allows query of implementation details such as limits
*
* @param[in] attrtibute Attribute to query
* @returns Value of the attribute
*/
std::string GetStrAttribute(StrAttribute attribute);
/**
* Returns information about number of available available Executors
*
* @param[in] exeType Executor type to query
* @returns Number of detected Executors of exeType
*/
int GetNumExecutors(ExeType exeType);
/**
* Returns the number of possible Executor subindices
*
* @note For CPU, this is 0
* @note For GFX, this refers to the number of XCDs
* @note For DMA, this refers to the number of DMA engines
*
* @param[in] exeDevice The specific Executor to query
* @returns Number of detected executor subindices
*/
int GetNumExecutorSubIndices(ExeDevice exeDevice);
/**
* Returns number of subExecutors for a given ExeDevice
*
* @param[in] exeDevice The specific Executor to query
* @returns Number of detected subExecutors for the given ExePair
*/
int GetNumSubExecutors(ExeDevice exeDevice);
/**
* Returns the index of the NUMA node closest to the given GPU
*
* @param[in] gpuIndex Index of the GPU to query
* @returns NUMA node index closest to GPU gpuIndex, or -1 if unable to detect
*/
int GetClosestCpuNumaToGpu(int gpuIndex);
/**
* Helper function to parse a line containing Transfers into a vector of Transfers
*
* @param[in] str String containing description of Transfers
* @param[out] transfers List of Transfers described by 'str'
* @returns Information about any error that may have occured
*/
ErrResult ParseTransfers(std::string str,
std::vector<Transfer>& transfers);
};
//==========================================================================================
// End of TransferBench API
//==========================================================================================
// Redefinitions for CUDA compatibility
//==========================================================================================
#if defined(__NVCC__)
// ROCm specific
#define wall_clock64 clock64
#define gcnArchName name
// Datatypes
#define hipDeviceProp_t cudaDeviceProp
#define hipError_t cudaError_t
#define hipEvent_t cudaEvent_t
#define hipStream_t cudaStream_t
// Enumerations
#define hipDeviceAttributeClockRate cudaDevAttrClockRate
#define hipDeviceAttributeMultiprocessorCount cudaDevAttrMultiProcessorCount
#define hipErrorPeerAccessAlreadyEnabled cudaErrorPeerAccessAlreadyEnabled
#define hipFuncCachePreferShared cudaFuncCachePreferShared
#define hipMemcpyDefault cudaMemcpyDefault
#define hipMemcpyDeviceToHost cudaMemcpyDeviceToHost
#define hipMemcpyHostToDevice cudaMemcpyHostToDevice
#define hipSuccess cudaSuccess
// Functions
#define hipDeviceCanAccessPeer cudaDeviceCanAccessPeer
#define hipDeviceEnablePeerAccess cudaDeviceEnablePeerAccess
#define hipDeviceGetAttribute cudaDeviceGetAttribute
#define hipDeviceGetPCIBusId cudaDeviceGetPCIBusId
#define hipDeviceSetCacheConfig cudaDeviceSetCacheConfig
#define hipDeviceSynchronize cudaDeviceSynchronize
#define hipEventCreate cudaEventCreate
#define hipEventDestroy cudaEventDestroy
#define hipEventElapsedTime cudaEventElapsedTime
#define hipEventRecord cudaEventRecord
#define hipFree cudaFree
#define hipGetDeviceCount cudaGetDeviceCount
#define hipGetDeviceProperties cudaGetDeviceProperties
#define hipGetErrorString cudaGetErrorString
#define hipHostFree cudaFreeHost
#define hipHostMalloc cudaMallocHost
#define hipMalloc cudaMalloc
#define hipMallocManaged cudaMallocManaged
#define hipMemcpy cudaMemcpy
#define hipMemcpyAsync cudaMemcpyAsync
#define hipMemset cudaMemset
#define hipMemsetAsync cudaMemsetAsync
#define hipSetDevice cudaSetDevice
#define hipStreamCreate cudaStreamCreate
#define hipStreamDestroy cudaStreamDestroy
#define hipStreamSynchronize cudaStreamSynchronize
// Define float4 addition operator for NVIDIA platform
__device__ inline float4& operator +=(float4& a, const float4& b)
{
a.x += b.x;
a.y += b.y;
a.z += b.z;
a.w += b.w;
return a;
}
#endif
// Helper macro functions
//==========================================================================================
// Macro for collecting CU/SM GFX kernel is running on
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1200__) || defined(__gfx1201__)
#define GetHwId(hwId) hwId = 0
#elif defined(__NVCC__)
#define GetHwId(hwId) asm("mov.u32 %0, %smid;" : "=r"(hwId))
#else
#define GetHwId(hwId) asm volatile ("s_getreg_b32 %0, hwreg(HW_REG_HW_ID)" : "=s" (hwId));
#endif
// Macro for collecting XCC GFX kernel is running on
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
#define GetXccId(val) asm volatile ("s_getreg_b32 %0, hwreg(HW_REG_XCC_ID)" : "=s" (val));
#else
#define GetXccId(val) val = 0
#endif
// Error check macro (NOTE: This will return even for ERR_WARN)
#define ERR_CHECK(cmd) \
do { \
ErrResult err = (cmd); \
if (err.errType != ERR_NONE) \
return err; \
} while (0)
// Appends warn/fatal errors to a list, return false if fatal
#define ERR_APPEND(cmd, list) \
do { \
ErrResult err = (cmd); \
if (err.errType != ERR_NONE) \
list.push_back(err); \
if (err.errType == ERR_FATAL) \
return false; \
} while (0)
namespace TransferBench
{
// Helper functions ('hidden' in anonymous namespace)
//========================================================================================
namespace {
// Constants
//========================================================================================
int constexpr MAX_BLOCKSIZE = 512; // Max threadblock size
int constexpr MAX_WAVEGROUPS = MAX_BLOCKSIZE / 64; // Max wavegroups/warps
int constexpr MAX_UNROLL = 8; // Max unroll factor
int constexpr MAX_SRCS = 8; // Max # srcs per Transfer
int constexpr MAX_DSTS = 8; // Max # dsts per Transfer
int constexpr MEMSET_CHAR = 75; // Value to memset (char)
float constexpr MEMSET_VAL = 13323083.0f; // Value to memset (double)
// Parsing-related functions
//========================================================================================
static ErrResult CharToMemType(char const c, MemType& memType)
{
char const* val = strchr(MemTypeStr, toupper(c));
if (val) {
memType = (MemType)(val - MemTypeStr);
return ERR_NONE;
}
return {ERR_FATAL, "Unexpected memory type (%c)", c};
}
static ErrResult CharToExeType(char const c, ExeType& exeType)
{
char const* val = strchr(ExeTypeStr, toupper(c));
if (val) {
exeType = (ExeType)(val - ExeTypeStr);
return ERR_NONE;
}
return {ERR_FATAL, "Unexpected executor type (%c)", c};
}
static ErrResult ParseMemType(std::string const& token,
std::vector<MemDevice>& memDevices)
{
char memTypeChar;
int offset = 0, memIndex, inc;
MemType memType;
bool found = false;
memDevices.clear();
while (sscanf(token.c_str() + offset, " %c %d%n", &memTypeChar, &memIndex, &inc) == 2) {
offset += inc;
ErrResult err = CharToMemType(memTypeChar, memType);
if (err.errType != ERR_NONE) return err;
if (memType != MEM_NULL)
memDevices.push_back({memType, memIndex});
found = true;
}
if (found) return ERR_NONE;
return {ERR_FATAL,
"Unable to parse memory type token %s. Expected one of %s followed by an index",
token.c_str(), MemTypeStr};
}
static ErrResult ParseExeType(std::string const& token,
ExeDevice& exeDevice,
int& exeSubIndex)
{
char exeTypeChar;
exeSubIndex = -1;
int numTokensParsed = sscanf(token.c_str(),
" %c%d.%d", &exeTypeChar, &exeDevice.exeIndex, &exeSubIndex);
if (numTokensParsed < 2) {
return {ERR_FATAL,
"Unable to parse valid executor token (%s)."
"Expected one of %s followed by an index",
token.c_str(), ExeTypeStr};
}
return CharToExeType(exeTypeChar, exeDevice.exeType);
}
// Memory-related functions
//========================================================================================
// Enable peer access between two GPUs
static ErrResult EnablePeerAccess(int const deviceId, int const peerDeviceId)
{
int canAccess;
ERR_CHECK(hipDeviceCanAccessPeer(&canAccess, deviceId, peerDeviceId));
if (!canAccess)
return {ERR_FATAL,
"Unable to enable peer access from GPU devices %d to %d", peerDeviceId, deviceId};
ERR_CHECK(hipSetDevice(deviceId));
hipError_t error = hipDeviceEnablePeerAccess(peerDeviceId, 0);
if (error != hipSuccess && error != hipErrorPeerAccessAlreadyEnabled) {
return {ERR_FATAL,
"Unable to enable peer to peer access from %d to %d (%s)",
deviceId, peerDeviceId, hipGetErrorString(error)};
}
return ERR_NONE;
}
// Check that CPU memory array of numBytes has been allocated on targetId NUMA node
static ErrResult CheckPages(char* array, size_t numBytes, int targetId)
{
size_t const pageSize = getpagesize();
size_t const numPages = (numBytes + pageSize - 1) / pageSize;
std::vector<void *> pages(numPages);
std::vector<int> status(numPages);
pages[0] = array;
for (int i = 1; i < numPages; i++) {
pages[i] = (char*)pages[i-1] + pageSize;
}
long const retCode = move_pages(0, numPages, pages.data(), NULL, status.data(), 0);
if (retCode)
return {ERR_FATAL,
"Unable to collect page table information for allocated memory. "
"Ensure NUMA library is installed properly"};
size_t mistakeCount = 0;
for (size_t i = 0; i < numPages; i++) {
if (status[i] < 0)
return {ERR_FATAL,
"Unexpected page status (%d) for page %llu", status[i], i};
if (status[i] != targetId) mistakeCount++;
}
if (mistakeCount > 0) {
return {ERR_FATAL,
"%lu out of %lu pages for memory allocation were not on NUMA node %d."
" This could be due to hardware memory issues",
mistakeCount, numPages, targetId};
}
return ERR_NONE;
}
// Allocate memory
static ErrResult AllocateMemory(MemDevice memDevice, size_t numBytes, void** memPtr)
{
if (numBytes == 0) {
return {ERR_FATAL, "Unable to allocate 0 bytes"};
}
*memPtr = nullptr;
MemType const& memType = memDevice.memType;
if (IsCpuMemType(memType)) {
// Set numa policy prior to call to hipHostMalloc
numa_set_preferred(memDevice.memIndex);
// Allocate host-pinned memory (should respect NUMA mem policy)
if (memType == MEM_CPU_FINE) {
#if defined (__NVCC__)
return {ERR_FATAL, "Fine-grained CPU memory not supported on NVIDIA platform"};
#else
ERR_CHECK(hipHostMalloc((void **)memPtr, numBytes, hipHostMallocNumaUser));
#endif
} else if (memType == MEM_CPU) {
#if defined (__NVCC__)
ERR_CHECK(hipHostMalloc((void **)memPtr, numBytes, 0));
#else
ERR_CHECK(hipHostMalloc((void **)memPtr, numBytes, hipHostMallocNumaUser | hipHostMallocNonCoherent));
#endif
} else if (memType == MEM_CPU_UNPINNED) {
*memPtr = numa_alloc_onnode(numBytes, memDevice.memIndex);
}
// Check that the allocated pages are actually on the correct NUMA node
memset(*memPtr, 0, numBytes);
ERR_CHECK(CheckPages((char*)*memPtr, numBytes, memDevice.memIndex));
// Reset to default numa mem policy
numa_set_preferred(-1);
} else if (IsGpuMemType(memType)) {
// Switch to the appropriate GPU
ERR_CHECK(hipSetDevice(memDevice.memIndex));
if (memType == MEM_GPU) {
// Allocate GPU memory on appropriate device
ERR_CHECK(hipMalloc((void**)memPtr, numBytes));
} else if (memType == MEM_GPU_FINE) {
#if defined (__NVCC__)
return {ERR_FATAL, "Fine-grained GPU memory not supported on NVIDIA platform"};
#else
int flag = hipDeviceMallocUncached;
ERR_CHECK(hipExtMallocWithFlags((void**)memPtr, numBytes, flag));
#endif
} else if (memType == MEM_MANAGED) {
ERR_CHECK(hipMallocManaged((void**)memPtr, numBytes));
}
// Clear the memory
ERR_CHECK(hipMemset(*memPtr, 0, numBytes));
ERR_CHECK(hipDeviceSynchronize());
} else {
return {ERR_FATAL, "Unsupported memory type (%d)", memType};
}
return ERR_NONE;
}
// Deallocate memory
static ErrResult DeallocateMemory(MemType memType, void *memPtr, size_t const bytes)
{
// Avoid deallocating nullptr
if (memPtr == nullptr)
return {ERR_FATAL, "Attempted to free null pointer for %lu bytes", bytes};
switch (memType) {
case MEM_CPU: case MEM_CPU_FINE:
{
ERR_CHECK(hipHostFree(memPtr));
break;
}
case MEM_CPU_UNPINNED:
{
numa_free(memPtr, bytes);
break;
}
case MEM_GPU : case MEM_GPU_FINE: case MEM_MANAGED:
{
ERR_CHECK(hipFree(memPtr));
break;
}
default:
return {ERR_FATAL, "Attempting to deallocate unrecognized memory type (%d)", memType};
}
return ERR_NONE;
}
// HSA-related functions
//========================================================================================
#if !defined(__NVCC__)
// Get the hsa_agent_t associated with a ExeDevice
static ErrResult GetHsaAgent(ExeDevice const& exeDevice, hsa_agent_t& agent)
{
static bool isInitialized = false;
static std::vector<hsa_agent_t> cpuAgents;
static std::vector<hsa_agent_t> gpuAgents;
int const& exeIndex = exeDevice.exeIndex;
int const numCpus = GetNumExecutors(EXE_CPU);
int const numGpus = GetNumExecutors(EXE_GPU_GFX);
// Initialize results on first use
if (!isInitialized) {
hsa_amd_pointer_info_t info;
info.size = sizeof(info);
ErrResult err;
int32_t* tempBuffer;
// Index CPU agents
cpuAgents.clear();
for (int i = 0; i < numCpus; i++) {
ERR_CHECK(AllocateMemory({MEM_CPU, i}, 1024, (void**)&tempBuffer));
ERR_CHECK(hsa_amd_pointer_info(tempBuffer, &info, NULL, NULL, NULL));
cpuAgents.push_back(info.agentOwner);
ERR_CHECK(DeallocateMemory(MEM_CPU, tempBuffer, 1024));
}
// Index GPU agents
gpuAgents.clear();
for (int i = 0; i < numGpus; i++) {
ERR_CHECK(AllocateMemory({MEM_GPU, i}, 1024, (void**)&tempBuffer));
ERR_CHECK(hsa_amd_pointer_info(tempBuffer, &info, NULL, NULL, NULL));
gpuAgents.push_back(info.agentOwner);
ERR_CHECK(DeallocateMemory(MEM_GPU, tempBuffer, 1024));
}
isInitialized = true;
}
switch (exeDevice.exeType) {
case EXE_CPU:
if (exeIndex < 0 || exeIndex >= numCpus)
return {ERR_FATAL, "CPU index must be between 0 and %d inclusively", numCpus - 1};
agent = cpuAgents[exeDevice.exeIndex];
break;
case EXE_GPU_GFX: case EXE_GPU_DMA:
if (exeIndex < 0 || exeIndex >= numGpus)
return {ERR_FATAL, "GPU index must be between 0 and %d inclusively", numGpus - 1};
agent = gpuAgents[exeIndex];
break;
default:
return {ERR_FATAL,
"Attempting to get HSA agent of unknown or unsupported executor type (%d)",
exeDevice.exeType};
}
return ERR_NONE;
}
// Get the hsa_agent_t associated with a MemDevice
static ErrResult GetHsaAgent(MemDevice const& memDevice, hsa_agent_t& agent)
{
if (IsCpuMemType(memDevice.memType)) return GetHsaAgent({EXE_CPU, memDevice.memIndex}, agent);
if (IsGpuMemType(memDevice.memType)) return GetHsaAgent({EXE_GPU_GFX, memDevice.memIndex}, agent);
return {ERR_FATAL,
"Unable to get HSA agent for memDevice (%d,%d)",
memDevice.memType, memDevice.memIndex};
}
#endif
// Setup validation-related functions
//========================================================================================
// Validate that MemDevice exists
static ErrResult CheckMemDevice(MemDevice const& memDevice)
{
if (memDevice.memType == MEM_NULL)
return ERR_NONE;
if (IsCpuMemType(memDevice.memType)) {
int numCpus = GetNumExecutors(EXE_CPU);
if (memDevice.memIndex < 0 || memDevice.memIndex >= numCpus)
return {ERR_FATAL,
"CPU index must be between 0 and %d (instead of %d)", numCpus - 1, memDevice.memIndex};
return ERR_NONE;
}
if (IsGpuMemType(memDevice.memType)) {
int numGpus = GetNumExecutors(EXE_GPU_GFX);
if (memDevice.memIndex < 0 || memDevice.memIndex >= numGpus)
return {ERR_FATAL,
"GPU index must be between 0 and %d (instead of %d)", numGpus - 1, memDevice.memIndex};
return ERR_NONE;
}
return {ERR_FATAL, "Unsupported memory type (%d)", memDevice.memType};
}
// Validate configuration options - return trues if and only if an fatal error is detected
static bool ConfigOptionsHaveErrors(ConfigOptions const& cfg,
std::vector<ErrResult>& errors)
{
// Check general options
if (cfg.general.numWarmups < 0)
errors.push_back({ERR_FATAL, "[general.numWarmups] must be a non-negative number"});
// Check data options
if (cfg.data.blockBytes == 0 || cfg.data.blockBytes % 4)
errors.push_back({ERR_FATAL, "[data.blockBytes] must be positive multiple of %lu", sizeof(float)});
if (cfg.data.byteOffset < 0 || cfg.data.byteOffset % sizeof(float))
errors.push_back({ERR_FATAL, "[data.byteOffset] must be positive multiple of %lu", sizeof(float)});
// Check GFX options
int gfxMaxBlockSize = GetIntAttribute(ATR_GFX_MAX_BLOCKSIZE);
if (cfg.gfx.blockSize < 0 || cfg.gfx.blockSize % 64 || cfg.gfx.blockSize > gfxMaxBlockSize)
errors.push_back({ERR_FATAL,
"[gfx.blockSize] must be positive multiple of 64 less than or equal to %d",
gfxMaxBlockSize});
int gfxMaxUnroll = GetIntAttribute(ATR_GFX_MAX_UNROLL);
if (cfg.gfx.unrollFactor < 0 || cfg.gfx.unrollFactor > gfxMaxUnroll)
errors.push_back({ERR_FATAL,
"[gfx.unrollFactor] must be non-negative and less than or equal to %d",
gfxMaxUnroll});
if (cfg.gfx.waveOrder < 0 || cfg.gfx.waveOrder >= 6)
errors.push_back({ERR_FATAL,
"[gfx.waveOrder] must be non-negative and less than 6"});
int numGpus = GetNumExecutors(EXE_GPU_GFX);
int numXccs = GetNumExecutorSubIndices({EXE_GPU_GFX, 0});
vector<vector<int>> const& table = cfg.gfx.prefXccTable;
if (!table.empty()) {
if (table.size() != numGpus) {
errors.push_back({ERR_FATAL, "[gfx.prefXccTable] must be have size %dx%d", numGpus, numGpus});
} else {
for (int i = 0; i < table.size(); i++) {
if (table[i].size() != numGpus) {
errors.push_back({ERR_FATAL, "[gfx.prefXccTable] must be have size %dx%d", numGpus, numGpus});
break;
} else {
for (auto x : table[i]) {
if (x < 0 || x >= numXccs) {
errors.push_back({ERR_FATAL, "[gfx.prefXccTable] must contain values between 0 and %d",
numXccs - 1});
break;
}
}
}
}
}
}
// NVIDIA specific
#if defined(__NVCC__)
if (cfg.data.validateDirect)
errors.push_back({ERR_FATAL, "[data.validateDirect] is not supported on NVIDIA hardware"});
#else
// AMD specific
// Check for largeBar enablement on GPUs
for (int i = 0; i < numGpus; i++) {
int isLargeBar = 0;
hipError_t err = hipDeviceGetAttribute(&isLargeBar, hipDeviceAttributeIsLargeBar, i);
if (err != hipSuccess) {
errors.push_back({ERR_FATAL, "Unable to query if GPU %d has largeBAR enabled", i});
} else if (!isLargeBar) {
errors.push_back({ERR_WARN,
"Large BAR is not enabled for GPU %d in BIOS. "
"Large BAR is required to enable multi-gpu data access", i});
}
}
#endif
// Check for fatal errors
for (auto const& err : errors)
if (err.errType == ERR_FATAL) return true;
return false;
}
// Validate Transfers to execute - returns true if and only if fatal error detected
static bool TransfersHaveErrors(ConfigOptions const& cfg,
std::vector<Transfer> const& transfers,
std::vector<ErrResult>& errors)
{
int numCpus = GetNumExecutors(EXE_CPU);
int numGpus = GetNumExecutors(EXE_GPU_GFX);
std::set<ExeDevice> executors;
std::map<ExeDevice, int> transferCount;
std::map<ExeDevice, int> useSubIndexCount;
std::map<ExeDevice, int> totalSubExecs;
// Per-Transfer checks
for (size_t i = 0; i < transfers.size(); i++) {
Transfer const& t = transfers[i];
if (t.numBytes == 0)
errors.push_back({ERR_FATAL, "Transfer %d: Cannot perform 0-byte transfers", i});
if (t.exeDevice.exeType == EXE_GPU_GFX || t.exeDevice.exeType == EXE_CPU) {
size_t const N = t.numBytes / sizeof(float);
int const targetMultiple = cfg.data.blockBytes / sizeof(float);
int const maxSubExecToUse = std::min((size_t)(N + targetMultiple - 1) / targetMultiple,
(size_t)t.numSubExecs);
if (maxSubExecToUse < t.numSubExecs)
errors.push_back({ERR_WARN,
"Transfer %d data size is too small - will only use %d of %d subexecutors",
i, maxSubExecToUse, t.numSubExecs});
}
// Check sources and destinations
if (t.srcs.empty() && t.dsts.empty())
errors.push_back({ERR_FATAL, "Transfer %d: Must have at least one source or destination", i});
for (int j = 0; j < t.srcs.size(); j++) {
ErrResult err = CheckMemDevice(t.srcs[j]);
if (err.errType != ERR_NONE)
errors.push_back({ERR_FATAL, "Transfer %d: SRC %d: %s", i, j, err.errMsg.c_str()});
}
for (int j = 0; j < t.dsts.size(); j++) {
ErrResult err = CheckMemDevice(t.dsts[j]);
if (err.errType != ERR_NONE)
errors.push_back({ERR_FATAL, "Transfer %d: DST %d: %s", i, j, err.errMsg.c_str()});
}
// Check executor
executors.insert(t.exeDevice);
transferCount[t.exeDevice]++;
switch (t.exeDevice.exeType) {
case EXE_CPU:
if (t.exeDevice.exeIndex < 0 || t.exeDevice.exeIndex >= numCpus)
errors.push_back({ERR_FATAL,
"Transfer %d: CPU index must be between 0 and %d (instead of %d)",
i, numCpus - 1, t.exeDevice.exeIndex});
break;
case EXE_GPU_GFX:
if (t.exeDevice.exeIndex < 0 || t.exeDevice.exeIndex >= numGpus) {
errors.push_back({ERR_FATAL,
"Transfer %d: GFX index must be between 0 and %d (instead of %d)",
i, numGpus - 1, t.exeDevice.exeIndex});
} else {
if (t.exeSubIndex != -1) {
#if defined(__NVCC__)
errors.push_back({ERR_FATAL,
"Transfer %d: GFX executor subindex not supported on NVIDIA hardware", i});
#else
useSubIndexCount[t.exeDevice]++;
int numSubIndices = GetNumExecutorSubIndices(t.exeDevice);
if (t.exeSubIndex >= numSubIndices)
errors.push_back({ERR_FATAL,
"Transfer %d: GFX subIndex (XCC) must be between 0 and %d", i, numSubIndices - 1});
#endif
}
}
break;
case EXE_GPU_DMA:
if (t.srcs.size() != 1 || t.dsts.size() != 1) {
errors.push_back({ERR_FATAL,
"Transfer %d: DMA executor must have exactly 1 source and 1 destination", i});
}
if (t.exeDevice.exeIndex < 0 || t.exeDevice.exeIndex >= numGpus) {
errors.push_back({ERR_FATAL,
"Transfer %d: DMA index must be between 0 and %d (instead of %d)",
i, numGpus - 1, t.exeDevice.exeIndex});
// Cannot proceed with any further checks
continue;
}
if (t.exeSubIndex != -1) {
#if defined(__NVCC__)
errors.push_back({ERR_FATAL,
"Transfer %d: DMA executor subindex not supported on NVIDIA hardware", i});
#else
useSubIndexCount[t.exeDevice]++;
int numSubIndices = GetNumExecutorSubIndices(t.exeDevice);
if (t.exeSubIndex >= numSubIndices)
errors.push_back({ERR_FATAL,
"Transfer %d: DMA subIndex (engine) must be between 0 and %d",
i, numSubIndices - 1});
// Check that engine Id exists between agents
hsa_agent_t srcAgent, dstAgent;
ErrResult err;
err = GetHsaAgent(t.srcs[0], srcAgent);
if (err.errType != ERR_NONE) {
errors.push_back(err);
if (err.errType == ERR_FATAL) break;
}
err = GetHsaAgent(t.dsts[0], dstAgent);
if (err.errType != ERR_NONE) {
errors.push_back(err);
if (err.errType == ERR_FATAL) break;
}
uint32_t engineIdMask = 0;
err = hsa_amd_memory_copy_engine_status(dstAgent, srcAgent, &engineIdMask);
if (err.errType != ERR_NONE) {
errors.push_back(err);
if (err.errType == ERR_FATAL) break;
}
hsa_amd_sdma_engine_id_t sdmaEngineId = (hsa_amd_sdma_engine_id_t)(1U << t.exeSubIndex);
if (!(sdmaEngineId & engineIdMask)) {
errors.push_back({ERR_FATAL,
"Transfer %d: DMA %d.%d does not exist or cannot copy between src/dst",
i, t.exeDevice.exeIndex, t.exeSubIndex});
}
#endif
}
if (!IsGpuMemType(t.srcs[0].memType) && !IsGpuMemType(t.dsts[0].memType)) {
errors.push_back({ERR_WARN,
"Transfer %d: No GPU memory for source or destination. Copy might not execute on DMA %d",
i, t.exeDevice.exeIndex});
} else {
// Currently HIP will use src agent if source memory is GPU, otherwise dst agent
if (IsGpuMemType(t.srcs[0].memType)) {
if (t.srcs[0].memIndex != t.exeDevice.exeIndex) {
errors.push_back({ERR_WARN,
"Transfer %d: DMA executor will automatically switch to using the source memory device (%d) not (%d)",
i, t.srcs[0].memIndex, t.exeDevice.exeIndex});
}
} else if (t.dsts[0].memIndex != t.exeDevice.exeIndex) {
errors.push_back({ERR_WARN,
"Transfer %d: DMA executor will automatically switch to using the destination memory device (%d) not (%d)",
i, t.dsts[0].memIndex, t.exeDevice.exeIndex});
}
}
break;
case EXE_IBV:
errors.push_back({ERR_FATAL, "Transfer %d: IBV executor currently not supported", i});
break;
}
// Check subexecutors
if (t.numSubExecs <= 0)
errors.push_back({ERR_FATAL, "Transfer %d: # of subexecutors must be positive", i});
else
totalSubExecs[t.exeDevice] += t.numSubExecs;
}
int gpuMaxHwQueues = 4;
if (getenv("GPU_MAX_HW_QUEUES"))
gpuMaxHwQueues = atoi(getenv("GPU_MAX_HW_QUEUES"));
// Aggregate checks
for (auto const& exeDevice : executors) {
switch (exeDevice.exeType) {
case EXE_CPU:
{
// Check total number of subexecutors requested
int numCpuSubExec = GetNumSubExecutors(exeDevice);
if (totalSubExecs[exeDevice] > numCpuSubExec)
errors.push_back({ERR_WARN,
"CPU %d requests %d total cores however only %d available. "
"Serialization will occur",
exeDevice.exeIndex, totalSubExecs[exeDevice], numCpuSubExec});
break;
}
case EXE_GPU_GFX:
{
// Check total number of subexecutors requested
int numGpuSubExec = GetNumSubExecutors(exeDevice);
if (totalSubExecs[exeDevice] > numGpuSubExec)
errors.push_back({ERR_WARN,
"GPU %d requests %d total CUs however only %d available. "
"Serialization will occur",
exeDevice.exeIndex, totalSubExecs[exeDevice], numGpuSubExec});
// Check that if executor subindices are used, all Transfers specify executor subindices
if (useSubIndexCount[exeDevice] > 0 && useSubIndexCount[exeDevice] != transferCount[exeDevice]) {
errors.push_back({ERR_FATAL,
"GPU %d specifies XCC on only %d of %d Transfers. "
"Must either specific none or all",
exeDevice.exeIndex, useSubIndexCount[exeDevice], transferCount[exeDevice]});
}
if (cfg.gfx.useMultiStream && transferCount[exeDevice] > gpuMaxHwQueues) {
errors.push_back({ERR_WARN,
"GPU %d attempting %d parallel transfers, however GPU_MAX_HW_QUEUES only set to %d",
exeDevice.exeIndex, transferCount[exeDevice], gpuMaxHwQueues});
}
break;
}
case EXE_GPU_DMA:
{
// Check that if executor subindices are used, all Transfers specify executor subindices
if (useSubIndexCount[exeDevice] > 0 && useSubIndexCount[exeDevice] != transferCount[exeDevice]) {
errors.push_back({ERR_FATAL,
"DMA %d specifies engine on only %d of %d Transfers. "
"Must either specific none or all",
exeDevice.exeIndex, useSubIndexCount[exeDevice], transferCount[exeDevice]});
}
if (transferCount[exeDevice] > gpuMaxHwQueues) {
errors.push_back({ERR_WARN,
"DMA %d attempting %d parallel transfers, however GPU_MAX_HW_QUEUES only set to %d",
exeDevice.exeIndex, transferCount[exeDevice], gpuMaxHwQueues});
}
char* enableSdma = getenv("HSA_ENABLE_SDMA");
if (enableSdma && !strcmp(enableSdma, "0"))
errors.push_back({ERR_WARN,
"DMA functionality disabled due to environment variable HSA_ENABLE_SDMA=0. "
"DMA %d copies will fallback to blit (GFX) kernels", exeDevice.exeIndex});
break;
}
default:
break;
}
}
// Check for fatal errors
for (auto const& err : errors)
if (err.errType == ERR_FATAL) return true;
return false;
}
// Internal data structures
//========================================================================================
// Parameters for each SubExecutor
struct SubExecParam
{
// Inputs
size_t N; ///< Number of floats this subExecutor works on
int numSrcs; ///< Number of source arrays
int numDsts; ///< Number of destination arrays
float* src[MAX_SRCS]; ///< Source array pointers
float* dst[MAX_DSTS]; ///< Destination array pointers
int32_t preferredXccId; ///< XCC ID to execute on (GFX only)
// Prepared
int teamSize; ///< Index of this sub executor amongst team
int teamIdx; ///< Size of team this sub executor is part of
// Outputs
long long startCycle; ///< Start timestamp for in-kernel timing (GPU-GFX executor)
long long stopCycle; ///< Stop timestamp for in-kernel timing (GPU-GFX executor)
uint32_t hwId; ///< Hardware ID
uint32_t xccId; ///< XCC ID
};
// Internal resources allocated per Transfer
struct TransferResources
{
int transferIdx; ///< The associated Transfer
size_t numBytes; ///< Number of bytes to Transfer
vector<float*> srcMem; ///< Source memory
vector<float*> dstMem; ///< Destination memory
vector<SubExecParam> subExecParamCpu; ///< Defines subarrays for each subexecutor
vector<int> subExecIdx; ///< Indices into subExecParamGpu
// For GFX executor
SubExecParam* subExecParamGpuPtr;
// For targeted-SDMA
#if !defined(__NVCC__)
hsa_agent_t dstAgent; ///< DMA destination memory agent
hsa_agent_t srcAgent; ///< DMA source memory agent
hsa_signal_t signal; ///< HSA signal for completion
hsa_amd_sdma_engine_id_t sdmaEngineId; ///< DMA engine ID
#endif
// Counters
double totalDurationMsec; ///< Total duration for all iterations for this Transfer
vector<double> perIterMsec; ///< Duration for each individual iteration
vector<set<pair<int,int>>> perIterCUs; ///< GFX-Executor only. XCC:CU used per iteration
};
// Internal resources allocated per Executor
struct ExeInfo
{
size_t totalBytes; ///< Total bytes this executor transfers
double totalDurationMsec; ///< Total duration for all iterations for this Executor
int totalSubExecs; ///< Total number of subExecutors to use
bool useSubIndices; ///< Use subexecutor indicies
int numSubIndices; ///< Number of subindices this ExeDevice has
int wallClockRate; ///< (GFX-only) Device wall clock rate
vector<SubExecParam> subExecParamCpu; ///< Subexecutor parameters for this executor
vector<TransferResources> resources; ///< Per-Transfer resources
// For GPU-Executors
SubExecParam* subExecParamGpu; ///< GPU copy of subExecutor parameters
vector<hipStream_t> streams; ///< HIP streams to launch on
vector<hipEvent_t> startEvents; ///< HIP start timing event
vector<hipEvent_t> stopEvents; ///< HIP stop timing event
};
// Data validation-related functions
//========================================================================================
// Pseudo-random formula for each element in array
static __host__ float PrepSrcValue(int srcBufferIdx, size_t idx)
{
return (((idx % 383) * 517) % 383 + 31) * (srcBufferIdx + 1);
}
// Fills a pre-sized buffer with the pattern, based on which src index buffer
// Note: Can also generate expected dst buffer
static void PrepareReference(ConfigOptions const& cfg, std::vector<float>& cpuBuffer, int bufferIdx)
{
size_t N = cpuBuffer.size();
// Source buffer
if (bufferIdx >= 0) {
// Use fill pattern if specified
size_t patternLen = cfg.data.fillPattern.size();
if (patternLen > 0) {
size_t copies = N / patternLen;
size_t leftOver = N % patternLen;
float* cpuBufferPtr = cpuBuffer.data();
for (int i = 0; i < copies; i++) {
memcpy(cpuBufferPtr, cfg.data.fillPattern.data(), patternLen * sizeof(float));
cpuBufferPtr += patternLen;
}
if (leftOver)
memcpy(cpuBufferPtr, cfg.data.fillPattern.data(), leftOver * sizeof(float));
} else {
for (size_t i = 0; i < N; ++i)
cpuBuffer[i] = PrepSrcValue(bufferIdx, i);
}
} else { // Destination buffer
int numSrcs = -bufferIdx - 1;
if (numSrcs == 0) {
// Note: 0x75757575 = 13323083.0
memset(cpuBuffer.data(), MEMSET_CHAR, N * sizeof(float));
} else {
PrepareReference(cfg, cpuBuffer, 0);
if (numSrcs > 1) {
std::vector<float> temp(N);
for (int i = 1; i < numSrcs; i++) {
PrepareReference(cfg, temp, i);
for (int j = 0; j < N; j++) {
cpuBuffer[i] += temp[i];
}
}
}
}
}
}
// Checks that destination buffers match expected values
static ErrResult ValidateAllTransfers(ConfigOptions const& cfg,
vector<Transfer> const& transfers,
vector<TransferResources*> const& transferResources,
vector<vector<float>> const& dstReference,
vector<float>& outputBuffer)
{
float* output;
size_t initOffset = cfg.data.byteOffset / sizeof(float);
for (auto resource : transferResources) {
int transferIdx = resource->transferIdx;
Transfer const& t = transfers[transferIdx];
size_t N = t.numBytes / sizeof(float);
float const* expected = dstReference[t.srcs.size()].data();
for (int dstIdx = 0; dstIdx < resource->dstMem.size(); dstIdx++) {
if (IsCpuMemType(t.dsts[dstIdx].memType) || cfg.data.validateDirect) {
output = (resource->dstMem[dstIdx]) + initOffset;
} else {
ERR_CHECK(hipMemcpy(outputBuffer.data(), (resource->dstMem[dstIdx]) + initOffset, t.numBytes, hipMemcpyDefault));
ERR_CHECK(hipDeviceSynchronize());
output = outputBuffer.data();
}
if (memcmp(output, expected, t.numBytes)) {
// Difference found - find first error
for (size_t i = 0; i < N; i++) {
if (output[i] != expected[i]) {
return {ERR_FATAL, "Transfer %d: Unexpected mismatch at index %lu of destination %d: Expected %10.5f Actual: %10.5f",
transferIdx, i, dstIdx, expected[i], output[i]};
}
}
return {ERR_FATAL, "Transfer %d: Unexpected output mismatch for destination %d", transferIdx, dstIdx};
}
}
}
return ERR_NONE;
}
// Preparation-related functions
//========================================================================================
// Prepares input parameters for each subexecutor
// Determines how sub-executors will split up the work
// Initializes counters
static ErrResult PrepareSubExecParams(ConfigOptions const& cfg,
Transfer const& transfer,
TransferResources& resources)
{
// Each subExecutor needs to know src/dst pointers and how many elements to transfer
// Figure out the sub-array each subExecutor works on for this Transfer
// - Partition N as evenly as possible, but try to keep subarray sizes as multiples of data.blockBytes
// except the very last one, for alignment reasons
size_t const N = transfer.numBytes / sizeof(float);
int const initOffset = cfg.data.byteOffset / sizeof(float);
int const targetMultiple = cfg.data.blockBytes / sizeof(float);
// In some cases, there may not be enough data for all subExectors
int const maxSubExecToUse = std::min((size_t)(N + targetMultiple - 1) / targetMultiple,
(size_t)transfer.numSubExecs);
vector<SubExecParam>& subExecParam = resources.subExecParamCpu;
subExecParam.clear();
subExecParam.resize(transfer.numSubExecs);
size_t assigned = 0;
for (int i = 0; i < transfer.numSubExecs; ++i) {
SubExecParam& p = subExecParam[i];
p.numSrcs = resources.srcMem.size();
p.numDsts = resources.dstMem.size();
p.startCycle = 0;
p.stopCycle = 0;
p.hwId = 0;
p.xccId = 0;
// In single team mode, subexecutors stripe across the entire array
if (cfg.gfx.useSingleTeam && transfer.exeDevice.exeType == EXE_GPU_GFX) {
p.N = N;
p.teamSize = transfer.numSubExecs;
p.teamIdx = i;
for (int iSrc = 0; iSrc < p.numSrcs; ++iSrc) p.src[iSrc] = resources.srcMem[iSrc] + initOffset;
for (int iDst = 0; iDst < p.numDsts; ++iDst) p.dst[iDst] = resources.dstMem[iDst] + initOffset;
} else {
// Otherwise, each subexecutor works on separate subarrays
int const subExecLeft = std::max(0, maxSubExecToUse - i);
size_t const leftover = N - assigned;
size_t const roundedN = (leftover + targetMultiple - 1) / targetMultiple;
p.N = subExecLeft ? std::min(leftover, ((roundedN / subExecLeft) * targetMultiple)) : 0;
p.teamSize = 1;
p.teamIdx = 0;
for (int iSrc = 0; iSrc < p.numSrcs; ++iSrc) p.src[iSrc] = resources.srcMem[iSrc] + initOffset + assigned;
for (int iDst = 0; iDst < p.numDsts; ++iDst) p.dst[iDst] = resources.dstMem[iDst] + initOffset + assigned;
assigned += p.N;
}
p.preferredXccId = transfer.exeSubIndex;
// Override if XCC table has been specified
vector<vector<int>> const& table = cfg.gfx.prefXccTable;
if (transfer.exeDevice.exeType == EXE_GPU_GFX && transfer.exeSubIndex == -1 && !table.empty() &&
transfer.dsts.size() == 1 && IsGpuMemType(transfer.dsts[0].memType)) {
if (table.size() <= transfer.exeDevice.exeIndex ||
table[transfer.exeDevice.exeIndex].size() <= transfer.dsts[0].memIndex) {
return {ERR_FATAL, "[gfx.xccPrefTable] is too small"};
}
p.preferredXccId = table[transfer.exeDevice.exeIndex][transfer.dsts[0].memIndex];
if (p.preferredXccId < 0 || p.preferredXccId >= GetNumExecutorSubIndices(transfer.exeDevice)) {
return {ERR_FATAL, "[gfx.xccPrefTable] defines out-of-bound XCC index %d", p.preferredXccId};
}
}
}
// Clear counters
resources.totalDurationMsec = 0.0;
return ERR_NONE;
}
// Prepare each executor
// Allocates memory for src/dst, prepares subexecutors, executor-specific data structures
static ErrResult PrepareExecutor(ConfigOptions const& cfg,
vector<Transfer> const& transfers,
ExeDevice const& exeDevice,
ExeInfo& exeInfo)
{
exeInfo.totalDurationMsec = 0.0;
// Loop over each transfer this executor is involved in
for (auto& resources : exeInfo.resources) {
Transfer const& t = transfers[resources.transferIdx];
resources.numBytes = t.numBytes;
// Allocate source memory
resources.srcMem.resize(t.srcs.size());
for (int iSrc = 0; iSrc < t.srcs.size(); ++iSrc) {
MemDevice const& srcMemDevice = t.srcs[iSrc];
// Ensure executing GPU can access source memory
if (exeDevice.exeType == EXE_GPU_GFX && IsGpuMemType(srcMemDevice.memType) &&
srcMemDevice.memIndex != exeDevice.exeIndex) {
ERR_CHECK(EnablePeerAccess(exeDevice.exeIndex, srcMemDevice.memIndex));
}
ERR_CHECK(AllocateMemory(srcMemDevice, t.numBytes + cfg.data.byteOffset, (void**)&resources.srcMem[iSrc]));
}
// Allocate destination memory
resources.dstMem.resize(t.dsts.size());
for (int iDst = 0; iDst < t.dsts.size(); ++iDst) {
MemDevice const& dstMemDevice = t.dsts[iDst];
// Ensure executing GPU can access destination memory
if (exeDevice.exeType == EXE_GPU_GFX && IsGpuMemType(dstMemDevice.memType) &&
dstMemDevice.memIndex != exeDevice.exeIndex) {
ERR_CHECK(EnablePeerAccess(exeDevice.exeIndex, dstMemDevice.memIndex));
}
ERR_CHECK(AllocateMemory(dstMemDevice, t.numBytes + cfg.data.byteOffset, (void**)&resources.dstMem[iDst]));
}
if (exeDevice.exeType == EXE_GPU_DMA && (t.exeSubIndex != -1 || cfg.dma.useHsaCopy)) {
#if !defined(__NVCC__)
// Collect HSA agent information
hsa_amd_pointer_info_t info;
info.size = sizeof(info);
ERR_CHECK(hsa_amd_pointer_info(resources.dstMem[0], &info, NULL, NULL, NULL));
resources.dstAgent = info.agentOwner;
ERR_CHECK(hsa_amd_pointer_info(resources.srcMem[0], &info, NULL, NULL, NULL));
resources.srcAgent = info.agentOwner;
// Create HSA completion signal
ERR_CHECK(hsa_signal_create(1, 0, NULL, &resources.signal));
if (t.exeSubIndex != -1)
resources.sdmaEngineId = (hsa_amd_sdma_engine_id_t)(1U << t.exeSubIndex);
#endif
}
// Prepare subexecutor parameters
ERR_CHECK(PrepareSubExecParams(cfg, t, resources));
}
// Prepare additional requirements for GPU-based executors
if (exeDevice.exeType == EXE_GPU_GFX || exeDevice.exeType == EXE_GPU_DMA) {
ERR_CHECK(hipSetDevice(exeDevice.exeIndex));
// Determine how many streams to use
int const numStreamsToUse = (exeDevice.exeType == EXE_GPU_DMA ||
(exeDevice.exeType == EXE_GPU_GFX && cfg.gfx.useMultiStream))
? exeInfo.resources.size() : 1;
exeInfo.streams.resize(numStreamsToUse);
// Create streams
for (int i = 0; i < numStreamsToUse; ++i) {
if (cfg.gfx.cuMask.size()) {
#if !defined(__NVCC__)
ERR_CHECK(hipExtStreamCreateWithCUMask(&exeInfo.streams[i], cfg.gfx.cuMask.size(),
cfg.gfx.cuMask.data()));
#else
return {ERR_FATAL, "CU Masking in not supported on NVIDIA hardware"};
#endif
} else {
ERR_CHECK(hipStreamCreate(&exeInfo.streams[i]));
}
}
if (cfg.gfx.useHipEvents || cfg.dma.useHipEvents) {
exeInfo.startEvents.resize(numStreamsToUse);
exeInfo.stopEvents.resize(numStreamsToUse);
for (int i = 0; i < numStreamsToUse; ++i) {
ERR_CHECK(hipEventCreate(&exeInfo.startEvents[i]));
ERR_CHECK(hipEventCreate(&exeInfo.stopEvents[i]));
}
}
}
// Prepare for GPU GFX executor
if (exeDevice.exeType == EXE_GPU_GFX) {
// Allocate one contiguous chunk of GPU memory for threadblock parameters
// This allows support for executing one transfer per stream, or all transfers in a single stream
#if !defined(__NVCC__)
MemType memType = MEM_GPU; // AMD hardware can directly access GPU memory from host
#else
MemType memType = MEM_MANAGED; // NVIDIA hardware requires managed memory to access from host
#endif
ERR_CHECK(AllocateMemory({memType, exeDevice.exeIndex}, exeInfo.totalSubExecs * sizeof(SubExecParam),
(void**)&exeInfo.subExecParamGpu));
// Create subexecutor parameter array for entire executor
exeInfo.subExecParamCpu.clear();
exeInfo.numSubIndices = GetNumExecutorSubIndices(exeDevice);
#if defined(__NVCC__)
exeInfo.wallClockRate = 1000000;
#else
ERR_CHECK(hipDeviceGetAttribute(&exeInfo.wallClockRate, hipDeviceAttributeWallClockRate,
exeDevice.exeIndex));
#endif
int transferOffset = 0;
for (auto& resources : exeInfo.resources) {
Transfer const& t = transfers[resources.transferIdx];
resources.subExecParamGpuPtr = exeInfo.subExecParamGpu + transferOffset;
for (auto p : resources.subExecParamCpu) {
resources.subExecIdx.push_back(exeInfo.subExecParamCpu.size());
exeInfo.subExecParamCpu.push_back(p);
transferOffset++;
}
}
// Copy sub executor parameters to GPU
ERR_CHECK(hipSetDevice(exeDevice.exeIndex));
ERR_CHECK(hipMemcpy(exeInfo.subExecParamGpu,
exeInfo.subExecParamCpu.data(),
exeInfo.totalSubExecs * sizeof(SubExecParam),
hipMemcpyHostToDevice));
ERR_CHECK(hipDeviceSynchronize());
}
return ERR_NONE;
}
// Teardown-related functions
//========================================================================================
// Clean up all resources
static ErrResult TeardownExecutor(ConfigOptions const& cfg,
ExeDevice const& exeDevice,
vector<Transfer> const& transfers,
ExeInfo& exeInfo)
{
// Loop over each transfer this executor is involved in
for (auto& resources : exeInfo.resources) {
Transfer const& t = transfers[resources.transferIdx];
// Deallocate source memory
for (int iSrc = 0; iSrc < t.srcs.size(); ++iSrc) {
ERR_CHECK(DeallocateMemory(t.srcs[iSrc].memType, resources.srcMem[iSrc], t.numBytes + cfg.data.byteOffset));
}
// Deallocate destination memory
for (int iDst = 0; iDst < t.dsts.size(); ++iDst) {
ERR_CHECK(DeallocateMemory(t.dsts[iDst].memType, resources.dstMem[iDst], t.numBytes + cfg.data.byteOffset));
}
// Destroy HSA signal for DMA executor
#if !defined(__NVCC__)
if (exeDevice.exeType == EXE_GPU_DMA && (t.exeSubIndex != -1 || cfg.dma.useHsaCopy)) {
ERR_CHECK(hsa_signal_destroy(resources.signal));
}
#endif
}
// Teardown additional requirements for GPU-based executors
if (exeDevice.exeType == EXE_GPU_GFX || exeDevice.exeType == EXE_GPU_DMA) {
for (auto stream : exeInfo.streams)
ERR_CHECK(hipStreamDestroy(stream));
if (cfg.gfx.useHipEvents || cfg.dma.useHipEvents) {
for (auto event : exeInfo.startEvents)
ERR_CHECK(hipEventDestroy(event));
for (auto event : exeInfo.stopEvents)
ERR_CHECK(hipEventDestroy(event));
}
}
if (exeDevice.exeType == EXE_GPU_GFX) {
#if !defined(__NVCC__)
MemType memType = MEM_GPU;
#else
MemType memType = MEM_MANAGED;
#endif
ERR_CHECK(DeallocateMemory(memType, exeInfo.subExecParamGpu, exeInfo.totalSubExecs * sizeof(SubExecParam)));
}
return ERR_NONE;
}
// CPU Executor-related functions
//========================================================================================
// Kernel for CPU execution (run by a single subexecutor)
static void CpuReduceKernel(SubExecParam const& p)
{
if (p.N == 0) return;
int const& numSrcs = p.numSrcs;
int const& numDsts = p.numDsts;
if (numSrcs == 0) {
for (int i = 0; i < numDsts; ++i) {
memset(p.dst[i], MEMSET_CHAR, p.N * sizeof(float));
//for (int j = 0; j < p.N; j++) p.dst[i][j] = MEMSET_VAL;
}
} else if (numSrcs == 1) {
float const* __restrict__ src = p.src[0];
if (numDsts == 0) {
float sum = 0.0;
for (int j = 0; j < p.N; j++)
sum += p.src[0][j];
// Add a dummy check to ensure the read is not optimized out
if (sum != sum) {
printf("[ERROR] Nan detected\n");
}
} else {
for (int i = 0; i < numDsts; ++i)
memcpy(p.dst[i], src, p.N * sizeof(float));
}
} else {
float sum = 0.0f;
for (int j = 0; j < p.N; j++) {
sum = p.src[0][j];
for (int i = 1; i < numSrcs; i++) sum += p.src[i][j];
for (int i = 0; i < numDsts; i++) p.dst[i][j] = sum;
}
}
}
// Execution of a single CPU Transfers
static void ExecuteCpuTransfer(int const iteration,
ConfigOptions const& cfg,
int const exeIndex,
TransferResources& resources)
{
auto cpuStart = std::chrono::high_resolution_clock::now();
vector<std::thread> childThreads;
int subIteration = 0;
do {
for (auto const& subExecParam : resources.subExecParamCpu)
childThreads.emplace_back(std::thread(CpuReduceKernel, std::cref(subExecParam)));
for (auto& subExecThread : childThreads)
subExecThread.join();
childThreads.clear();
} while (++subIteration != cfg.general.numSubIterations);
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double deltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
if (iteration >= 0) {
resources.totalDurationMsec += deltaMsec;
if (cfg.general.recordPerIteration)
resources.perIterMsec.push_back(deltaMsec);
}
}
// Execution of a single CPU executor
static ErrResult RunCpuExecutor(int const iteration,
ConfigOptions const& cfg,
int const exeIndex,
ExeInfo& exeInfo)
{
numa_run_on_node(exeIndex);
auto cpuStart = std::chrono::high_resolution_clock::now();
vector<std::thread> asyncTransfers;
for (auto& resource : exeInfo.resources) {
asyncTransfers.emplace_back(std::thread(ExecuteCpuTransfer,
iteration,
std::cref(cfg),
exeIndex,
std::ref(resource)));
}
for (auto& asyncTransfer : asyncTransfers)
asyncTransfer.join();
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double deltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
if (iteration >= 0)
exeInfo.totalDurationMsec += deltaMsec;
return ERR_NONE;
}
// GFX Executor-related functions
//========================================================================================
// Converts register value to a CU/SM index
static uint32_t GetId(uint32_t hwId)
{
#if defined(__NVCC_)
return hwId;
#else
// Based on instinct-mi200-cdna2-instruction-set-architecture.pdf
int const shId = (hwId >> 12) & 1;
int const cuId = (hwId >> 8) & 15;
int const seId = (hwId >> 13) & 3;
return (shId << 5) + (cuId << 2) + seId;
#endif
}
// Device level timestamp function
__device__ int64_t GetTimestamp()
{
#if defined(__NVCC__)
int64_t result;
asm volatile("mov.u64 %0, %%globaltimer;" : "=l"(result));
return result;
#else
return wall_clock64();
#endif
}
// Helper function for memset
template <typename T> __device__ __forceinline__ T MemsetVal();
template <> __device__ __forceinline__ float MemsetVal(){ return MEMSET_VAL; };
template <> __device__ __forceinline__ float4 MemsetVal(){ return make_float4(MEMSET_VAL,
MEMSET_VAL,
MEMSET_VAL,
MEMSET_VAL); }
// Kernel for GFX execution
template <int BLOCKSIZE, int UNROLL>
__global__ void __launch_bounds__(BLOCKSIZE)
GpuReduceKernel(SubExecParam* params, int waveOrder, int numSubIterations)
{
int64_t startCycle;
if (threadIdx.x == 0) startCycle = GetTimestamp();
SubExecParam& p = params[blockIdx.y];
// Filter by XCC
#if !defined(__NVCC__)
int32_t xccId;
GetXccId(xccId);
if (p.preferredXccId != -1 && xccId != p.preferredXccId) return;
#endif
// Collect data information
int32_t const numSrcs = p.numSrcs;
int32_t const numDsts = p.numDsts;
float4 const* __restrict__ srcFloat4[MAX_SRCS];
float4* __restrict__ dstFloat4[MAX_DSTS];
for (int i = 0; i < numSrcs; i++) srcFloat4[i] = (float4*)p.src[i];
for (int i = 0; i < numDsts; i++) dstFloat4[i] = (float4*)p.dst[i];
// Operate on wavefront granularity
int32_t const nTeams = p.teamSize; // Number of threadblocks working together on this subarray
int32_t const teamIdx = p.teamIdx; // Index of this threadblock within the team
int32_t const nWaves = BLOCKSIZE / warpSize; // Number of wavefronts within this threadblock
int32_t const waveIdx = threadIdx.x / warpSize; // Index of this wavefront within the threadblock
int32_t const tIdx = threadIdx.x % warpSize; // Thread index within wavefront
size_t const numFloat4 = p.N / 4;
int32_t teamStride, waveStride, unrlStride, teamStride2, waveStride2;
switch (waveOrder) {
case 0: /* U,W,C */ unrlStride = 1; waveStride = UNROLL; teamStride = UNROLL * nWaves; teamStride2 = nWaves; waveStride2 = 1 ; break;
case 1: /* U,C,W */ unrlStride = 1; teamStride = UNROLL; waveStride = UNROLL * nTeams; teamStride2 = 1; waveStride2 = nTeams; break;
case 2: /* W,U,C */ waveStride = 1; unrlStride = nWaves; teamStride = nWaves * UNROLL; teamStride2 = nWaves; waveStride2 = 1 ; break;
case 3: /* W,C,U */ waveStride = 1; teamStride = nWaves; unrlStride = nWaves * nTeams; teamStride2 = nWaves; waveStride2 = 1 ; break;
case 4: /* C,U,W */ teamStride = 1; unrlStride = nTeams; waveStride = nTeams * UNROLL; teamStride2 = 1; waveStride2 = nTeams; break;
case 5: /* C,W,U */ teamStride = 1; waveStride = nTeams; unrlStride = nTeams * nWaves; teamStride2 = 1; waveStride2 = nTeams; break;
}
int subIterations = 0;
while (1) {
// First loop: Each wavefront in the team works on UNROLL float4s per thread
size_t const loop1Stride = nTeams * nWaves * UNROLL * warpSize;
size_t const loop1Limit = numFloat4 / loop1Stride * loop1Stride;
{
float4 val[UNROLL];
if (numSrcs == 0) {
#pragma unroll
for (int u = 0; u < UNROLL; u++)
val[u] = MemsetVal<float4>();
}
for (size_t idx = (teamIdx * teamStride + waveIdx * waveStride) * warpSize + tIdx; idx < loop1Limit; idx += loop1Stride) {
// Read sources into memory and accumulate in registers
if (numSrcs) {
for (int u = 0; u < UNROLL; u++)
val[u] = srcFloat4[0][idx + u * unrlStride * warpSize];
for (int s = 1; s < numSrcs; s++)
for (int u = 0; u < UNROLL; u++)
val[u] += srcFloat4[s][idx + u * unrlStride * warpSize];
}
// Write accumulation to all outputs
for (int d = 0; d < numDsts; d++) {
#pragma unroll
for (int u = 0; u < UNROLL; u++)
dstFloat4[d][idx + u * unrlStride * warpSize] = val[u];
}
}
}
// Second loop: Deal with remaining float4s
{
if (loop1Limit < numFloat4) {
float4 val;
if (numSrcs == 0) val = MemsetVal<float4>();
size_t const loop2Stride = nTeams * nWaves * warpSize;
for (size_t idx = loop1Limit + (teamIdx * teamStride2 + waveIdx * waveStride2) * warpSize + tIdx;
idx < numFloat4; idx += loop2Stride) {
if (numSrcs) {
val = srcFloat4[0][idx];
for (int s = 1; s < numSrcs; s++)
val += srcFloat4[s][idx];
}
for (int d = 0; d < numDsts; d++)
dstFloat4[d][idx] = val;
}
}
}
// Third loop; Deal with remaining floats
{
if (numFloat4 * 4 < p.N) {
float val;
if (numSrcs == 0) val = MemsetVal<float>();
size_t const loop3Stride = nTeams * nWaves * warpSize;
for( size_t idx = numFloat4 * 4 + (teamIdx * teamStride2 + waveIdx * waveStride2) * warpSize + tIdx; idx < p.N; idx += loop3Stride) {
if (numSrcs) {
val = p.src[0][idx];
for (int s = 1; s < numSrcs; s++)
val += p.src[s][idx];
}
for (int d = 0; d < numDsts; d++)
p.dst[d][idx] = val;
}
}
}
if (++subIterations == numSubIterations) break;
}
// Wait for all threads to finish
__syncthreads();
if (threadIdx.x == 0) {
__threadfence_system();
p.stopCycle = GetTimestamp();
p.startCycle = startCycle;
GetHwId(p.hwId);
GetXccId(p.xccId);
}
}
#define GPU_KERNEL_UNROLL_DECL(BLOCKSIZE) \
{GpuReduceKernel<BLOCKSIZE, 1>, \
GpuReduceKernel<BLOCKSIZE, 2>, \
GpuReduceKernel<BLOCKSIZE, 3>, \
GpuReduceKernel<BLOCKSIZE, 4>, \
GpuReduceKernel<BLOCKSIZE, 5>, \
GpuReduceKernel<BLOCKSIZE, 6>, \
GpuReduceKernel<BLOCKSIZE, 7>, \
GpuReduceKernel<BLOCKSIZE, 8>}
// Table of all GPU Reduction kernel functions (templated blocksize / unroll)
typedef void (*GpuKernelFuncPtr)(SubExecParam*, int, int);
GpuKernelFuncPtr GpuKernelTable[MAX_WAVEGROUPS][MAX_UNROLL] =
{
GPU_KERNEL_UNROLL_DECL(64),
GPU_KERNEL_UNROLL_DECL(128),
GPU_KERNEL_UNROLL_DECL(192),
GPU_KERNEL_UNROLL_DECL(256),
GPU_KERNEL_UNROLL_DECL(320),
GPU_KERNEL_UNROLL_DECL(384),
GPU_KERNEL_UNROLL_DECL(448),
GPU_KERNEL_UNROLL_DECL(512)
};
#undef GPU_KERNEL_UNROLL_DECL
// Execute a single GPU Transfer (when using 1 stream per Transfer)
static ErrResult ExecuteGpuTransfer(int const iteration,
hipStream_t const stream,
hipEvent_t const startEvent,
hipEvent_t const stopEvent,
int const xccDim,
ConfigOptions const& cfg,
TransferResources& resources)
{
auto cpuStart = std::chrono::high_resolution_clock::now();
int numSubExecs = resources.subExecParamCpu.size();
dim3 const gridSize(xccDim, numSubExecs, 1);
dim3 const blockSize(cfg.gfx.blockSize, 1);
#if defined(__NVCC__)
if (startEvent != NULL)
ERR_CHECK(hipEventRecord(startEvent, stream));
GpuKernelTable[cfg.gfx.blockSize/64 - 1][cfg.gfx.unrollFactor - 1]
<<<gridSize, blockSize, 0, stream>>>
(resources.subExecParamGpuPtr, cfg.gfx.waveOrder, cfg.general.numSubIterations);
if (stopEvent != NULL)
ERR_CHECK(hipEventRecord(stopEvent, stream));
#else
hipExtLaunchKernelGGL(GpuKernelTable[cfg.gfx.blockSize/64 - 1][cfg.gfx.unrollFactor - 1],
gridSize, blockSize, 0, stream, startEvent, stopEvent,
0, resources.subExecParamGpuPtr, cfg.gfx.waveOrder, cfg.general.numSubIterations);
#endif
ERR_CHECK(hipStreamSynchronize(stream));
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double cpuDeltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
if (iteration >= 0) {
double deltaMsec = cpuDeltaMsec;
if (startEvent != NULL) {
float gpuDeltaMsec;
ERR_CHECK(hipEventElapsedTime(&gpuDeltaMsec, startEvent, stopEvent));
deltaMsec = gpuDeltaMsec;
}
resources.totalDurationMsec += deltaMsec;
if (cfg.general.recordPerIteration) {
resources.perIterMsec.push_back(deltaMsec);
std::set<std::pair<int,int>> CUs;
for (int i = 0; i < numSubExecs; i++) {
CUs.insert(std::make_pair(resources.subExecParamGpuPtr[i].xccId,
GetId(resources.subExecParamGpuPtr[i].hwId)));
}
resources.perIterCUs.push_back(CUs);
}
}
return ERR_NONE;
}
// Execute a single GPU executor
static ErrResult RunGpuExecutor(int const iteration,
ConfigOptions const& cfg,
int const exeIndex,
ExeInfo& exeInfo)
{
auto cpuStart = std::chrono::high_resolution_clock::now();
ERR_CHECK(hipSetDevice(exeIndex));
int xccDim = exeInfo.useSubIndices ? exeInfo.numSubIndices : 1;
if (cfg.gfx.useMultiStream) {
// Launch each Transfer separately in its own stream
vector<std::future<ErrResult>> asyncTransfers;
for (int i = 0; i < exeInfo.streams.size(); i++) {
asyncTransfers.emplace_back(std::async(std::launch::async,
ExecuteGpuTransfer,
iteration,
exeInfo.streams[i],
cfg.gfx.useHipEvents ? exeInfo.startEvents[i] : NULL,
cfg.gfx.useHipEvents ? exeInfo.stopEvents[i] : NULL,
xccDim,
std::cref(cfg),
std::ref(exeInfo.resources[i])));
}
for (auto& asyncTransfer : asyncTransfers)
ERR_CHECK(asyncTransfer.get());
} else {
// Combine all the Transfers into a single kernel launch
int numSubExecs = exeInfo.totalSubExecs;
dim3 const gridSize(xccDim, numSubExecs, 1);
dim3 const blockSize(cfg.gfx.blockSize, 1);
hipStream_t stream = exeInfo.streams[0];
#if defined(__NVCC__)
if (cfg.gfx.useHipEvents)
ERR_CHECK(hipEventRecord(exeInfo.startEvents[0], stream));
GpuKernelTable[cfg.gfx.blockSize/64 - 1][cfg.gfx.unrollFactor - 1]
<<<gridSize, blockSize, 0 , stream>>>
(exeInfo.subExecParamGpu, cfg.gfx.waveOrder, cfg.general.numSubIterations);
if (cfg.gfx.useHipEvents)
ERR_CHECK(hipEventRecord(exeInfo.stopEvents[0], stream));
#else
hipExtLaunchKernelGGL(GpuKernelTable[cfg.gfx.blockSize/64 - 1][cfg.gfx.unrollFactor - 1],
gridSize, blockSize, 0, stream,
cfg.gfx.useHipEvents ? exeInfo.startEvents[0] : NULL,
cfg.gfx.useHipEvents ? exeInfo.stopEvents[0] : NULL, 0,
exeInfo.subExecParamGpu, cfg.gfx.waveOrder, cfg.general.numSubIterations);
#endif
ERR_CHECK(hipStreamSynchronize(stream));
}
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double cpuDeltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
if (iteration >= 0) {
if (cfg.gfx.useHipEvents && !cfg.gfx.useMultiStream) {
float gpuDeltaMsec;
ERR_CHECK(hipEventElapsedTime(&gpuDeltaMsec, exeInfo.startEvents[0], exeInfo.stopEvents[0]));
exeInfo.totalDurationMsec += gpuDeltaMsec;
} else {
exeInfo.totalDurationMsec += cpuDeltaMsec;
}
// Determine timing for each of the individual transfers that were part of this launch
if (!cfg.gfx.useMultiStream) {
for (int i = 0; i < exeInfo.resources.size(); i++) {
TransferResources& resources = exeInfo.resources[i];
long long minStartCycle = std::numeric_limits<long long>::max();
long long maxStopCycle = std::numeric_limits<long long>::min();
std::set<std::pair<int, int>> CUs;
for (auto subExecIdx : resources.subExecIdx) {
minStartCycle = std::min(minStartCycle, exeInfo.subExecParamGpu[subExecIdx].startCycle);
maxStopCycle = std::max(maxStopCycle, exeInfo.subExecParamGpu[subExecIdx].stopCycle);
if (cfg.general.recordPerIteration) {
CUs.insert(std::make_pair(exeInfo.subExecParamGpu[subExecIdx].xccId,
GetId(exeInfo.subExecParamGpu[subExecIdx].hwId)));
}
}
double deltaMsec = (maxStopCycle - minStartCycle) / (double)(exeInfo.wallClockRate);
resources.totalDurationMsec += deltaMsec;
if (cfg.general.recordPerIteration) {
resources.perIterMsec.push_back(deltaMsec);
resources.perIterCUs.push_back(CUs);
}
}
}
}
return ERR_NONE;
}
// DMA Executor-related functions
//========================================================================================
// Execute a single DMA Transfer
static ErrResult ExecuteDmaTransfer(int const iteration,
bool const useSubIndices,
hipStream_t const stream,
hipEvent_t const startEvent,
hipEvent_t const stopEvent,
ConfigOptions const& cfg,
TransferResources& resources)
{
auto cpuStart = std::chrono::high_resolution_clock::now();
int subIterations = 0;
if (!useSubIndices && !cfg.dma.useHsaCopy) {
if (cfg.dma.useHipEvents)
ERR_CHECK(hipEventRecord(startEvent, stream));
// Use hipMemcpy
do {
ERR_CHECK(hipMemcpyAsync(resources.dstMem[0], resources.srcMem[0], resources.numBytes,
hipMemcpyDefault, stream));
} while (++subIterations != cfg.general.numSubIterations);
if (cfg.dma.useHipEvents)
ERR_CHECK(hipEventRecord(stopEvent, stream));
ERR_CHECK(hipStreamSynchronize(stream));
} else {
#if defined(__NVCC__)
return {ERR_FATAL, "HSA copy not supported on NVIDIA hardware"};
#else
// Use HSA async copy
do {
hsa_signal_store_screlease(resources.signal, 1);
if (!useSubIndices) {
ERR_CHECK(hsa_amd_memory_async_copy(resources.dstMem[0], resources.dstAgent,
resources.srcMem[0], resources.srcAgent,
resources.numBytes, 0, NULL,
resources.signal));
} else {
HSA_CALL(hsa_amd_memory_async_copy_on_engine(resources.dstMem[0], resources.dstAgent,
resources.srcMem[0], resources.srcAgent,
resources.numBytes, 0, NULL,
resources.signal,
resources.sdmaEngineId, true));
}
// Wait for SDMA transfer to complete
while(hsa_signal_wait_scacquire(resources.signal,
HSA_SIGNAL_CONDITION_LT, 1, UINT64_MAX,
HSA_WAIT_STATE_ACTIVE) >= 1);
} while (++subIterations != cfg.general.numSubIterations);
#endif
}
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double cpuDeltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
if (iteration >= 0) {
double deltaMsec = cpuDeltaMsec;
if (!useSubIndices && !cfg.dma.useHsaCopy && cfg.dma.useHipEvents) {
float gpuDeltaMsec;
ERR_CHECK(hipEventElapsedTime(&gpuDeltaMsec, startEvent, stopEvent));
deltaMsec = gpuDeltaMsec;
}
resources.totalDurationMsec += deltaMsec;
if (cfg.general.recordPerIteration)
resources.perIterMsec.push_back(deltaMsec);
}
return ERR_NONE;
}
// Execute a single DMA executor
static ErrResult RunDmaExecutor(int const iteration,
ConfigOptions const& cfg,
int const exeIndex,
ExeInfo& exeInfo)
{
auto cpuStart = std::chrono::high_resolution_clock::now();
ERR_CHECK(hipSetDevice(exeIndex));
vector<std::future<ErrResult>> asyncTransfers;
for (int i = 0; i < exeInfo.resources.size(); i++) {
asyncTransfers.emplace_back(std::async(std::launch::async,
ExecuteDmaTransfer,
iteration,
exeInfo.useSubIndices,
exeInfo.streams[i],
cfg.dma.useHipEvents ? exeInfo.startEvents[i] : NULL,
cfg.dma.useHipEvents ? exeInfo.stopEvents[i] : NULL,
std::cref(cfg),
std::ref(exeInfo.resources[i])));
}
for (auto& asyncTransfer : asyncTransfers)
ERR_CHECK(asyncTransfer.get());
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double deltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
if (iteration >= 0)
exeInfo.totalDurationMsec += deltaMsec;
return ERR_NONE;
}
// Executor-related functions
//========================================================================================
static ErrResult RunExecutor(int const iteration,
ConfigOptions const& cfg,
ExeDevice const& exeDevice,
ExeInfo& exeInfo)
{
switch (exeDevice.exeType) {
case EXE_CPU: return RunCpuExecutor(iteration, cfg, exeDevice.exeIndex, exeInfo);
case EXE_GPU_GFX: return RunGpuExecutor(iteration, cfg, exeDevice.exeIndex, exeInfo);
case EXE_GPU_DMA: return RunDmaExecutor(iteration, cfg, exeDevice.exeIndex, exeInfo);
default: return {ERR_FATAL, "Unsupported executor (%d)", exeDevice.exeType};
}
}
} // End of anonymous namespace
//========================================================================================
ErrResult::ErrResult(ErrType err) : errType(err), errMsg("") {};
ErrResult::ErrResult(hipError_t err)
{
if (err == hipSuccess) {
this->errType = ERR_NONE;
this->errMsg = "";
} else {
this->errType = ERR_FATAL;
this->errMsg = std::string("HIP Error: ") + hipGetErrorString(err);
}
}
#if !defined(__NVCC__)
ErrResult::ErrResult(hsa_status_t err)
{
if (err == HSA_STATUS_SUCCESS) {
this->errType = ERR_NONE;
this->errMsg = "";
} else {
const char *errString = NULL;
hsa_status_string(err, &errString);
this->errType = ERR_FATAL;
this->errMsg = std::string("HSA Error: ") + errString;
}
}
#endif
ErrResult::ErrResult(ErrType errType, const char* format, ...)
{
this->errType = errType;
va_list args, args_temp;
va_start(args, format);
va_copy(args_temp, args);
int len = vsnprintf(nullptr, 0, format, args);
if (len < 0) {
va_end(args_temp);
va_end(args);
} else {
this->errMsg.resize(len);
vsnprintf(this->errMsg.data(), len+1, format, args_temp);
}
va_end(args_temp);
va_end(args);
}
bool RunTransfers(ConfigOptions const& cfg,
std::vector<Transfer> const& transfers,
TestResults& results)
{
// Clear all errors;
auto& errResults = results.errResults;
errResults.clear();
// Check for valid configuration
if (ConfigOptionsHaveErrors(cfg, errResults)) return false;
// Check for valid transfers
if (TransfersHaveErrors(cfg, transfers, errResults)) return false;
// Collect up transfers by executor
int minNumSrcs = MAX_SRCS + 1;
int maxNumSrcs = 0;
size_t maxNumBytes = 0;
std::map<ExeDevice, ExeInfo> executorMap;
for (int i = 0; i < transfers.size(); i++) {
Transfer const& t = transfers[i];
ExeInfo& exeInfo = executorMap[t.exeDevice];
exeInfo.totalBytes += t.numBytes;
exeInfo.totalSubExecs += t.numSubExecs;
exeInfo.useSubIndices |= (t.exeSubIndex != -1);
TransferResources resource = {};
resource.transferIdx = i;
exeInfo.resources.push_back(resource);
minNumSrcs = std::min(minNumSrcs, (int)t.srcs.size());
maxNumSrcs = std::max(maxNumSrcs, (int)t.srcs.size());
maxNumBytes = std::max(maxNumBytes, t.numBytes);
}
// Loop over each executor and prepare
// - Allocates memory for each Transfer
// - Set up work for subexecutors
vector<TransferResources*> transferResources;
for (auto& exeInfoPair : executorMap) {
ExeDevice const& exeDevice = exeInfoPair.first;
ExeInfo& exeInfo = exeInfoPair.second;
ERR_APPEND(PrepareExecutor(cfg, transfers, exeDevice, exeInfo), errResults);
for (auto& resource : exeInfo.resources) {
transferResources.push_back(&resource);
}
}
// Prepare reference src/dst arrays - only once for largest size
size_t maxN = maxNumBytes / sizeof(float);
vector<float> outputBuffer(maxN);
vector<vector<float>> dstReference(maxNumSrcs + 1, vector<float>(maxN));
{
vector<vector<float>> srcReference(maxNumSrcs, vector<float>(maxN));
memset(dstReference[0].data(), MEMSET_CHAR, maxNumBytes);
for (int numSrcs = 0; numSrcs < maxNumSrcs; numSrcs++) {
PrepareReference(cfg, srcReference[numSrcs], numSrcs);
for (int i = 0; i < maxN; i++) {
dstReference[numSrcs+1][i] = (numSrcs == 0 ? 0 : dstReference[numSrcs][i]) + srcReference[numSrcs][i];
}
}
// Release un-used partial sums
for (int numSrcs = 0; numSrcs < minNumSrcs; numSrcs++)
dstReference[numSrcs].clear();
// Initialize all src memory buffers
for (auto resource : transferResources) {
for (int srcIdx = 0; srcIdx < resource->srcMem.size(); srcIdx++) {
ERR_APPEND(hipMemcpy(resource->srcMem[srcIdx], srcReference[srcIdx].data(), resource->numBytes,
hipMemcpyDefault), errResults);
}
}
}
// Pause before starting when running in iteractive mode
if (cfg.general.useInteractive) {
printf("Memory prepared:\n");
for (int i = 0; i < transfers.size(); i++) {
ExeInfo const& exeInfo = executorMap[transfers[i].exeDevice];
printf("Transfer %03d:\n", i);
for (int iSrc = 0; iSrc < transfers[i].srcs.size(); ++iSrc)
printf(" SRC %0d: %p\n", iSrc, transferResources[i]->srcMem[iSrc]);
for (int iDst = 0; iDst < transfers[i].dsts.size(); ++iDst)
printf(" DST %0d: %p\n", iDst, transferResources[i]->dstMem[iDst]);
}
printf("Hit <Enter> to continue: ");
if (scanf("%*c") != 0) {
printf("[ERROR] Unexpected input\n");
exit(1);
}
printf("\n");
}
// Perform iterations
size_t numTimedIterations = 0;
double totalCpuTimeSec = 0.0;
for (int iteration = -cfg.general.numWarmups; ; iteration++) {
// Stop if number of iterations/seconds has reached limit
if (cfg.general.numIterations > 0 && iteration >= cfg.general.numIterations) break;
if (cfg.general.numIterations < 0 && totalCpuTimeSec > -cfg.general.numIterations) break;
// Start CPU timing for this iteration
auto cpuStart = std::chrono::high_resolution_clock::now();
// Execute all Transfers in parallel
std::vector<std::future<ErrResult>> asyncExecutors;
for (auto& exeInfoPair : executorMap) {
asyncExecutors.emplace_back(std::async(std::launch::async, RunExecutor,
iteration,
std::cref(cfg),
std::cref(exeInfoPair.first),
std::ref(exeInfoPair.second)));
}
// Wait for all threads to finish
for (auto& asyncExecutor : asyncExecutors) {
ERR_APPEND(asyncExecutor.get(), errResults);
}
// Stop CPU timing for this iteration
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double deltaSec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count();
if (cfg.data.alwaysValidate) {
ERR_APPEND(ValidateAllTransfers(cfg, transfers, transferResources, dstReference, outputBuffer),
errResults);
}
if (iteration >= 0) {
++numTimedIterations;
totalCpuTimeSec += deltaSec;
}
}
// Pause for interactive mode
if (cfg.general.useInteractive) {
printf("Transfers complete. Hit <Enter> to continue: ");
if (scanf("%*c") != 0) {
printf("[ERROR] Unexpected input\n");
exit(1);
}
printf("\n");
}
// Validate results
if (!cfg.data.alwaysValidate) {
ERR_APPEND(ValidateAllTransfers(cfg, transfers, transferResources, dstReference, outputBuffer),
errResults);
}
// Prepare results
results.exeResults.clear();
results.tfrResults.clear();
results.tfrResults.resize(transfers.size());
results.numTimedIterations = numTimedIterations;
results.totalBytesTransferred = 0;
results.avgTotalDurationMsec = (totalCpuTimeSec * 1000.0) / numTimedIterations;
results.overheadMsec = 0.0;
for (auto& exeInfoPair : executorMap) {
ExeDevice const& exeDevice = exeInfoPair.first;
ExeInfo& exeInfo = exeInfoPair.second;
// Copy over executor results
ExeResult& exeResult = results.exeResults[exeDevice];
exeResult.numBytes = exeInfo.totalBytes;
exeResult.avgDurationMsec = exeInfo.totalDurationMsec / numTimedIterations;
exeResult.avgBandwidthGbPerSec = (exeResult.numBytes / 1.0e6) / exeResult.avgDurationMsec;
exeResult.sumBandwidthGbPerSec = 0.0;
exeResult.transferIdx.clear();
results.totalBytesTransferred += exeInfo.totalBytes;
results.overheadMsec = std::max(results.overheadMsec, (results.avgTotalDurationMsec -
exeResult.avgDurationMsec));
// Copy over transfer results
for (auto const& resources : exeInfo.resources) {
int const transferIdx = resources.transferIdx;
TransferResult& tfrResult = results.tfrResults[transferIdx];
exeResult.transferIdx.push_back(transferIdx);
tfrResult.numBytes = resources.numBytes;
tfrResult.avgDurationMsec = resources.totalDurationMsec / numTimedIterations;
tfrResult.avgBandwidthGbPerSec = (resources.numBytes / 1.0e6) / tfrResult.avgDurationMsec;
if (cfg.general.recordPerIteration) {
tfrResult.perIterMsec = resources.perIterMsec;
tfrResult.perIterCUs = resources.perIterCUs;
}
exeResult.sumBandwidthGbPerSec += tfrResult.avgBandwidthGbPerSec;
}
}
results.avgTotalBandwidthGbPerSec = (results.totalBytesTransferred / 1.0e6) / results.avgTotalDurationMsec;
// Teardown executors
for (auto& exeInfoPair : executorMap) {
ExeDevice const& exeDevice = exeInfoPair.first;
ExeInfo& exeInfo = exeInfoPair.second;
ERR_APPEND(TeardownExecutor(cfg, exeDevice, transfers, exeInfo), errResults);
}
return true;
}
int GetIntAttribute(IntAttribute attribute)
{
switch (attribute) {
case ATR_GFX_MAX_BLOCKSIZE: return MAX_BLOCKSIZE;
case ATR_GFX_MAX_UNROLL: return MAX_UNROLL;
default: return -1;
}
}
std::string GetStrAttribute(StrAttribute attribute)
{
switch (attribute) {
case ATR_SRC_PREP_DESCRIPTION:
return "Element i = ((i * 517) modulo 383 + 31) * (srcBufferIdx + 1)";
default:
return "";
}
}
ErrResult ParseTransfers(std::string line,
std::vector<Transfer>& transfers)
{
// Replace any round brackets or '->' with spaces,
for (int i = 1; line[i]; i++)
if (line[i] == '(' || line[i] == ')' || line[i] == '-' || line[i] == '>' ) line[i] = ' ';
transfers.clear();
// Read in number of transfers
int numTransfers = 0;
std::istringstream iss(line);
iss >> numTransfers;
if (iss.fail()) return ERR_NONE;
// If numTransfers < 0, read 5-tuple (srcMem, exeMem, dstMem, #CUs, #Bytes)
// otherwise read triples (srcMem, exeMem, dstMem)
bool const advancedMode = (numTransfers < 0);
numTransfers = abs(numTransfers);
int numSubExecs;
std::string srcStr, exeStr, dstStr, numBytesToken;
if (!advancedMode) {
iss >> numSubExecs;
if (numSubExecs < 0 || iss.fail()) {
return {ERR_FATAL,
"Parsing error: Number of blocks to use (%d) must be non-negative", numSubExecs};
}
}
for (int i = 0; i < numTransfers; i++) {
Transfer transfer;
if (!advancedMode) {
iss >> srcStr >> exeStr >> dstStr;
transfer.numSubExecs = numSubExecs;
if (iss.fail()) {
return {ERR_FATAL,
"Parsing error: Unable to read valid Transfer %d (SRC EXE DST) triplet", i+1};
}
} else {
iss >> srcStr >> exeStr >> dstStr >> transfer.numSubExecs >> numBytesToken;
if (iss.fail()) {
return {ERR_FATAL,
"Parsing error: Unable to read valid Transfer %d (SRC EXE DST $CU #Bytes) tuple", i+1};
}
if (sscanf(numBytesToken.c_str(), "%lu", &transfer.numBytes) != 1) {
return {ERR_FATAL,
"Parsing error: Unable to read valid Transfer %d (SRC EXE DST #CU #Bytes) tuple", i+1};
}
char units = numBytesToken.back();
switch (toupper(units)) {
case 'G': transfer.numBytes *= 1024;
case 'M': transfer.numBytes *= 1024;
case 'K': transfer.numBytes *= 1024;
}
}
ERR_CHECK(ParseMemType(srcStr, transfer.srcs));
ERR_CHECK(ParseMemType(dstStr, transfer.dsts));
ERR_CHECK(ParseExeType(exeStr, transfer.exeDevice, transfer.exeSubIndex));
transfers.push_back(transfer);
}
return ERR_NONE;
}
int GetNumExecutors(ExeType exeType)
{
switch (exeType) {
case EXE_CPU:
return numa_num_configured_nodes();
case EXE_GPU_GFX: case EXE_GPU_DMA:
{
int numDetectedGpus = 0;
hipError_t status = hipGetDeviceCount(&numDetectedGpus);
if (status != hipSuccess) numDetectedGpus = 0;
return numDetectedGpus;
}
default:
return 0;
}
}
int GetNumSubExecutors(ExeDevice exeDevice)
{
int const& exeIndex = exeDevice.exeIndex;
switch(exeDevice.exeType) {
case EXE_CPU:
{
int numCores = 0;
for (int i = 0; i < numa_num_configured_cpus(); i++)
if (numa_node_of_cpu(i) == exeIndex) numCores++;
return numCores;
}
case EXE_GPU_GFX:
{
int numGpus = GetNumExecutors(EXE_GPU_GFX);
if (exeIndex < 0 || numGpus <= exeIndex) return 0;
int numDeviceCUs = 0;
hipError_t status = hipDeviceGetAttribute(&numDeviceCUs, hipDeviceAttributeMultiprocessorCount, exeIndex);
if (status != hipSuccess) numDeviceCUs = 0;
return numDeviceCUs;
}
case EXE_GPU_DMA:
{
return 1;
}
default:
return 0;
}
}
int GetNumExecutorSubIndices(ExeDevice exeDevice)
{
// Executor subindices are not supported on NVIDIA hardware
#if defined(__NVCC__)
return 0;
#else
int const& exeIndex = exeDevice.exeIndex;
switch(exeDevice.exeType) {
case EXE_CPU: return 0;
case EXE_GPU_GFX:
{
hsa_agent_t agent;
ErrResult err = GetHsaAgent(exeDevice, agent);
if (err.errType != ERR_NONE) return 0;
int numXccs = 1;
if (hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_NUM_XCC, &numXccs) != HSA_STATUS_SUCCESS)
return 1;
return numXccs;
}
case EXE_GPU_DMA:
{
std::set<int> engineIds;
ErrResult err;
// Get HSA agent for this GPU
hsa_agent_t agent;
err = GetHsaAgent(exeDevice, agent);
if (err.errType != ERR_NONE) return 0;
int numTotalEngines = 0, numEnginesA = 0, numEnginesB = 0;
if (hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_NUM_SDMA_ENG, &numEnginesA)
== HSA_STATUS_SUCCESS)
numTotalEngines += numEnginesA;
if (hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_NUM_SDMA_XGMI_ENG, &numEnginesB)
== HSA_STATUS_SUCCESS)
numTotalEngines += numEnginesB;
return numTotalEngines;
}
default:
return 0;
}
#endif
}
int GetClosestCpuNumaToGpu(int gpuIndex)
{
// Closest NUMA is not supported on NVIDIA hardware at this time
#if defined(__NVCC__)
return -1;
#else
hsa_agent_t gpuAgent;
ErrResult err = GetHsaAgent({EXE_GPU_GFX, gpuIndex}, gpuAgent);
if (err.errType != ERR_NONE) return -1;
hsa_agent_t closestCpuAgent;
if (hsa_agent_get_info(gpuAgent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_NEAREST_CPU, &closestCpuAgent)
== HSA_STATUS_SUCCESS) {
int numCpus = GetNumExecutors(EXE_CPU);
for (int i = 0; i < numCpus; i++) {
hsa_agent_t cpuAgent;
err = GetHsaAgent({EXE_CPU, i}, cpuAgent);
if (err.errType != ERR_NONE) return -1;
if (cpuAgent.handle == closestCpuAgent.handle) return i;
}
}
return -1;
#endif
}
// Undefine CUDA compatibility macros
#if defined(__NVCC__)
// ROCm specific
#undef wall_clock64
#undef gcnArchName
// Datatypes
#undef hipDeviceProp_t
#undef hipError_t
#undef hipEvent_t
#undef hipStream_t
// Enumerations
#undef hipDeviceAttributeClockRate
#undef hipDeviceAttributeMaxSharedMemoryPerMultiprocessor
#undef hipDeviceAttributeMultiprocessorCount
#undef hipErrorPeerAccessAlreadyEnabled
#undef hipFuncCachePreferShared
#undef hipMemcpyDefault
#undef hipMemcpyDeviceToHost
#undef hipMemcpyHostToDevice
#undef hipSuccess
// Functions
#undef hipDeviceCanAccessPeer
#undef hipDeviceEnablePeerAccess
#undef hipDeviceGetAttribute
#undef hipDeviceGetPCIBusId
#undef hipDeviceSetCacheConfig
#undef hipDeviceSynchronize
#undef hipEventCreate
#undef hipEventDestroy
#undef hipEventElapsedTime
#undef hipEventRecord
#undef hipFree
#undef hipGetDeviceCount
#undef hipGetDeviceProperties
#undef hipGetErrorString
#undef hipHostFree
#undef hipHostMalloc
#undef hipMalloc
#undef hipMallocManaged
#undef hipMemcpy
#undef hipMemcpyAsync
#undef hipMemset
#undef hipMemsetAsync
#undef hipSetDevice
#undef hipStreamCreate
#undef hipStreamDestroy
#undef hipStreamSynchronize
#endif
// Kernel macros
#undef GetHwId
#undef GetXccId
// Undefine helper macros
#undef ERR_CHECK
#undef ERR_APPEND
}
/*
Copyright (c) 2023-2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#pragma once
// Helper macro for catching HIP errors
#define HIP_CALL(cmd) \
do { \
hipError_t error = (cmd); \
if (error != hipSuccess) \
{ \
std::cerr << "Encountered HIP error (" << hipGetErrorString(error) \
<< ") at line " << __LINE__ << " in file " << __FILE__ << "\n"; \
exit(-1); \
} \
} while (0)
#if defined(__NVCC__)
#include <cuda_runtime.h>
// ROCm specific
#define wall_clock64 clock64
#define gcnArchName name
// Datatypes
#define hipDeviceProp_t cudaDeviceProp
#define hipError_t cudaError_t
#define hipEvent_t cudaEvent_t
#define hipStream_t cudaStream_t
// Enumerations
#define hipDeviceAttributeClockRate cudaDevAttrClockRate
#define hipDeviceAttributeMaxSharedMemoryPerMultiprocessor cudaDevAttrMaxSharedMemoryPerMultiprocessor
#define hipDeviceAttributeMultiprocessorCount cudaDevAttrMultiProcessorCount
#define hipErrorPeerAccessAlreadyEnabled cudaErrorPeerAccessAlreadyEnabled
#define hipFuncCachePreferShared cudaFuncCachePreferShared
#define hipMemcpyDefault cudaMemcpyDefault
#define hipMemcpyDeviceToHost cudaMemcpyDeviceToHost
#define hipMemcpyHostToDevice cudaMemcpyHostToDevice
#define hipSuccess cudaSuccess
// Functions
#define hipDeviceCanAccessPeer cudaDeviceCanAccessPeer
#define hipDeviceEnablePeerAccess cudaDeviceEnablePeerAccess
#define hipDeviceGetAttribute cudaDeviceGetAttribute
#define hipDeviceGetPCIBusId cudaDeviceGetPCIBusId
#define hipDeviceSetCacheConfig cudaDeviceSetCacheConfig
#define hipDeviceSynchronize cudaDeviceSynchronize
#define hipEventCreate cudaEventCreate
#define hipEventDestroy cudaEventDestroy
#define hipEventElapsedTime cudaEventElapsedTime
#define hipEventRecord cudaEventRecord
#define hipFree cudaFree
#define hipGetDeviceCount cudaGetDeviceCount
#define hipGetDeviceProperties cudaGetDeviceProperties
#define hipGetErrorString cudaGetErrorString
#define hipHostFree cudaFreeHost
#define hipHostMalloc cudaMallocHost
#define hipMalloc cudaMalloc
#define hipMallocManaged cudaMallocManaged
#define hipMemcpy cudaMemcpy
#define hipMemcpyAsync cudaMemcpyAsync
#define hipMemset cudaMemset
#define hipMemsetAsync cudaMemsetAsync
#define hipSetDevice cudaSetDevice
#define hipStreamCreate cudaStreamCreate
#define hipStreamDestroy cudaStreamDestroy
#define hipStreamSynchronize cudaStreamSynchronize
// Define float4 addition operator for NVIDIA platform
__device__ inline float4& operator +=(float4& a, const float4& b)
{
a.x += b.x;
a.y += b.y;
a.z += b.z;
a.w += b.w;
return a;
}
#else
#include <hip/hip_ext.h>
#include <hip/hip_runtime.h>
#include <hsa/hsa_ext_amd.h>
#endif
/*
Copyright (c) 2021-2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#ifndef ENVVARS_HPP
#define ENVVARS_HPP
#include <algorithm>
#include <random>
#include <time.h>
#include "Compatibility.hpp"
#include "Kernels.hpp"
#define TB_VERSION "1.52"
extern char const MemTypeStr[];
extern char const ExeTypeStr[];
enum ConfigModeEnum
{
CFG_FILE = 0,
CFG_P2P = 1,
CFG_SWEEP = 2,
CFG_SCALE = 3,
CFG_A2A = 4,
CFG_SCHMOO = 5,
CFG_RWRITE = 6
};
enum BlockOrderEnum
{
ORDER_SEQUENTIAL = 0,
ORDER_INTERLEAVED = 1,
ORDER_RANDOM = 2
};
// This class manages environment variable that affect TransferBench
class EnvVars
{
public:
// Default configuration values
int const DEFAULT_NUM_WARMUPS = 3;
int const DEFAULT_NUM_ITERATIONS = 10;
int const DEFAULT_SAMPLING_FACTOR = 1;
// Peer-to-peer Benchmark preset defaults
int const DEFAULT_P2P_NUM_CPU_SE = 4;
// Sweep-preset defaults
std::string const DEFAULT_SWEEP_SRC = "CG";
std::string const DEFAULT_SWEEP_EXE = "CDG";
std::string const DEFAULT_SWEEP_DST = "CG";
int const DEFAULT_SWEEP_MIN = 1;
int const DEFAULT_SWEEP_MAX = 24;
int const DEFAULT_SWEEP_TEST_LIMIT = 0;
int const DEFAULT_SWEEP_TIME_LIMIT = 0;
// Environment variables
int alwaysValidate; // Validate after each iteration instead of once after all iterations
int blockBytes; // Each subexecutor, except the last, gets a multiple of this many bytes to copy
int blockOrder; // How blocks are ordered in single-stream mode (0=Sequential, 1=Interleaved, 2=Random)
int byteOffset; // Byte-offset for memory allocations
int continueOnError; // Continue tests even after mismatch detected
int gfxBlockSize; // Size of each threadblock (must be multiple of 64)
int gfxSingleTeam; // Team all subExecutors across the data array
int gfxUnroll; // GFX-kernel unroll factor
int gfxWaveOrder; // GFX-kernel wavefront ordering
int hideEnv; // Skip printing environment variable
int minNumVarSubExec; // Minimum # of subexecutors to use for variable subExec Transfers
int maxNumVarSubExec; // Maximum # of subexecutors to use for variable subExec Transfers (0 to use device limit)
int numCpuDevices; // Number of CPU devices to use (defaults to # NUMA nodes detected)
int numGpuDevices; // Number of GPU devices to use (defaults to # HIP devices detected)
int numIterations; // Number of timed iterations to perform. If negative, run for -numIterations seconds instead
int numSubIterations; // Number of subiterations to perform
int numWarmups; // Number of un-timed warmup iterations to perform
int outputToCsv; // Output in CSV format
int samplingFactor; // Affects how many different values of N are generated (when N set to 0)
int sharedMemBytes; // Amount of shared memory to use per threadblock
int showIterations; // Show per-iteration timing info
int useHsaDma; // Use hsa_amd_async_copy instead of hipMemcpy for non-targetted DMA executions
int useInteractive; // Pause for user-input before starting transfer loop
int usePcieIndexing; // Base GPU indexing on PCIe address instead of HIP device
int usePrepSrcKernel; // Use GPU kernel to prepare source data instead of copy (can't be used with fillPattern)
int useSingleStream; // Use a single stream per GPU GFX executor instead of stream per Transfer
int useXccFilter; // Use XCC filtering (experimental)
int validateDirect; // Validate GPU destination memory directly instead of staging GPU memory on host
std::vector<float> fillPattern; // Pattern of floats used to fill source data
std::vector<uint32_t> cuMask; // Bit-vector representing the CU mask
std::vector<std::vector<int>> prefXccTable;
// Environment variables only for P2P preset
int numCpuSubExecs; // Number of CPU subexecttors to use
int numGpuSubExecs; // Number of GPU subexecutors to use
int p2pMode; // Both = 0, Unidirectional = 1, Bidirectional = 2
int useDmaCopy; // Use DMA copy instead of GPU copy
int useRemoteRead; // Use destination memory type as executor instead of source memory type
int useFineGrain; // Use fine-grained memory
// Environment variables only for Sweep-preset
int sweepMin; // Min number of simultaneous Transfers to be executed per test
int sweepMax; // Max number of simulatneous Transfers to be executed per test
int sweepTestLimit; // Max number of tests to run during sweep (0 = no limit)
int sweepTimeLimit; // Max number of seconds to run sweep for (0 = no limit)
int sweepXgmiMin; // Min number of XGMI hops for Transfers
int sweepXgmiMax; // Max number of XGMI hops for Transfers (-1 = no limit)
int sweepSeed; // Random seed to use
int sweepRandBytes; // Whether or not to use random number of bytes per Transfer
std::string sweepSrc; // Set of src memory types to be swept
std::string sweepExe; // Set of executors to be swept
std::string sweepDst; // Set of dst memory types to be swept
// Enviroment variables only for A2A preset
int a2aDirect; // Only execute on links that are directly connected
int a2aMode; // Perform 0=copy, 1=read only, 2 = write only
// Developer features
int enableDebug; // Enable debug output
int gpuMaxHwQueues; // Tracks GPU_MAX_HW_QUEUES environment variable
// Used to track current configuration mode
ConfigModeEnum configMode;
// Random generator
std::default_random_engine *generator;
// Track how many CPUs are available per NUMA node
std::vector<int> numCpusPerNuma;
std::vector<int> wallClockPerDeviceMhz;
std::vector<std::set<int>> xccIdsPerDevice;
// Constructor that collects values
EnvVars()
{
int maxSharedMemBytes = 0;
HIP_CALL(hipDeviceGetAttribute(&maxSharedMemBytes,
hipDeviceAttributeMaxSharedMemoryPerMultiprocessor, 0));
#if !defined(__NVCC__)
int defaultSharedMemBytes = maxSharedMemBytes / 2 + 1;
#else
int defaultSharedMemBytes = 0;
#endif
int numDeviceCUs = 0;
HIP_CALL(hipDeviceGetAttribute(&numDeviceCUs, hipDeviceAttributeMultiprocessorCount, 0));
int numDetectedCpus = numa_num_configured_nodes();
int numDetectedGpus;
HIP_CALL(hipGetDeviceCount(&numDetectedGpus));
hipDeviceProp_t prop;
HIP_CALL(hipGetDeviceProperties(&prop, 0));
std::string fullName = prop.gcnArchName;
std::string archName = fullName.substr(0, fullName.find(':'));
// Different hardware pick different GPU kernels
// This performance difference is generally only noticable when executing fewer CUs
int defaultGfxUnroll = 4;
if (archName == "gfx906") defaultGfxUnroll = 8;
else if (archName == "gfx90a") defaultGfxUnroll = 8;
else if (archName == "gfx940") defaultGfxUnroll = 6;
else if (archName == "gfx941") defaultGfxUnroll = 6;
else if (archName == "gfx942") defaultGfxUnroll = 4;
alwaysValidate = GetEnvVar("ALWAYS_VALIDATE" , 0);
blockBytes = GetEnvVar("BLOCK_BYTES" , 256);
blockOrder = GetEnvVar("BLOCK_ORDER" , 0);
byteOffset = GetEnvVar("BYTE_OFFSET" , 0);
continueOnError = GetEnvVar("CONTINUE_ON_ERROR" , 0);
gfxBlockSize = GetEnvVar("GFX_BLOCK_SIZE" , 256);
gfxSingleTeam = GetEnvVar("GFX_SINGLE_TEAM" , 1);
gfxUnroll = GetEnvVar("GFX_UNROLL" , defaultGfxUnroll);
gfxWaveOrder = GetEnvVar("GFX_WAVE_ORDER" , 0);
hideEnv = GetEnvVar("HIDE_ENV" , 0);
minNumVarSubExec = GetEnvVar("MIN_VAR_SUBEXEC" , 1);
maxNumVarSubExec = GetEnvVar("MAX_VAR_SUBEXEC" , 0);
numCpuDevices = GetEnvVar("NUM_CPU_DEVICES" , numDetectedCpus);
numGpuDevices = GetEnvVar("NUM_GPU_DEVICES" , numDetectedGpus);
numIterations = GetEnvVar("NUM_ITERATIONS" , DEFAULT_NUM_ITERATIONS);
numSubIterations = GetEnvVar("NUM_SUBITERATIONS" , 1);
numWarmups = GetEnvVar("NUM_WARMUPS" , DEFAULT_NUM_WARMUPS);
outputToCsv = GetEnvVar("OUTPUT_TO_CSV" , 0);
samplingFactor = GetEnvVar("SAMPLING_FACTOR" , DEFAULT_SAMPLING_FACTOR);
sharedMemBytes = GetEnvVar("SHARED_MEM_BYTES" , defaultSharedMemBytes);
showIterations = GetEnvVar("SHOW_ITERATIONS" , 0);
useHsaDma = GetEnvVar("USE_HSA_DMA" , 0);
useInteractive = GetEnvVar("USE_INTERACTIVE" , 0);
usePcieIndexing = GetEnvVar("USE_PCIE_INDEX" , 0);
usePrepSrcKernel = GetEnvVar("USE_PREP_KERNEL" , 0);
useSingleStream = GetEnvVar("USE_SINGLE_STREAM" , 1);
useXccFilter = GetEnvVar("USE_XCC_FILTER" , 0);
validateDirect = GetEnvVar("VALIDATE_DIRECT" , 0);
enableDebug = GetEnvVar("DEBUG" , 0);
gpuMaxHwQueues = GetEnvVar("GPU_MAX_HW_QUEUES" , 4);
// P2P Benchmark related
useDmaCopy = GetEnvVar("USE_GPU_DMA" , 0); // Needed for numGpuSubExec
numCpuSubExecs = GetEnvVar("NUM_CPU_SE" , DEFAULT_P2P_NUM_CPU_SE);
numGpuSubExecs = GetEnvVar("NUM_GPU_SE" , useDmaCopy ? 1 : numDeviceCUs);
p2pMode = GetEnvVar("P2P_MODE" , 0);
useRemoteRead = GetEnvVar("USE_REMOTE_READ" , 0);
useFineGrain = GetEnvVar("USE_FINE_GRAIN" , 0);
// Sweep related
sweepMin = GetEnvVar("SWEEP_MIN" , DEFAULT_SWEEP_MIN);
sweepMax = GetEnvVar("SWEEP_MAX" , DEFAULT_SWEEP_MAX);
sweepSrc = GetEnvVar("SWEEP_SRC" , DEFAULT_SWEEP_SRC);
sweepExe = GetEnvVar("SWEEP_EXE" , DEFAULT_SWEEP_EXE);
sweepDst = GetEnvVar("SWEEP_DST" , DEFAULT_SWEEP_DST);
sweepTestLimit = GetEnvVar("SWEEP_TEST_LIMIT" , DEFAULT_SWEEP_TEST_LIMIT);
sweepTimeLimit = GetEnvVar("SWEEP_TIME_LIMIT" , DEFAULT_SWEEP_TIME_LIMIT);
sweepXgmiMin = GetEnvVar("SWEEP_XGMI_MIN" , 0);
sweepXgmiMax = GetEnvVar("SWEEP_XGMI_MAX" , -1);
sweepRandBytes = GetEnvVar("SWEEP_RAND_BYTES" , 0);
// A2A Benchmark related
a2aDirect = GetEnvVar("A2A_DIRECT" , 1);
a2aMode = GetEnvVar("A2A_MODE" , 0);
// Determine random seed
char *sweepSeedStr = getenv("SWEEP_SEED");
sweepSeed = (sweepSeedStr != NULL ? atoi(sweepSeedStr) : time(NULL));
generator = new std::default_random_engine(sweepSeed);
// Check for fill pattern
char* pattern = getenv("FILL_PATTERN");
if (pattern != NULL)
{
if (usePrepSrcKernel)
{
printf("[ERROR] Unable to use FILL_PATTERN and USE_PREP_KERNEL together\n");
exit(1);
}
int patternLen = strlen(pattern);
if (patternLen % 2)
{
printf("[ERROR] FILL_PATTERN must contain an even-number of hex digits\n");
exit(1);
}
// Read in bytes
std::vector<unsigned char> bytes;
unsigned char val = 0;
for (int i = 0; i < patternLen; i++)
{
if ('0' <= pattern[i] && pattern[i] <= '9')
val += (pattern[i] - '0');
else if ('A' <= pattern[i] && pattern[i] <= 'F')
val += (pattern[i] - 'A' + 10);
else if ('a' <= pattern[i] && pattern[i] <= 'f')
val += (pattern[i] - 'a' + 10);
else
{
printf("[ERROR] FILL_PATTERN must contain an even-number of hex digits (0-9'/a-f/A-F). (not %c)\n", pattern[i]);
exit(1);
}
if (i % 2 == 0)
val <<= 4;
else
{
bytes.push_back(val);
val = 0;
}
}
// Reverse bytes (input is assumed to be given in big-endian)
std::reverse(bytes.begin(), bytes.end());
// Figure out how many copies of the pattern are necessary to fill a 4-byte float properly
int copies;
switch (patternLen % 8)
{
case 0: copies = 1; break;
case 4: copies = 2; break;
default: copies = 4; break;
}
// Fill floats
int numFloats = copies * patternLen / 8;
fillPattern.resize(numFloats);
unsigned char* rawData = (unsigned char*) fillPattern.data();
for (int i = 0; i < numFloats * 4; i++)
rawData[i] = bytes[i % bytes.size()];
}
else fillPattern.clear();
// Figure out number of xccs per device
int maxNumXccs = 64;
xccIdsPerDevice.resize(numGpuDevices);
for (int i = 0; i < numGpuDevices; i++)
{
int* data;
HIP_CALL(hipSetDevice(i));
HIP_CALL(hipHostMalloc((void**)&data, maxNumXccs * sizeof(int)));
CollectXccIdsKernel<<<maxNumXccs, 1>>>(data);
HIP_CALL(hipDeviceSynchronize());
xccIdsPerDevice[i].clear();
for (int j = 0; j < maxNumXccs; j++)
xccIdsPerDevice[i].insert(data[j]);
HIP_CALL(hipHostFree(data));
}
// Check for CU mask
cuMask.clear();
char* cuMaskStr = getenv("CU_MASK");
if (cuMaskStr != NULL)
{
#if defined(__NVCC__)
printf("[WARN] CU_MASK is not supported in CUDA\n");
#else
std::vector<std::pair<int, int>> ranges;
int numXccs = (xccIdsPerDevice.size() > 0 ? xccIdsPerDevice[0].size() : 1);
int maxCU = 0;
char* token = strtok(cuMaskStr, ",");
while (token)
{
int start, end;
if (sscanf(token, "%d-%d", &start, &end) == 2)
{
ranges.push_back(std::make_pair(std::min(start, end), std::max(start, end)));
maxCU = std::max(maxCU, std::max(start, end));
}
else if (sscanf(token, "%d", &start) == 1)
{
ranges.push_back(std::make_pair(start, start));
maxCU = std::max(maxCU, start);
}
else
{
printf("[ERROR] Unrecognized token [%s]\n", token);
exit(1);
}
token = strtok(NULL, ",");
}
cuMask.resize(2 * numXccs, 0);
for (auto range : ranges)
{
for (int i = range.first; i <= range.second; i++)
{
for (int x = 0; x < numXccs; x++)
{
int targetBit = i * numXccs + x;
cuMask[targetBit/32] |= (1<<(targetBit%32));
}
}
}
#endif
}
// Parse preferred XCC table (if provided
prefXccTable.resize(numGpuDevices);
for (int i = 0; i < numGpuDevices; i++)
{
prefXccTable[i].resize(numGpuDevices, -1);
}
char* prefXccStr = getenv("XCC_PREF_TABLE");
if (prefXccStr)
{
char* token = strtok(prefXccStr, ",");
int tokenCount = 0;
while (token)
{
int xccId;
if (sscanf(token, "%d", &xccId) == 1)
{
int src = tokenCount / numGpuDevices;
int dst = tokenCount % numGpuDevices;
if (xccIdsPerDevice[src].count(xccId) == 0)
{
printf("[ERROR] GPU %d does not contain XCC %d\n", src, xccId);
exit(1);
}
prefXccTable[src][dst] = xccId;
tokenCount++;
if (tokenCount == (numGpuDevices * numGpuDevices)) break;
}
else
{
printf("[ERROR] Unrecognized token [%s]\n", token);
exit(1);
}
token = strtok(NULL, ",");
}
}
// Perform some basic validation
if (numCpuDevices > numDetectedCpus)
{
printf("[ERROR] Number of CPUs to use (%d) cannot exceed number of detected CPUs (%d)\n", numCpuDevices, numDetectedCpus);
exit(1);
}
if (numGpuDevices > numDetectedGpus)
{
printf("[ERROR] Number of GPUs to use (%d) cannot exceed number of detected GPUs (%d)\n", numGpuDevices, numDetectedGpus);
exit(1);
}
if (gfxBlockSize % 64)
{
printf("[ERROR] GFX_BLOCK_SIZE (%d) must be a multiple of 64\n", gfxBlockSize);
exit(1);
}
if (gfxBlockSize > MAX_BLOCKSIZE)
{
printf("[ERROR] BLOCK_SIZE (%d) must be less than %d\n", gfxBlockSize, MAX_BLOCKSIZE);
exit(1);
}
if (byteOffset % sizeof(float))
{
printf("[ERROR] BYTE_OFFSET must be set to multiple of %lu\n", sizeof(float));
exit(1);
}
if (blockOrder < 0 || blockOrder > 2)
{
printf("[ERROR] BLOCK_ORDER must be 0 (Sequential), 1 (Interleaved), or 2 (Random)\n");
exit(1);
}
if (minNumVarSubExec < 1)
{
printf("[ERROR] Minimum number of subexecutors for variable subexector transfers must be at least 1\n");
exit(1);
}
if (numWarmups < 0)
{
printf("[ERROR] NUM_WARMUPS must be set to a non-negative number\n");
exit(1);
}
if (samplingFactor < 1)
{
printf("[ERROR] SAMPLING_FACTOR must be greater or equal to 1\n");
exit(1);
}
if (sharedMemBytes < 0 || sharedMemBytes > maxSharedMemBytes)
{
printf("[ERROR] SHARED_MEM_BYTES must be between 0 and %d\n", maxSharedMemBytes);
exit(1);
}
if (blockBytes <= 0 || blockBytes % 4)
{
printf("[ERROR] BLOCK_BYTES must be a positive multiple of 4\n");
exit(1);
}
if (numGpuSubExecs <= 0)
{
printf("[ERROR] NUM_GPU_SE must be greater than 0\n");
exit(1);
}
if (numCpuSubExecs <= 0)
{
printf("[ERROR] NUM_CPU_SE must be greater than 0\n");
exit(1);
}
for (auto ch : sweepSrc)
{
if (!strchr(MemTypeStr, ch))
{
printf("[ERROR] Unrecognized memory type '%c' specified for sweep source\n", ch);
exit(1);
}
if (strchr(sweepSrc.c_str(), ch) != strrchr(sweepSrc.c_str(), ch))
{
printf("[ERROR] Duplicate memory type '%c' specified for sweep source\n", ch);
exit(1);
}
}
for (auto ch : sweepDst)
{
if (!strchr(MemTypeStr, ch))
{
printf("[ERROR] Unrecognized memory type '%c' specified for sweep destination\n", ch);
exit(1);
}
if (strchr(sweepDst.c_str(), ch) != strrchr(sweepDst.c_str(), ch))
{
printf("[ERROR] Duplicate memory type '%c' specified for sweep destination\n", ch);
exit(1);
}
}
for (auto ch : sweepExe)
{
if (!strchr(ExeTypeStr, ch))
{
printf("[ERROR] Unrecognized executor type '%c' specified for sweep executor\n", ch);
exit(1);
}
if (strchr(sweepExe.c_str(), ch) != strrchr(sweepExe.c_str(), ch))
{
printf("[ERROR] Duplicate executor type '%c' specified for sweep executor\n", ch);
exit(1);
}
}
if (a2aMode < 0 || a2aMode > 2)
{
printf("[ERROR] a2aMode must be between 0 and 2\n");
exit(1);
}
if (gfxUnroll < 1 || gfxUnroll > MAX_UNROLL)
{
printf("[ERROR] GFX kernel unroll factor must be between 1 and %d (Not %d)\n", MAX_UNROLL, gfxUnroll);
exit(1);
}
if (gfxWaveOrder < 0 || gfxWaveOrder >= 6)
{
printf("[ERROR] GFX wave order must be between 0 and 5\n");
exit(1);
}
// Determine how many CPUs exit per NUMA node (to avoid executing on NUMA without CPUs)
numCpusPerNuma.resize(numDetectedCpus);
int const totalCpus = numa_num_configured_cpus();
for (int i = 0; i < totalCpus; i++) {
int node = numa_node_of_cpu(i);
if (node >= 0) numCpusPerNuma[node]++;
}
// Build array of wall clock rates per GPU device
wallClockPerDeviceMhz.resize(numDetectedGpus);
for (int i = 0; i < numDetectedGpus; i++)
{
#if defined(__NVCC__)
wallClockPerDeviceMhz[i] = 1000000;
#else
hipDeviceProp_t prop;
HIP_CALL(hipGetDeviceProperties(&prop, i));
int value = 25000;
std::string fullName = prop.gcnArchName;
std::string archName = fullName.substr(0, fullName.find(':'));
if (archName == "gfx940" || archName == "gfx941" || archName == "gfx942")
wallClockPerDeviceMhz[i] = 100000;
else
wallClockPerDeviceMhz[i] = 25000;
#endif
}
// Check for deprecated env vars
if (getenv("USE_HIP_CALL"))
{
printf("[WARN] USE_HIP_CALL has been deprecated. Please use DMA executor 'D' or set USE_GPU_DMA for P2P-Benchmark preset\n");
exit(1);
}
if (getenv("GPU_KERNEL"))
{
printf("[WARN] GPU_KERNEL has been deprecated and replaced by GFX_KERNEL and GFX_UNROLL\n");
exit(1);
}
char* enableSdma = getenv("HSA_ENABLE_SDMA");
if (enableSdma && !strcmp(enableSdma, "0"))
{
printf("[WARN] DMA functionality disabled due to environment variable HSA_ENABLE_SDMA=0. Copies will fallback to blit kernels\n");
}
}
// Display info on the env vars that can be used
static void DisplayUsage()
{
printf("Environment variables:\n");
printf("======================\n");
printf(" ALWAYS_VALIDATE - Validate after each iteration instead of once after all iterations\n");
printf(" BLOCK_SIZE - # of threads per threadblock (Must be multiple of 64). Defaults to 256\n");
printf(" BLOCK_BYTES - Each CU (except the last) receives a multiple of BLOCK_BYTES to copy\n");
printf(" BLOCK_ORDER - Threadblock ordering in single-stream mode (0=Serial, 1=Interleaved, 2=Random)\n");
printf(" BYTE_OFFSET - Initial byte-offset for memory allocations. Must be multiple of 4. Defaults to 0\n");
printf(" CONTINUE_ON_ERROR - Continue tests even after mismatch detected\n");
printf(" CU_MASK - CU mask for streams specified in hex digits (0-0,a-f,A-F)\n");
printf(" FILL_PATTERN=STR - Fill input buffer with pattern specified in hex digits (0-9,a-f,A-F). Must be even number of digits, (byte-level big-endian)\n");
printf(" GFX_UNROLL - Unroll factor for GFX kernel (0=auto), must be less than %d\n", MAX_UNROLL);
printf(" GFX_SINGLE_TEAM - Have subexecutors work together on full array instead of working on individual disjoint subarrays\n");
printf(" GFX_WAVE_ORDER - Stride pattern for GFX kernel (0=UWC,1=UCW,2=WUC,3=WCU,4=CUW,5=CWU)\n");
printf(" HIDE_ENV - Hide environment variable value listing\n");
printf(" MIN_VAR_SUBEXEC - Minumum # of subexecutors to use for variable subExec Transfers\n");
printf(" MAX_VAR_SUBEXEC - Maximum # of subexecutors to use for variable subExec Transfers (0 for device limits)\n");
printf(" NUM_CPU_DEVICES=X - Restrict number of CPUs to X. May not be greater than # detected NUMA nodes\n");
printf(" NUM_GPU_DEVICES=X - Restrict number of GPUs to X. May not be greater than # detected HIP devices\n");
printf(" NUM_ITERATIONS=I - Perform I timed iteration(s) per test\n");
printf(" NUM_SUBITERATIONS=S - Perform S sub-iteration(s) per iteration. Must be non-negative\n");
printf(" NUM_WARMUPS=W - Perform W untimed warmup iteration(s) per test\n");
printf(" OUTPUT_TO_CSV - Outputs to CSV format if set\n");
printf(" SAMPLING_FACTOR=F - Add F samples (when possible) between powers of 2 when auto-generating data sizes\n");
printf(" SHARED_MEM_BYTES=X - Use X shared mem bytes per threadblock, potentially to avoid multiple threadblocks per CU\n");
printf(" SHOW_ITERATIONS - Show per-iteration timing info\n");
printf(" USE_HSA_DMA - Use hsa_amd_async_copy instead of hipMemcpy for non-targeted DMA execution\n");
printf(" USE_INTERACTIVE - Pause for user-input before starting transfer loop\n");
printf(" USE_PCIE_INDEX - Index GPUs by PCIe address-ordering instead of HIP-provided indexing\n");
printf(" USE_PREP_KERNEL - Use GPU kernel to initialize source data array pattern\n");
printf(" USE_SINGLE_STREAM - Use a single stream per GPU GFX executor instead of stream per Transfer\n");
printf(" USE_XCC_FILTER - Use XCC filtering (experimental)\n");
printf(" VALIDATE_DIRECT - Validate GPU destination memory directly instead of staging GPU memory on host\n");
}
// Helper macro to switch between CSV and terminal output
#define PRINT_EV(NAME, VALUE, DESCRIPTION) \
printf("%-20s%s%12d%s%s\n", NAME, outputToCsv ? "," : " = ", VALUE, outputToCsv ? "," : " : ", (DESCRIPTION).c_str())
#define PRINT_ES(NAME, VALUE, DESCRIPTION) \
printf("%-20s%s%12s%s%s\n", NAME, outputToCsv ? "," : " = ", VALUE, outputToCsv ? "," : " : ", (DESCRIPTION).c_str())
// Display env var settings
void DisplayEnvVars() const
{
if (!outputToCsv)
{
printf("TransferBench v%s\n", TB_VERSION);
printf("===============================================================\n");
if (!hideEnv) printf("[Common] (Suppress by setting HIDE_ENV=1)\n");
}
else if (!hideEnv)
printf("EnvVar,Value,Description,(TransferBench v%s)\n", TB_VERSION);
if (hideEnv) return;
PRINT_EV("ALWAYS_VALIDATE", alwaysValidate,
std::string("Validating after ") + (alwaysValidate ? "each iteration" : "all iterations"));
PRINT_EV("BLOCK_BYTES", blockBytes,
std::string("Each CU gets a multiple of " + std::to_string(blockBytes) + " bytes to copy"));
PRINT_EV("BLOCK_ORDER", blockOrder,
std::string("Transfer blocks order: " + std::string((blockOrder == 0 ? "Sequential" :
blockOrder == 1 ? "Interleaved" :
"Random"))));
PRINT_EV("BYTE_OFFSET", byteOffset,
std::string("Using byte offset of " + std::to_string(byteOffset)));
PRINT_EV("CONTINUE_ON_ERROR", continueOnError,
std::string(continueOnError ? "Continue on mismatch error" : "Stop after first error"));
PRINT_EV("CU_MASK", getenv("CU_MASK") ? 1 : 0,
(cuMask.size() ? GetCuMaskDesc() : "All"));
PRINT_EV("FILL_PATTERN", getenv("FILL_PATTERN") ? 1 : 0,
(fillPattern.size() ? std::string(getenv("FILL_PATTERN")) : PrepSrcValueString()));
PRINT_EV("GFX_BLOCK_SIZE", gfxBlockSize,
std::string("Threadblock size of " + std::to_string(gfxBlockSize)));
PRINT_EV("GFX_SINGLE_TEAM", gfxSingleTeam,
(gfxSingleTeam ? std::string("Combining CUs to work across entire data array") :
std::string("Each CUs operates on its own disjoint subarray")));
PRINT_EV("GFX_UNROLL", gfxUnroll,
std::string("Using GFX unroll factor of ") + std::to_string(gfxUnroll));
PRINT_EV("GFX_WAVE_ORDER", gfxWaveOrder,
std::string("Using GFX wave ordering of ") + std::string((gfxWaveOrder == 0 ? "Unroll,Wavefront,CU" :
gfxWaveOrder == 1 ? "Unroll,CU,Wavefront" :
gfxWaveOrder == 2 ? "Wavefront,Unroll,CU" :
gfxWaveOrder == 3 ? "Wavefront,CU,Unroll" :
gfxWaveOrder == 4 ? "CU,Unroll,Wavefront" :
"CU,Wavefront,Unroll")));
PRINT_EV("MIN_VAR_SUBEXEC", minNumVarSubExec,
std::string("Using at least ") + std::to_string(minNumVarSubExec) + " subexecutor(s) for variable subExec tranfers");
PRINT_EV("MAX_VAR_SUBEXEC", maxNumVarSubExec,
maxNumVarSubExec ?
std::string("Using at most ") + std::to_string(maxNumVarSubExec) + " subexecutor(s) for variable subExec tranfers" :
"Using up to maximum device subexecutors for variable subExec tranfers");
PRINT_EV("NUM_CPU_DEVICES", numCpuDevices,
std::string("Using ") + std::to_string(numCpuDevices) + " CPU devices");
PRINT_EV("NUM_GPU_DEVICES", numGpuDevices,
std::string("Using ") + std::to_string(numGpuDevices) + " GPU devices");
PRINT_EV("NUM_ITERATIONS", numIterations,
std::string("Running ") + std::to_string(numIterations > 0 ? numIterations : -numIterations) + " "
+ (numIterations > 0 ? " timed iteration(s)" : "seconds(s) per Test"));
PRINT_EV("NUM_SUBITERATIONS", numSubIterations,
std::string("Running ") + (numSubIterations == 0 ? "infinite" : std::to_string(numSubIterations)) + " subiterations");
PRINT_EV("NUM_WARMUPS", numWarmups,
std::string("Running " + std::to_string(numWarmups) + " warmup iteration(s) per Test"));
PRINT_EV("SHARED_MEM_BYTES", sharedMemBytes,
std::string("Using " + std::to_string(sharedMemBytes) + " shared mem per threadblock"));
PRINT_EV("SHOW_ITERATIONS", showIterations,
std::string(showIterations ? "Showing" : "Hiding") + " per-iteration timing");
PRINT_EV("USE_HSA_DMA", useHsaDma,
std::string("Using ") + (useHsaDma ? "hsa_amd_async_copy" : "hipMemcpyAsync") + " for DMA execution");
PRINT_EV("USE_INTERACTIVE", useInteractive,
std::string("Running in ") + (useInteractive ? "interactive" : "non-interactive") + " mode");
PRINT_EV("USE_PCIE_INDEX", usePcieIndexing,
std::string("Use ") + (usePcieIndexing ? "PCIe" : "HIP") + " GPU device indexing");
PRINT_EV("USE_PREP_KERNEL", usePrepSrcKernel,
std::string("Using ") + (usePrepSrcKernel ? "GPU kernels" : "hipMemcpy") + " to initialize source data");
PRINT_EV("USE_SINGLE_STREAM", useSingleStream,
std::string("Using single stream per ") + (useSingleStream ? "device" : "Transfer"));
PRINT_EV("USE_XCC_FILTER", useXccFilter,
std::string("XCC filtering ") + (useXccFilter ? "enabled" : "disabled"));
if (useXccFilter)
{
printf("%36s: Preferred XCC Table (XCC_PREF_TABLE)\n", "");
printf("%36s: ", "");
for (int i = 0; i < numGpuDevices; i++) printf(" %3d", i); printf(" (#XCCs)\n");
for (int i = 0; i < numGpuDevices; i++)
{
printf("%36s: GPU %3d ", "", i);
for (int j = 0; j < numGpuDevices; j++)
printf(" %3d", prefXccTable[i][j]);
printf(" %3lu\n", xccIdsPerDevice[i].size());
}
}
PRINT_EV("VALIDATE_DIRECT", validateDirect,
std::string("Validate GPU destination memory ") + (validateDirect ? "directly" : "via CPU staging buffer"));
printf("\n");
if (blockOrder != ORDER_SEQUENTIAL && !useSingleStream)
printf("[WARN] BLOCK_ORDER is ignored if USE_SINGLE_STREAM is not enabled\n");
};
// Display env var for P2P Benchmark preset
void DisplayP2PBenchmarkEnvVars() const
{
DisplayEnvVars();
if (hideEnv) return;
if (!outputToCsv)
printf("[P2P Related]\n");
PRINT_EV("NUM_CPU_SE", numCpuSubExecs,
std::string("Using ") + std::to_string(numCpuSubExecs) + " CPU subexecutors");
PRINT_EV("NUM_GPU_SE", numGpuSubExecs,
std::string("Using ") + std::to_string(numGpuSubExecs) + " GPU subexecutors");
PRINT_EV("P2P_MODE", p2pMode,
std::string("Running ") + (p2pMode == 1 ? "Unidirectional" :
p2pMode == 2 ? "Bidirectional" :
"Unidirectional + Bidirectional"));
PRINT_EV("USE_FINE_GRAIN", useFineGrain,
std::string("Using ") + (useFineGrain ? "fine" : "coarse") + "-grained memory");
PRINT_EV("USE_GPU_DMA", useDmaCopy,
std::string("Using GPU-") + (useDmaCopy ? "DMA" : "GFX") + " as GPU executor");
PRINT_EV("USE_REMOTE_READ", useRemoteRead,
std::string("Using ") + (useRemoteRead ? "DST" : "SRC") + " as executor");
printf("\n");
}
// Display env var settings
void DisplaySweepEnvVars() const
{
DisplayEnvVars();
if (hideEnv) return;
if (!outputToCsv)
printf("[Sweep Related]\n");
PRINT_ES("SWEEP_DST", sweepDst.c_str(),
std::string("Destination Memory Types to sweep"));
PRINT_ES("SWEEP_EXE", sweepExe.c_str(),
std::string("Executor Types to sweep"));
PRINT_EV("SWEEP_MAX", sweepMax,
std::string("Max simultaneous transfers (0 = no limit)"));
PRINT_EV("SWEEP_MIN", sweepMin,
std::string("Min simultaenous transfers"));
PRINT_EV("SWEEP_RAND_BYTES", sweepRandBytes,
std::string("Using ") + (sweepRandBytes ? "random" : "constant") + " number of bytes per Transfer");
PRINT_EV("SWEEP_SEED", sweepSeed,
std::string("Random seed set to ") + std::to_string(sweepSeed));
PRINT_ES("SWEEP_SRC", sweepSrc.c_str(),
std::string("Source Memory Types to sweep"));
PRINT_EV("SWEEP_TEST_LIMIT", sweepTestLimit,
std::string("Max number of tests to run during sweep (0 = no limit)"));
PRINT_EV("SWEEP_TIME_LIMIT", sweepTimeLimit,
std::string("Max number of seconds to run sweep for (0 = no limit)"));
PRINT_EV("SWEEP_XGMI_MAX", sweepXgmiMax,
std::string("Max number of XGMI hops for Transfers (-1 = no limit)"));
PRINT_EV("SWEEP_XGMI_MIN", sweepXgmiMin,
std::string("Min number of XGMI hops for Transfers"));
printf("\n");
}
void DisplayA2AEnvVars() const
{
DisplayEnvVars();
if (hideEnv) return;
if (!outputToCsv)
printf("[AllToAll Related]\n");
PRINT_EV("A2A_DIRECT", a2aDirect,
std::string(a2aDirect ? "Only using direct links" : "Full all-to-all"));
PRINT_EV("A2A_MODE", a2aMode,
std::string(a2aMode == 0 ? "Perform copy" :
a2aMode == 1 ? "Perform read-only" :
"Perform write-only"));
PRINT_EV("USE_FINE_GRAIN", useFineGrain,
std::string("Using ") + (useFineGrain ? "fine" : "coarse") + "-grained memory");
PRINT_EV("USE_GPU_DMA", useDmaCopy,
std::string("Using GPU-") + (useDmaCopy ? "DMA" : "GFX") + " as GPU executor");
PRINT_EV("USE_REMOTE_READ", useRemoteRead,
std::string("Using ") + (useRemoteRead ? "DST" : "SRC") + " as executor");
printf("\n");
}
void DisplaySchmooEnvVars() const
{
DisplayEnvVars();
if (hideEnv) return;
if (!outputToCsv)
printf("[Schmoo Related]\n");
PRINT_EV("USE_FINE_GRAIN", useFineGrain,
std::string("Using ") + (useFineGrain ? "fine" : "coarse") + "-grained memory");
}
void DisplayRemoteWriteEnvVars() const
{
DisplayEnvVars();
if (hideEnv) return;
if (!outputToCsv)
printf("[Remote-Write Related]\n");
PRINT_EV("USE_FINE_GRAIN", useFineGrain,
std::string("Using ") + (useFineGrain ? "fine" : "coarse") + "-grained memory");
PRINT_EV("USE_REMOTE_READ", useRemoteRead,
std::string("Performing remote ") + (useRemoteRead ? "reads" : "writes"));
printf("\n");
}
void DisplayParallelCopyEnvVars() const
{
DisplayEnvVars();
if (hideEnv) return;
if (!outputToCsv)
printf("[Parallel-copy Related]\n");
PRINT_EV("USE_FINE_GRAIN", useFineGrain,
std::string("Using ") + (useFineGrain ? "fine" : "coarse") + "-grained memory");
PRINT_EV("USE_GPU_DMA", useDmaCopy,
std::string("Using GPU-") + (useDmaCopy ? "DMA" : "GFX") + " as GPU executor");
printf("\n");
}
// Helper function that gets parses environment variable or sets to default value
static int GetEnvVar(std::string const& varname, int defaultValue)
{
if (getenv(varname.c_str()))
return atoi(getenv(varname.c_str()));
return defaultValue;
}
static std::string GetEnvVar(std::string const& varname, std::string const& defaultValue)
{
if (getenv(varname.c_str()))
return getenv(varname.c_str());
return defaultValue;
}
std::string GetCuMaskDesc() const
{
std::vector<std::pair<int, int>> runs;
int numXccs = (xccIdsPerDevice.size() > 0 ? xccIdsPerDevice[0].size() : 1);
bool inRun = false;
std::pair<int, int> curr;
int used = 0;
for (int targetBit = 0; targetBit < cuMask.size() * 32; targetBit += numXccs) {
if (cuMask[targetBit/32] & (1 << (targetBit%32))) {
used++;
if (!inRun) {
inRun = true;
curr.first = targetBit / numXccs;
}
} else {
if (inRun) {
inRun = false;
curr.second = targetBit / numXccs - 1;
runs.push_back(curr);
}
}
}
if (inRun)
curr.second = (cuMask.size() * 32) / numXccs - 1;
std::string result = "CUs used: (" + std::to_string(used) + ") ";
for (int i = 0; i < runs.size(); i++)
{
if (i) result += ",";
if (runs[i].first == runs[i].second) result += std::to_string(runs[i].first);
else result += std::to_string(runs[i].first) + "-" + std::to_string(runs[i].second);
}
return result;
}
};
#endif
/*
Copyright (c) 2021-2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#pragma once
// Helper macro for checking HSA calls
#define HSA_CHECK(cmd) \
do { \
hsa_status_t error = (cmd); \
if (error != HSA_STATUS_SUCCESS) { \
const char* errString = NULL; \
hsa_status_string(error, &errString); \
std::cerr << "Encountered HSA error (" << errString << ") at line " \
<< __LINE__ << " in file " << __FILE__ << "\n"; \
exit(-1); \
} \
} while (0)
// Structure to hold HSA agent information
#if !defined(__NVCC__)
struct AgentData
{
bool isInitialized;
std::vector<hsa_agent_t> cpuAgents;
std::vector<hsa_agent_t> gpuAgents;
std::vector<int> closestNumaNode;
};
// Simple callback function to return any memory pool for an agent
hsa_status_t MemPoolInfoCallback(hsa_amd_memory_pool_t pool, void *data)
{
hsa_amd_memory_pool_t* poolData = reinterpret_cast<hsa_amd_memory_pool_t*>(data);
// Check memory pool flags
uint32_t poolFlags;
HSA_CHECK(hsa_amd_memory_pool_get_info(pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &poolFlags));
// Only consider coarse-grained pools
if (!(poolFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED)) return HSA_STATUS_SUCCESS;
*poolData = pool;
return HSA_STATUS_SUCCESS;
}
// Callback function to gather HSA agent information
hsa_status_t AgentInfoCallback(hsa_agent_t agent, void* data)
{
AgentData* agentData = reinterpret_cast<AgentData*>(data);
// Get the device type
hsa_device_type_t deviceType;
HSA_CHECK(hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &deviceType));
if (deviceType == HSA_DEVICE_TYPE_CPU)
agentData->cpuAgents.push_back(agent);
if (deviceType == HSA_DEVICE_TYPE_GPU)
{
agentData->gpuAgents.push_back(agent);
agentData->closestNumaNode.push_back(0);
}
return HSA_STATUS_SUCCESS;
}
AgentData& GetAgentData()
{
static AgentData agentData = {};
if (!agentData.isInitialized) {
agentData.isInitialized = true;
// Add all detected agents to the list
HSA_CHECK(hsa_iterate_agents(AgentInfoCallback, &agentData));
// Loop over each GPU
for (uint32_t i = 0; i < agentData.gpuAgents.size(); i++) {
// Collect memory pool
hsa_amd_memory_pool_t pool;
HSA_CHECK(hsa_amd_agent_iterate_memory_pools(agentData.gpuAgents[i], MemPoolInfoCallback, &pool));
// Loop over each CPU agent and check distance
agentData.closestNumaNode[i] = 0;
int bestDistance = -1;
for (uint32_t j = 0; j < agentData.cpuAgents.size(); j++) {
// Determine number of hops from GPU memory pool to CPU agent
uint32_t hops = 0;
HSA_CHECK(hsa_amd_agent_memory_pool_get_info(agentData.cpuAgents[j],
pool,
HSA_AMD_AGENT_MEMORY_POOL_INFO_NUM_LINK_HOPS,
&hops));
// Gather link info
if (hops) {
hsa_amd_memory_pool_link_info_t* link_info =
(hsa_amd_memory_pool_link_info_t *)malloc(hops * sizeof(hsa_amd_memory_pool_link_info_t));
HSA_CHECK(hsa_amd_agent_memory_pool_get_info(agentData.cpuAgents[j],
pool,
HSA_AMD_AGENT_MEMORY_POOL_INFO_LINK_INFO,
link_info));
int numaDist = 0;
for (int k = 0; k < hops; k++)
numaDist += link_info[k].numa_distance;
if (bestDistance == -1 || numaDist < bestDistance) {
agentData.closestNumaNode[i] = j;
bestDistance = numaDist;
}
free(link_info);
}
}
}
}
return agentData;
}
#endif
// Returns closest CPU NUMA node to provided GPU
// NOTE: This assumes HSA GPU indexing is similar to HIP GPU indexing
int GetClosestNumaNode(int gpuIdx)
{
#if defined(__NVCC__)
return -1;
#else
AgentData& agentData = GetAgentData();
if (gpuIdx < 0 || gpuIdx >= agentData.closestNumaNode.size())
{
printf("[ERROR] GPU index out is out of bounds\n");
exit(1);
}
return agentData.closestNumaNode[gpuIdx];
#endif
}
/*
Copyright (c) 2022-2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#pragma once
#define PackedFloat_t float4
#define MAX_BLOCKSIZE 512
#define FLOATS_PER_PACK (sizeof(PackedFloat_t) / sizeof(float))
#define MEMSET_CHAR 75
#define MEMSET_VAL 13323083.0f
#if defined(__NVCC__)
#define warpSize 32
#endif
#define MAX_WAVEGROUPS MAX_BLOCKSIZE / warpSize
#define MAX_UNROLL 8
#define NUM_WAVEORDERS 6
// Each subExecutor is provided with subarrays to work on
#define MAX_SRCS 16
#define MAX_DSTS 16
struct SubExecParam
{
// Inputs
size_t N; // Number of floats this subExecutor works on
int numSrcs; // Number of source arrays
int numDsts; // Number of destination arrays
float* src[MAX_SRCS]; // Source array pointers
float* dst[MAX_DSTS]; // Destination array pointers
int32_t preferredXccId; // XCC ID to execute on
// Prepared
int teamSize; // Index of this sub executor amongst team
int teamIdx; // Size of team this sub executor is part of
// Outputs
long long startCycle; // Start timestamp for in-kernel timing (GPU-GFX executor)
long long stopCycle; // Stop timestamp for in-kernel timing (GPU-GFX executor)
uint32_t hwId; // Hardware ID
uint32_t xccId; // XCC ID
};
// Macro for collecting HW_REG_HW_ID
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__)
#define GetHwId(hwId) \
hwId = 0
#elif defined(__NVCC__)
#define GetHwId(hwId) \
asm("mov.u32 %0, %smid;" : "=r"(hwId) )
#else
#define GetHwId(hwId) \
asm volatile ("s_getreg_b32 %0, hwreg(HW_REG_HW_ID)" : "=s" (hwId));
#endif
// Macro for collecting HW_REG_XCC_ID
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
#define GetXccId(val) \
asm volatile ("s_getreg_b32 %0, hwreg(HW_REG_XCC_ID)" : "=s" (val));
#else
#define GetXccId(val) \
val = 0
#endif
void CpuReduceKernel(SubExecParam const& p)
{
int const& numSrcs = p.numSrcs;
int const& numDsts = p.numDsts;
if (numSrcs == 0)
{
for (int i = 0; i < numDsts; ++i)
memset(p.dst[i], MEMSET_CHAR, p.N * sizeof(float));
}
else if (numSrcs == 1)
{
float const* __restrict__ src = p.src[0];
if (numDsts == 0)
{
float sum = 0.0;
for (int j = 0; j < p.N; j++)
sum += p.src[0][j];
// Add a dummy check to ensure the read is not optimized out
if (sum != sum)
{
printf("[ERROR] Nan detected\n");
}
}
else
{
for (int i = 0; i < numDsts; ++i)
{
memcpy(p.dst[i], src, p.N * sizeof(float));
}
}
}
else
{
float sum = 0.0f;
for (int j = 0; j < p.N; j++)
{
sum = p.src[0][j];
for (int i = 1; i < numSrcs; i++) sum += p.src[i][j];
for (int i = 0; i < numDsts; i++) p.dst[i][j] = sum;
}
}
}
std::string PrepSrcValueString()
{
return "Element i = ((i * 517) modulo 383 + 31) * (srcBufferIdx + 1)";
}
__host__ __device__ float PrepSrcValue(int srcBufferIdx, size_t idx)
{
return (((idx % 383) * 517) % 383 + 31) * (srcBufferIdx + 1);
}
__global__ void CollectXccIdsKernel(int* xccIds)
{
int xccId;
GetXccId(xccId);
xccIds[blockIdx.x] = xccId;
}
// GPU kernel to prepare src buffer data
__global__ void
PrepSrcDataKernel(float* ptr, size_t N, int srcBufferIdx)
{
for (size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
idx < N;
idx += blockDim.x * gridDim.x)
{
ptr[idx] = PrepSrcValue(srcBufferIdx, idx);
}
}
__device__ int64_t GetTimestamp()
{
#if defined(__NVCC__)
int64_t result;
asm volatile("mov.u64 %0, %%globaltimer;" : "=l"(result));
return result;
#else
return wall_clock64();
#endif
}
// Helper function for memset
template <typename T> __device__ __forceinline__ T MemsetVal();
template <> __device__ __forceinline__ float MemsetVal(){ return MEMSET_VAL; };
template <> __device__ __forceinline__ float4 MemsetVal(){ return make_float4(MEMSET_VAL, MEMSET_VAL, MEMSET_VAL, MEMSET_VAL); }
template <int BLOCKSIZE, int UNROLL>
__global__ void __launch_bounds__(BLOCKSIZE)
GpuReduceKernel(SubExecParam* params, int waveOrder, int numSubIterations)
{
int64_t startCycle;
if (threadIdx.x == 0) startCycle = GetTimestamp();
SubExecParam& p = params[blockIdx.y];
// (Experimental) Filter by XCC if desired
#if !defined(__NVCC__)
int32_t xccId;
GetXccId(xccId);
if (p.preferredXccId != -1 && xccId != p.preferredXccId) return;
#endif
// Collect data information
int32_t const numSrcs = p.numSrcs;
int32_t const numDsts = p.numDsts;
float4 const* __restrict__ srcFloat4[MAX_SRCS];
float4* __restrict__ dstFloat4[MAX_DSTS];
for (int i = 0; i < numSrcs; i++) srcFloat4[i] = (float4*)p.src[i];
for (int i = 0; i < numDsts; i++) dstFloat4[i] = (float4*)p.dst[i];
// Operate on wavefront granularity
int32_t const nTeams = p.teamSize; // Number of threadblocks working together on this subarray
int32_t const teamIdx = p.teamIdx; // Index of this threadblock within the team
int32_t const nWaves = BLOCKSIZE / warpSize; // Number of wavefronts within this threadblock
int32_t const waveIdx = threadIdx.x / warpSize; // Index of this wavefront within the threadblock
int32_t const tIdx = threadIdx.x % warpSize; // Thread index within wavefront
size_t const numFloat4 = p.N / 4;
int32_t teamStride, waveStride, unrlStride, teamStride2, waveStride2;
switch (waveOrder)
{
case 0: /* U,W,C */ unrlStride = 1; waveStride = UNROLL; teamStride = UNROLL * nWaves; teamStride2 = nWaves; waveStride2 = 1 ; break;
case 1: /* U,C,W */ unrlStride = 1; teamStride = UNROLL; waveStride = UNROLL * nTeams; teamStride2 = 1; waveStride2 = nTeams; break;
case 2: /* W,U,C */ waveStride = 1; unrlStride = nWaves; teamStride = nWaves * UNROLL; teamStride2 = nWaves; waveStride2 = 1 ; break;
case 3: /* W,C,U */ waveStride = 1; teamStride = nWaves; unrlStride = nWaves * nTeams; teamStride2 = nWaves; waveStride2 = 1 ; break;
case 4: /* C,U,W */ teamStride = 1; unrlStride = nTeams; waveStride = nTeams * UNROLL; teamStride2 = 1; waveStride2 = nTeams; break;
case 5: /* C,W,U */ teamStride = 1; waveStride = nTeams; unrlStride = nTeams * nWaves; teamStride2 = 1; waveStride2 = nTeams; break;
}
int subIterations = 0;
while (1) {
// First loop: Each wavefront in the team works on UNROLL float4s per thread
size_t const loop1Stride = nTeams * nWaves * UNROLL * warpSize;
size_t const loop1Limit = numFloat4 / loop1Stride * loop1Stride;
{
float4 val[UNROLL];
if (numSrcs == 0) {
#pragma unroll
for (int u = 0; u < UNROLL; u++)
val[u] = MemsetVal<float4>();
}
for (size_t idx = (teamIdx * teamStride + waveIdx * waveStride) * warpSize + tIdx; idx < loop1Limit; idx += loop1Stride)
{
// Read sources into memory and accumulate in registers
if (numSrcs)
{
for (int u = 0; u < UNROLL; u++)
val[u] = srcFloat4[0][idx + u * unrlStride * warpSize];
for (int s = 1; s < numSrcs; s++)
for (int u = 0; u < UNROLL; u++)
val[u] += srcFloat4[s][idx + u * unrlStride * warpSize];
}
// Write accumulation to all outputs
for (int d = 0; d < numDsts; d++)
{
#pragma unroll
for (int u = 0; u < UNROLL; u++)
dstFloat4[d][idx + u * unrlStride * warpSize] = val[u];
}
}
}
// Second loop: Deal with remaining float4s
{
if (loop1Limit < numFloat4)
{
float4 val;
if (numSrcs == 0) val = MemsetVal<float4>();
size_t const loop2Stride = nTeams * nWaves * warpSize;
for (size_t idx = loop1Limit + (teamIdx * teamStride2 + waveIdx * waveStride2) * warpSize + tIdx; idx < numFloat4; idx += loop2Stride)
{
if (numSrcs)
{
val = srcFloat4[0][idx];
for (int s = 1; s < numSrcs; s++)
val += srcFloat4[s][idx];
}
for (int d = 0; d < numDsts; d++)
dstFloat4[d][idx] = val;
}
}
}
// Third loop; Deal with remaining floats
{
if (numFloat4 * 4 < p.N)
{
float val;
if (numSrcs == 0) val = MemsetVal<float>();
size_t const loop3Stride = nTeams * nWaves * warpSize;
for( size_t idx = numFloat4 * 4 + (teamIdx * teamStride2 + waveIdx * waveStride2) * warpSize + tIdx; idx < p.N; idx += loop3Stride)
{
if (numSrcs)
{
val = p.src[0][idx];
for (int s = 1; s < numSrcs; s++)
val += p.src[s][idx];
}
for (int d = 0; d < numDsts; d++)
p.dst[d][idx] = val;
}
}
}
if (++subIterations == numSubIterations) break;
}
// Wait for all threads to finish
__syncthreads();
if (threadIdx.x == 0)
{
__threadfence_system();
p.stopCycle = GetTimestamp();
p.startCycle = startCycle;
GetHwId(p.hwId);
GetXccId(p.xccId);
}
}
typedef void (*GpuKernelFuncPtr)(SubExecParam*, int, int);
#define GPU_KERNEL_UNROLL_DECL(BLOCKSIZE) \
{GpuReduceKernel<BLOCKSIZE, 1>, \
GpuReduceKernel<BLOCKSIZE, 2>, \
GpuReduceKernel<BLOCKSIZE, 3>, \
GpuReduceKernel<BLOCKSIZE, 4>, \
GpuReduceKernel<BLOCKSIZE, 5>, \
GpuReduceKernel<BLOCKSIZE, 6>, \
GpuReduceKernel<BLOCKSIZE, 7>, \
GpuReduceKernel<BLOCKSIZE, 8>}
GpuKernelFuncPtr GpuKernelTable[MAX_WAVEGROUPS][MAX_UNROLL] =
{
GPU_KERNEL_UNROLL_DECL(64),
GPU_KERNEL_UNROLL_DECL(128),
GPU_KERNEL_UNROLL_DECL(192),
GPU_KERNEL_UNROLL_DECL(256),
GPU_KERNEL_UNROLL_DECL(320),
GPU_KERNEL_UNROLL_DECL(384),
GPU_KERNEL_UNROLL_DECL(448),
GPU_KERNEL_UNROLL_DECL(512)
};
/*
Copyright (c) 2019-2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#pragma once
#include <vector>
#include <sstream>
#include <chrono>
#include <cstdio>
#include <cstdlib>
#include <cstdint>
#include <set>
#include <unistd.h>
#include <map>
#include <iostream>
#include <sstream>
#include "Compatibility.hpp"
#include "EnvVars.hpp"
// Simple configuration parameters
size_t const DEFAULT_BYTES_PER_TRANSFER = (1<<26); // Amount of data transferred per Transfer
#define MAX_LINE_LEN 32768
// Different src/dst memory types supported
typedef enum
{
MEM_CPU = 0, // Coarse-grained pinned CPU memory
MEM_GPU = 1, // Coarse-grained global GPU memory
MEM_CPU_FINE = 2, // Fine-grained pinned CPU memory
MEM_GPU_FINE = 3, // Fine-grained global GPU memory
MEM_CPU_UNPINNED = 4, // Unpinned CPU memory
MEM_NULL = 5, // NULL memory - used for empty
MEM_MANAGED = 6
} MemType;
typedef enum
{
EXE_CPU = 0, // CPU executor (subExecutor = CPU thread)
EXE_GPU_GFX = 1, // GPU kernel-based executor (subExecutor = threadblock/CU)
EXE_GPU_DMA = 2, // GPU SDMA-based executor (subExecutor = streams)
} ExeType;
bool IsGpuType(MemType m) { return (m == MEM_GPU || m == MEM_GPU_FINE || m == MEM_MANAGED); }
bool IsCpuType(MemType m) { return (m == MEM_CPU || m == MEM_CPU_FINE || m == MEM_CPU_UNPINNED); };
bool IsGpuType(ExeType e) { return (e == EXE_GPU_GFX || e == EXE_GPU_DMA); };
bool IsCpuType(ExeType e) { return (e == EXE_CPU); };
char const MemTypeStr[8] = "CGBFUNM";
char const ExeTypeStr[4] = "CGD";
char const ExeTypeName[3][4] = {"CPU", "GPU", "DMA"};
MemType inline CharToMemType(char const c)
{
char const* val = strchr(MemTypeStr, toupper(c));
if (val) return (MemType)(val - MemTypeStr);
printf("[ERROR] Unexpected memory type (%c)\n", c);
exit(1);
}
ExeType inline CharToExeType(char const c)
{
char const* val = strchr(ExeTypeStr, toupper(c));
if (val) return (ExeType)(val - ExeTypeStr);
printf("[ERROR] Unexpected executor type (%c)\n", c);
exit(1);
}
// Each Transfer performs reads from source memory location(s), sums them (if multiple sources are specified)
// then writes the summation to each of the specified destination memory location(s)
struct Transfer
{
// Inputs
ExeType exeType; // Transfer executor type
int exeIndex; // Executor index (NUMA node for CPU / device ID for GPU)
int exeSubIndex; // Executor subindex
int numSubExecs; // Number of subExecutors to use for this Transfer
size_t numBytes; // # of bytes requested to Transfer (may be 0 to fallback to default)
int numSrcs; // Number of sources
std::vector<MemType> srcType; // Source memory types
std::vector<int> srcIndex; // Source device indice
int numDsts; // Number of destinations
std::vector<MemType> dstType; // Destination memory type
std::vector<int> dstIndex; // Destination device index
// Outputs
size_t numBytesActual; // Actual number of bytes to copy
double transferTime; // Time taken in milliseconds for this transfer
double transferBandwidth; // Transfer bandwidth (GB/s)
double executorBandwidth; // Executor bandwidth (GB/s)
std::vector<double> perIterationTime; // Per-iteration timing
std::vector<std::set<std::pair<int,int>>> perIterationCUs; // Per-iteration CU usage
// Internal
int transferIndex; // Transfer identifier (within a Test)
std::vector<float*> srcMem; // Source memory
std::vector<float*> dstMem; // Destination memory
std::vector<SubExecParam> subExecParam; // Defines subarrays assigned to each threadblock
SubExecParam* subExecParamGpuPtr; // Pointer to GPU copy of subExecParam
std::vector<int> subExecIdx; // Indicies into subExecParamGpu
#if !defined(__NVCC__)
// For targeted-SDMA
hsa_agent_t dstAgent; // DMA destination memory agent
hsa_agent_t srcAgent; // DMA source memory agent
hsa_signal_t signal; // HSA signal for completion
hsa_amd_sdma_engine_id_t sdmaEngineId; // DMA engine ID
#endif
// Prepares src/dst subarray pointers for each SubExecutor
void PrepareSubExecParams(EnvVars const& ev);
// Prepare source arrays with input data
bool PrepareSrc(EnvVars const& ev);
// Validate that destination data contains expected results
void ValidateDst(EnvVars const& ev);
// Prepare reference buffers
void PrepareReference(EnvVars const& ev, std::vector<float>& buffer, int bufferIdx);
// String representation functions
std::string SrcToStr() const;
std::string DstToStr() const;
};
struct ExecutorInfo
{
std::vector<Transfer*> transfers; // Transfers to execute
size_t totalBytes; // Total bytes this executor transfers
int totalSubExecs; // Total number of subExecutors to use
// For GPU-Executors
SubExecParam* subExecParamGpu; // GPU copy of subExecutor parameters
std::vector<hipStream_t> streams;
std::vector<hipEvent_t> startEvents;
std::vector<hipEvent_t> stopEvents;
// Results
double totalTime;
};
struct ExeResult
{
double bandwidthGbs;
double durationMsec;
double sumBandwidthGbs;
size_t totalBytes;
std::vector<int> transferIdx;
};
struct TestResults
{
size_t numTimedIterations;
size_t totalBytesTransferred;
double totalBandwidthCpu;
double totalDurationMsec;
double overheadMsec;
std::map<std::pair<ExeType, int>, ExeResult> exeResults;
};
typedef std::pair<ExeType, int> Executor;
typedef std::map<Executor, ExecutorInfo> TransferMap;
// Display usage instructions
void DisplayUsage(char const* cmdName);
// Display detected GPU topology / CPU numa nodes
void DisplayTopology(bool const outputToCsv);
// Build array of test sizes based on sampling factor
void PopulateTestSizes(size_t const numBytesPerTransfer, int const samplingFactor,
std::vector<size_t>& valuesofN);
void ParseMemType(EnvVars const& ev, std::string const& token, std::vector<MemType>& memType, std::vector<int>& memIndex);
void ParseExeType(EnvVars const& ev, std::string const& token, ExeType& exeType, int& exeIndex, int& exeSubIndex);
void ParseTransfers(EnvVars const& ev, char* line, std::vector<Transfer>& transfers);
void ExecuteTransfers(EnvVars const& ev, int const testNum, size_t const N,
std::vector<Transfer>& transfers, bool verbose = true,
double* totalBandwidthCpu = nullptr);
TestResults ExecuteTransfersImpl(EnvVars const& ev, std::vector<Transfer>& transfers);
void ReportResults(EnvVars const& ev, std::vector<Transfer> const& transfers, TestResults const results);
void EnablePeerAccess(int const deviceId, int const peerDeviceId);
void AllocateMemory(MemType memType, int devIndex, size_t numBytes, void** memPtr);
void DeallocateMemory(MemType memType, void* memPtr, size_t const size = 0);
void CheckPages(char* byteArray, size_t numBytes, int targetId);
void RunTransfer(EnvVars const& ev, int const iteration, ExecutorInfo& exeInfo, int const transferIdx);
void RunPeerToPeerBenchmarks(EnvVars const& ev, size_t N);
void RunScalingBenchmark(EnvVars const& ev, size_t N, int const exeIndex, int const maxSubExecs);
void RunSweepPreset(EnvVars const& ev, size_t const numBytesPerTransfer, int const numGpuSubExec, int const numCpuSubExec, bool const isRandom);
void RunAllToAllBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int const numSubExecs);
void RunSchmooBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int const localIdx, int const remoteIdx, int const maxSubExecs);
void RunRemoteWriteBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int numSubExecs, int const srcIdx, int minGpus, int maxGpus);
void RunParallelCopyBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int numSubExecs, int const srcIdx, int minGpus, int maxGpus);
void RunHealthCheck(EnvVars ev);
std::string GetLinkTypeDesc(uint32_t linkType, uint32_t hopCount);
int RemappedIndex(int const origIdx, bool const isCpuType);
void LogTransfers(FILE *fp, int const testNum, std::vector<Transfer> const& transfers);
std::string PtrVectorToStr(std::vector<float*> const& strVector, int const initOffset);
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment