Commit 09f4f11b authored by Oliveira, Daniel's avatar Oliveira, Daniel
Browse files

impr: Library/Client build organization



Change code organization and build options

Code changes related to the following:
  * Build files
    * Options to build client, shared, and static libraries
  * Source code directories
  * Modern C++20 changes
  * Based on TB 1.6.4
  * Formatting
Signed-off-by: default avatarOliveira, Daniel <daniel.oliveira@amd.com>
parent 2d0ecaae
/*
Copyright (c) 2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
void OneToAllPreset(EnvVars& ev,
size_t const numBytesPerTransfer,
std::string const presetName)
{
int numDetectedGpus = TransferBench::GetNumExecutors(EXE_GPU_GFX);
if (numDetectedGpus < 2) {
printf("[ERROR] One-to-all benchmark requires machine with at least 2 GPUs\n");
exit(1);
}
// Collect env vars for this preset
int numGpuDevices = EnvVars::GetEnvVar("NUM_GPU_DEVICES", numDetectedGpus);
int numSubExecs = EnvVars::GetEnvVar("NUM_GPU_SE", 4);
int exeIndex = EnvVars::GetEnvVar("EXE_INDEX", 0);
int sweepDir = EnvVars::GetEnvVar("SWEEP_DIR", 0);
std::string sweepDst = EnvVars::GetEnvVar("SWEEP_DST", "G");
std::string sweepExe = EnvVars::GetEnvVar("SWEEP_EXE", "G");
std::string sweepSrc = EnvVars::GetEnvVar("SWEEP_SRC", "G");
int sweepMin = EnvVars::GetEnvVar("SWEEP_MIN", 1);
int sweepMax = EnvVars::GetEnvVar("SWEEP_MAX", numGpuDevices);
// Display environment variables
ev.DisplayEnvVars();
if (!ev.hideEnv) {
if (!ev.outputToCsv) printf("[One-To-All Related]\n");
ev.Print("NUM_GPU_DEVICES", numGpuDevices, "Using %d GPUs", numGpuDevices);
ev.Print("NUM_GPU_SE", numSubExecs, "Using %d subExecutors/CUs per Transfer", numSubExecs);
ev.Print("EXE_INDEX", exeIndex, "Executing on GPU %d", exeIndex);
ev.Print("SWEEP_DIR", sweepDir, "Direction of transfer");
ev.Print("SWEEP_DST", sweepDst.c_str(), "DST memory types to sweep");
ev.Print("SWEEP_EXE", sweepExe.c_str(), "Executor type to use");
ev.Print("SWEEP_MAX", sweepMax, "Maximum number of peers");
ev.Print("SWEEP_MIN", sweepMin, "Minimum number of peers");
ev.Print("SWEEP_SRC", sweepSrc.c_str(), "SRC memory types to sweep");
printf("\n");
}
// Perform validation
for (auto ch : sweepExe) {
if (ch != 'G' && ch != 'D') {
printf("[ERROR] Unrecognized executor type '%c' specified\n", ch);
exit(1);
}
}
TransferBench::ConfigOptions cfg = ev.ToConfigOptions();
TransferBench::TestResults results;
char const sep = (ev.outputToCsv ? ',' : ' ');
for (char src : sweepSrc) for (char exe : sweepExe) for (char dst : sweepDst) {
// Skip invalid configurations
if ((exe == 'D' && (src == 'N' || dst == 'N')) || (src == 'N' && dst == 'N')) continue;
printf("Executing (%c%s -> %c%d -> %c%s)\n",
src, src == 'N' ? "" : (sweepDir == 0 ? std::to_string(exeIndex).c_str() : std::string("*").c_str()),
exe, exeIndex,
dst, dst == 'N' ? "" : sweepDir == 0 ? std::string("*").c_str() : std::to_string(exeIndex).c_str());
for (int i = 0; i < numGpuDevices; i++) {
if (i == exeIndex) continue;
printf(" GPU %-3d %c", i, sep);
}
printf("\n");
if (!ev.outputToCsv) {
for (int i = 0; i < numGpuDevices-1; i++)
printf("-------------");
printf("\n");
}
for (int p = sweepMin; p <= sweepMax; p++) {
for (int bitmask = 0; bitmask < (1<<numGpuDevices); bitmask++) {
if (bitmask & (1<<exeIndex) || __builtin_popcount(bitmask) != p) continue;
std::vector<Transfer> transfers;
for (int i = 0; i < numGpuDevices; i++) {
if (bitmask & (1<<i)) {
Transfer t;
CheckForError(TransferBench::CharToExeType(exe, t.exeDevice.exeType));
t.exeDevice.exeIndex = exeIndex;
t.exeSubIndex = -1;
t.numSubExecs = numSubExecs;
t.numBytes = numBytesPerTransfer;
if (src == 'N') {
t.srcs.clear();
} else {
t.srcs.resize(1);
CheckForError(TransferBench::CharToMemType(src, t.srcs[0].memType));
t.srcs[0].memIndex = sweepDir == 0 ? exeIndex : i;
}
if (dst == 'N') {
t.dsts.clear();
} else {
t.dsts.resize(1);
CheckForError(TransferBench::CharToMemType(dst, t.dsts[0].memType));
t.dsts[0].memIndex = sweepDir == 0 ? i : exeIndex;
}
transfers.push_back(t);
}
}
if (!TransferBench::RunTransfers(cfg, transfers, results)) {
PrintErrors(results.errResults);
exit(1);
}
int counter = 0;
for (int i = 0; i < numGpuDevices; i++) {
if (bitmask & (1<<i))
printf(" %8.3f %c", results.tfrResults[counter++].avgBandwidthGbPerSec, sep);
else if (i != exeIndex)
printf(" %c", sep);
}
printf(" %d %d", p, numSubExecs);
for (auto i = 0; i < transfers.size(); i++) {
printf(" (%s %c%d %s)",
MemDevicesToStr(transfers[i].srcs).c_str(),
ExeTypeStr[transfers[i].exeDevice.exeType], transfers[i].exeDevice.exeIndex,
MemDevicesToStr(transfers[i].dsts).c_str());
}
printf("\n");
}
}
}
}
/*
Copyright (c) 2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
void PeerToPeerPreset(EnvVars& ev,
size_t const numBytesPerTransfer,
std::string const presetName)
{
int numDetectedCpus = TransferBench::GetNumExecutors(EXE_CPU);
int numDetectedGpus = TransferBench::GetNumExecutors(EXE_GPU_GFX);
// Collect env vars for this preset
int useDmaCopy = EnvVars::GetEnvVar("USE_GPU_DMA", 0);
int numCpuDevices = EnvVars::GetEnvVar("NUM_CPU_DEVICES", numDetectedCpus);
int numCpuSubExecs = EnvVars::GetEnvVar("NUM_CPU_SE", 4);
int numGpuDevices = EnvVars::GetEnvVar("NUM_GPU_DEVICES", numDetectedGpus);
int numGpuSubExecs = EnvVars::GetEnvVar("NUM_GPU_SE", useDmaCopy ? 1 : TransferBench::GetNumSubExecutors({EXE_GPU_GFX, 0}));
int p2pMode = EnvVars::GetEnvVar("P2P_MODE", 0);
int useFineGrain = EnvVars::GetEnvVar("USE_FINE_GRAIN", 0);
int useRemoteRead = EnvVars::GetEnvVar("USE_REMOTE_READ", 0);
// Display environment variables
ev.DisplayEnvVars();
if (!ev.hideEnv) {
int outputToCsv = ev.outputToCsv;
if (!outputToCsv) printf("[P2P Related]\n");
ev.Print("NUM_CPU_DEVICES", numCpuDevices, "Using %d CPUs", numCpuDevices);
ev.Print("NUM_CPU_SE", numCpuSubExecs, "Using %d CPU threads per Transfer", numCpuSubExecs);
ev.Print("NUM_GPU_DEVICES", numGpuDevices, "Using %d GPUs", numGpuDevices);
ev.Print("NUM_GPU_SE", numGpuSubExecs, "Using %d GPU subexecutors/CUs per Transfer", numGpuSubExecs);
ev.Print("P2P_MODE", p2pMode, "Running %s transfers", p2pMode == 0 ? "Uni + Bi" :
p2pMode == 1 ? "Unidirectional"
: "Bidirectional");
ev.Print("USE_FINE_GRAIN", useFineGrain, "Using %s-grained memory", useFineGrain ? "fine" : "coarse");
ev.Print("USE_GPU_DMA", useDmaCopy, "Using GPU-%s as GPU executor", useDmaCopy ? "DMA" : "GFX");
ev.Print("USE_REMOTE_READ", useRemoteRead, "Using %s as executor", useRemoteRead ? "DST" : "SRC");
printf("\n");
}
char const separator = ev.outputToCsv ? ',' : ' ';
printf("Bytes Per Direction%c%lu\n", separator, numBytesPerTransfer);
TransferBench::ConfigOptions cfg = ev.ToConfigOptions();
TransferBench::TestResults results;
// Collect the number of available CPUs/GPUs on this machine
int const numDevices = numCpuDevices + numGpuDevices;
// Perform unidirectional / bidirectional
for (int isBidirectional = 0; isBidirectional <= 1; isBidirectional++) {
if (p2pMode == 1 && isBidirectional == 1 ||
p2pMode == 2 && isBidirectional == 0) continue;
printf("%sdirectional copy peak bandwidth GB/s [%s read / %s write] (GPU-Executor: %s)\n", isBidirectional ? "Bi" : "Uni",
useRemoteRead ? "Remote" : "Local",
useRemoteRead ? "Local" : "Remote",
useDmaCopy ? "DMA" : "GFX");
// Print header
if (isBidirectional) {
printf("%12s", "SRC\\DST");
} else {
if (useRemoteRead)
printf("%12s", "SRC\\EXE+DST");
else
printf("%12s", "SRC+EXE\\DST");
}
if (ev.outputToCsv) printf(",");
for (int i = 0; i < numCpuDevices; i++) {
printf("%7s %02d", "CPU", i);
if (ev.outputToCsv) printf(",");
}
if (numCpuDevices > 0) printf(" ");
for (int i = 0; i < numGpuDevices; i++) {
printf("%7s %02d", "GPU", i);
if (ev.outputToCsv) printf(",");
}
printf("\n");
double avgBwSum[2][2] = {};
int avgCount[2][2] = {};
ExeType const gpuExeType = useDmaCopy ? EXE_GPU_DMA : EXE_GPU_GFX;
// Loop over all possible src/dst pairs
for (int src = 0; src < numDevices; src++) {
MemType const srcType = (src < numCpuDevices ? MEM_CPU : MEM_GPU);
int const srcIndex = (srcType == MEM_CPU ? src : src - numCpuDevices);
MemType const srcTypeActual = ((useFineGrain && srcType == MEM_CPU) ? MEM_CPU_FINE :
(useFineGrain && srcType == MEM_GPU) ? MEM_GPU_FINE :
srcType);
std::vector<std::vector<double>> avgBandwidth(isBidirectional + 1);
std::vector<std::vector<double>> minBandwidth(isBidirectional + 1);
std::vector<std::vector<double>> maxBandwidth(isBidirectional + 1);
std::vector<std::vector<double>> stdDev(isBidirectional + 1);
if (src == numCpuDevices && src != 0) printf("\n");
for (int dst = 0; dst < numDevices; dst++) {
MemType const dstType = (dst < numCpuDevices ? MEM_CPU : MEM_GPU);
int const dstIndex = (dstType == MEM_CPU ? dst : dst - numCpuDevices);
MemType const dstTypeActual = ((useFineGrain && dstType == MEM_CPU) ? MEM_CPU_FINE :
(useFineGrain && dstType == MEM_GPU) ? MEM_GPU_FINE :
dstType);
// Prepare Transfers
std::vector<Transfer> transfers(isBidirectional + 1);
// SRC -> DST
transfers[0].numBytes = numBytesPerTransfer;
transfers[0].srcs.push_back({srcTypeActual, srcIndex});
transfers[0].dsts.push_back({dstTypeActual, dstIndex});
transfers[0].exeDevice = {IsGpuMemType(useRemoteRead ? dstType : srcType) ? gpuExeType : EXE_CPU,
(useRemoteRead ? dstIndex : srcIndex)};
transfers[0].exeSubIndex = -1;
transfers[0].numSubExecs = (transfers[0].exeDevice.exeType == gpuExeType) ? numGpuSubExecs : numCpuSubExecs;
// DST -> SRC
if (isBidirectional) {
transfers[1].numBytes = numBytesPerTransfer;
transfers[1].srcs.push_back({dstTypeActual, dstIndex});
transfers[1].dsts.push_back({srcTypeActual, srcIndex});
transfers[1].exeDevice = {IsGpuMemType(useRemoteRead ? srcType : dstType) ? gpuExeType : EXE_CPU,
(useRemoteRead ? srcIndex : dstIndex)};
transfers[1].exeSubIndex = -1;
transfers[1].numSubExecs = (transfers[1].exeDevice.exeType == gpuExeType) ? numGpuSubExecs : numCpuSubExecs;
}
bool skipTest = false;
// Abort if executing on NUMA node with no CPUs
for (int i = 0; i <= isBidirectional; i++) {
if (transfers[i].exeDevice.exeType == EXE_CPU &&
TransferBench::GetNumSubExecutors(transfers[i].exeDevice) == 0) {
skipTest = true;
break;
}
#if defined(__NVCC__)
// NVIDIA platform cannot access GPU memory directly from CPU executors
if (transfers[i].exeDevice.exeType == EXE_CPU && (IsGpuMemType(srcType) || IsGpuMemType(dstType))) {
skipTest = true;
break;
}
#endif
}
if (isBidirectional && srcType == dstType && srcIndex == dstIndex) skipTest = true;
if (!skipTest) {
if (!TransferBench::RunTransfers(cfg, transfers, results)) {
for (auto const& err : results.errResults)
printf("%s\n", err.errMsg.c_str());
exit(1);
}
for (int dir = 0; dir <= isBidirectional; dir++) {
double const avgBw = results.tfrResults[dir].avgBandwidthGbPerSec;
avgBandwidth[dir].push_back(avgBw);
if (!(srcType == dstType && srcIndex == dstIndex)) {
avgBwSum[srcType][dstType] += avgBw;
avgCount[srcType][dstType]++;
}
if (ev.showIterations) {
double minTime = results.tfrResults[dir].perIterMsec[0];
double maxTime = minTime;
double varSum = 0;
for (int i = 0; i < results.tfrResults[dir].perIterMsec.size(); i++) {
minTime = std::min(minTime, results.tfrResults[dir].perIterMsec[i]);
maxTime = std::max(maxTime, results.tfrResults[dir].perIterMsec[i]);
double const bw = (transfers[dir].numBytes / 1.0E9) / results.tfrResults[dir].perIterMsec[i] * 1000.0f;
double const delta = (avgBw - bw);
varSum += delta * delta;
}
double const minBw = (transfers[dir].numBytes / 1.0E9) / maxTime * 1000.0f;
double const maxBw = (transfers[dir].numBytes / 1.0E9) / minTime * 1000.0f;
double const stdev = sqrt(varSum / results.tfrResults[dir].perIterMsec.size());
minBandwidth[dir].push_back(minBw);
maxBandwidth[dir].push_back(maxBw);
stdDev[dir].push_back(stdev);
}
}
} else {
for (int dir = 0; dir <= isBidirectional; dir++) {
avgBandwidth[dir].push_back(0);
minBandwidth[dir].push_back(0);
maxBandwidth[dir].push_back(0);
stdDev[dir].push_back(-1.0);
}
}
}
for (int dir = 0; dir <= isBidirectional; dir++) {
printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, dir ? "<- " : " ->");
if (ev.outputToCsv) printf(",");
for (int dst = 0; dst < numDevices; dst++) {
if (dst == numCpuDevices && dst != 0) printf(" ");
double const avgBw = avgBandwidth[dir][dst];
if (avgBw == 0.0)
printf("%10s", "N/A");
else
printf("%10.2f", avgBw);
if (ev.outputToCsv) printf(",");
}
printf("\n");
if (ev.showIterations) {
// minBw
printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, "min");
if (ev.outputToCsv) printf(",");
for (int i = 0; i < numDevices; i++) {
double const minBw = minBandwidth[dir][i];
if (i == numCpuDevices && i != 0) printf(" ");
if (minBw == 0.0)
printf("%10s", "N/A");
else
printf("%10.2f", minBw);
if (ev.outputToCsv) printf(",");
}
printf("\n");
// maxBw
printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, "max");
if (ev.outputToCsv) printf(",");
for (int i = 0; i < numDevices; i++) {
double const maxBw = maxBandwidth[dir][i];
if (i == numCpuDevices && i != 0) printf(" ");
if (maxBw == 0.0)
printf("%10s", "N/A");
else
printf("%10.2f", maxBw);
if (ev.outputToCsv) printf(",");
}
printf("\n");
// stddev
printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, " sd");
if (ev.outputToCsv) printf(",");
for (int i = 0; i < numDevices; i++) {
double const sd = stdDev[dir][i];
if (i == numCpuDevices && i != 0) printf(" ");
if (sd == -1.0)
printf("%10s", "N/A");
else
printf("%10.2f", sd);
if (ev.outputToCsv) printf(",");
}
printf("\n");
}
fflush(stdout);
}
if (isBidirectional) {
printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, "<->");
if (ev.outputToCsv) printf(",");
for (int dst = 0; dst < numDevices; dst++) {
double const sumBw = avgBandwidth[0][dst] + avgBandwidth[1][dst];
if (dst == numCpuDevices && dst != 0) printf(" ");
if (sumBw == 0.0)
printf("%10s", "N/A");
else
printf("%10.2f", sumBw);
if (ev.outputToCsv) printf(",");
}
printf("\n");
if (src < numDevices - 1) printf("\n");
}
}
if (!ev.outputToCsv) {
printf(" ");
for (int srcType : {MEM_CPU, MEM_GPU})
for (int dstType : {MEM_CPU, MEM_GPU})
printf(" %cPU->%cPU", srcType == MEM_CPU ? 'C' : 'G', dstType == MEM_CPU ? 'C' : 'G');
printf("\n");
printf("Averages (During %s):", isBidirectional ? " BiDir" : "UniDir");
for (int srcType : {MEM_CPU, MEM_GPU})
for (int dstType : {MEM_CPU, MEM_GPU}) {
if (avgCount[srcType][dstType])
printf("%10.2f", avgBwSum[srcType][dstType] / avgCount[srcType][dstType]);
else
printf("%10s", "N/A");
}
printf("\n\n");
}
}
}
/*
Copyright (c) 2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
void ScalingPreset(EnvVars& ev,
size_t const numBytesPerTransfer,
std::string const presetName)
{
int numDetectedCpus = TransferBench::GetNumExecutors(EXE_CPU);
int numDetectedGpus = TransferBench::GetNumExecutors(EXE_GPU_GFX);
// Collect env vars for this preset
int localIdx = EnvVars::GetEnvVar("LOCAL_IDX", 0);
int numCpuDevices = EnvVars::GetEnvVar("NUM_CPU_DEVICES", numDetectedCpus);
int numGpuDevices = EnvVars::GetEnvVar("NUM_GPU_DEVICES", numDetectedGpus);
int sweepMax = EnvVars::GetEnvVar("SWEEP_MAX", 32);
int sweepMin = EnvVars::GetEnvVar("SWEEP_MIN", 1);
int useFineGrain = EnvVars::GetEnvVar("USE_FINE_GRAIN", 0);
// Display environment variables
ev.DisplayEnvVars();
if (!ev.hideEnv) {
int outputToCsv = ev.outputToCsv;
if (!outputToCsv) printf("[Schmoo Related]\n");
ev.Print("LOCAL_IDX", localIdx, "Local GPU index");
ev.Print("SWEEP_MAX", sweepMax, "Max number of subExecutors to use");
ev.Print("SWEEP_MIN", sweepMin, "Min number of subExecutors to use");
printf("\n");
}
// Validate env vars
if (localIdx >= numDetectedGpus) {
printf("[ERROR] Cannot execute scaling test with local GPU device %d\n", localIdx);
exit(1);
}
TransferBench::ConfigOptions cfg = ev.ToConfigOptions();
TransferBench::TestResults results;
char separator = (ev.outputToCsv ? ',' : ' ');
int numDevices = numCpuDevices + numGpuDevices;
printf("GPU-GFX Scaling benchmark:\n");
printf("==========================\n");
printf("- Copying %lu bytes from GPU %d to other devices\n", numBytesPerTransfer, localIdx);
printf("- All numbers reported as GB/sec\n\n");
printf("NumCUs");
for (int i = 0; i < numDevices; i++)
printf("%c %s%02d ", separator, i < numCpuDevices ? "CPU" : "GPU", i < numCpuDevices ? i : i - numCpuDevices);
printf("\n");
std::vector<std::pair<double, int>> bestResult(numDevices);
std::vector<Transfer> transfers(1);
Transfer& t = transfers[0];
t.exeDevice = {EXE_GPU_GFX, localIdx};
t.exeSubIndex = -1;
t.numBytes = numBytesPerTransfer;
t.srcs = {{MEM_GPU, localIdx}};
for (int numSubExec = sweepMin; numSubExec <= sweepMax; numSubExec++) {
t.numSubExecs = numSubExec;
printf("%4d ", numSubExec);
for (int i = 0; i < numDevices; i++) {
t.dsts = {{i < numCpuDevices ? MEM_CPU : MEM_GPU,
i < numCpuDevices ? i : i - numCpuDevices}};
if (!RunTransfers(cfg, transfers, results)) {
PrintErrors(results.errResults);
exit(1);
}
double bw = results.tfrResults[0].avgBandwidthGbPerSec;
printf("%c%7.2f ", separator, bw);
if (bw > bestResult[i].first) {
bestResult[i].first = bw;
bestResult[i].second = numSubExec;
}
}
printf("\n");
}
printf(" Best ");
for (int i = 0; i < numDevices; i++)
printf("%c%7.2f(%3d)", separator, bestResult[i].first, bestResult[i].second);
printf("\n");
}
/*
Copyright (c) 2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
void SchmooPreset(EnvVars& ev,
size_t const numBytesPerTransfer,
std::string const presetName)
{
int numDetectedGpus = TransferBench::GetNumExecutors(EXE_GPU_GFX);
if (numDetectedGpus < 2) {
printf("[ERROR] Schmoo benchmark requires at least 2 GPUs\n");
exit(1);
}
// Collect env vars for this preset
int localIdx = EnvVars::GetEnvVar("LOCAL_IDX", 0);
int remoteIdx = EnvVars::GetEnvVar("REMOTE_IDX", 1);
int sweepMax = EnvVars::GetEnvVar("SWEEP_MAX", 32);
int sweepMin = EnvVars::GetEnvVar("SWEEP_MIN", 1);
int useFineGrain = EnvVars::GetEnvVar("USE_FINE_GRAIN", 0);
// Display environment variables
ev.DisplayEnvVars();
if (!ev.hideEnv) {
int outputToCsv = ev.outputToCsv;
if (!outputToCsv) printf("[Schmoo Related]\n");
ev.Print("LOCAL_IDX", localIdx, "Local GPU index");
ev.Print("REMOTE_IDX", remoteIdx, "Remote GPU index");
ev.Print("SWEEP_MAX", sweepMax, "Max number of subExecutors to use");
ev.Print("SWEEP_MIN", sweepMin, "Min number of subExecutors to use");
ev.Print("USE_FINE_GRAIN", useFineGrain, "Using %s-grained memory", useFineGrain ? "fine" : "coarse");
printf("\n");
}
// Validate env vars
if (localIdx >= numDetectedGpus || remoteIdx >= numDetectedGpus) {
printf("[ERROR] Cannot execute schmoo test with local GPU device %d, remote GPU device %d\n", localIdx, remoteIdx);
exit(1);
}
TransferBench::ConfigOptions cfg = ev.ToConfigOptions();
TransferBench::TestResults results;
char memChar = useFineGrain ? 'F' : 'G';
printf("Bytes to transfer: %lu Local GPU: %d Remote GPU: %d\n", numBytesPerTransfer, localIdx, remoteIdx);
printf(" | Local Read | Local Write | Local Copy | Remote Read | Remote Write| Remote Copy |\n");
printf(" #CUs |%c%02d->G%02d->N00|N00->G%02d->%c%02d|%c%02d->G%02d->%c%02d|%c%02d->G%02d->N00|N00->G%02d->%c%02d|%c%02d->G%02d->%c%02d|\n",
memChar, localIdx, localIdx,
localIdx, memChar, localIdx,
memChar, localIdx, localIdx, memChar, localIdx,
memChar, remoteIdx, localIdx,
localIdx, memChar, remoteIdx,
memChar, localIdx, localIdx, memChar, remoteIdx);
printf("|------|-------------|-------------|-------------|-------------|-------------|-------------|\n");
std::vector<Transfer> transfers(1);
Transfer& t = transfers[0];
t.exeDevice = {EXE_GPU_GFX, localIdx};
t.exeSubIndex = -1;
t.numBytes = numBytesPerTransfer;
MemType memType = (useFineGrain ? MEM_GPU_FINE : MEM_GPU);
for (int numCUs = sweepMin; numCUs <= sweepMax; numCUs++) {
t.numSubExecs = numCUs;
// Local Read
t.srcs = {{memType, localIdx}};
t.dsts = {};
if (!RunTransfers(cfg, transfers, results)) {
PrintErrors(results.errResults);
exit(1);
}
double const localRead = results.tfrResults[0].avgBandwidthGbPerSec;
// Local Write
t.srcs = {};
t.dsts = {{memType, localIdx}};
if (!RunTransfers(cfg, transfers, results)) {
PrintErrors(results.errResults);
exit(1);
}
double const localWrite = results.tfrResults[0].avgBandwidthGbPerSec;
// Local Copy
t.srcs = {{memType, localIdx}};
t.dsts = {{memType, localIdx}};
t.srcs = {};
t.dsts = {{memType, localIdx}};
if (!RunTransfers(cfg, transfers, results)) {
PrintErrors(results.errResults);
exit(1);
}
double const localCopy = results.tfrResults[0].avgBandwidthGbPerSec;
// Remote Read
t.srcs = {{memType, remoteIdx}};
t.dsts = {};
if (!RunTransfers(cfg, transfers, results)) {
PrintErrors(results.errResults);
exit(1);
}
double const remoteRead = results.tfrResults[0].avgBandwidthGbPerSec;
// Remote Write
t.srcs = {};
t.dsts = {{memType, remoteIdx}};
if (!RunTransfers(cfg, transfers, results)) {
PrintErrors(results.errResults);
exit(1);
}
double const remoteWrite = results.tfrResults[0].avgBandwidthGbPerSec;
// Remote Copy
t.srcs = {{memType, localIdx}};
t.dsts = {{memType, remoteIdx}};
if (!RunTransfers(cfg, transfers, results)) {
PrintErrors(results.errResults);
exit(1);
}
double const remoteCopy = results.tfrResults[0].avgBandwidthGbPerSec;
printf(" %3d %11.3f %11.3f %11.3f %11.3f %11.3f %11.3f \n",
numCUs, localRead, localWrite, localCopy, remoteRead, remoteWrite, remoteCopy);
}
}
/*
Copyright (c) 2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
void LogTransfers(FILE *fp, int const testNum, std::vector<Transfer> const& transfers)
{
if (fp) {
fprintf(fp, "# Test %d\n", testNum);
fprintf(fp, "%d", -1 * (int)transfers.size());
for (auto const& transfer : transfers)
{
fprintf(fp, " (%s->%c%d->%s %d %lu)",
MemDevicesToStr(transfer.srcs).c_str(),
ExeTypeStr[transfer.exeDevice.exeType], transfer.exeDevice.exeIndex,
MemDevicesToStr(transfer.dsts).c_str(),
transfer.numSubExecs,
transfer.numBytes);
}
fprintf(fp, "\n");
fflush(fp);
}
}
void SweepPreset(EnvVars& ev,
size_t const numBytesPerTransfer,
std::string const presetName)
{
bool const isRandom = (presetName == "rsweep");
int numDetectedCpus = TransferBench::GetNumExecutors(EXE_CPU);
int numDetectedGpus = TransferBench::GetNumExecutors(EXE_GPU_GFX);
// Collect env vars and set defaults
int continueOnErr = EnvVars::GetEnvVar("CONTINUE_ON_ERROR" , 0);
int numCpuDevices = EnvVars::GetEnvVar("NUM_CPU_DEVICES" , numDetectedCpus);
int numCpuSubExecs = EnvVars::GetEnvVar("NUM_CPU_SE" , 4);
int numGpuDevices = EnvVars::GetEnvVar("NUM_GPU_DEVICES" , numDetectedGpus);
int numGpuSubExecs = EnvVars::GetEnvVar("NUM_GPU_SE" , 4);
std::string sweepDst = EnvVars::GetEnvVar("SWEEP_DST" , "CG");
std::string sweepExe = EnvVars::GetEnvVar("SWEEP_EXE" , "CDG");
std::string sweepFile = EnvVars::GetEnvVar("SWEEP_FILE" , "/tmp/lastSweep.cfg");
int sweepMax = EnvVars::GetEnvVar("SWEEP_MAX" , 24);
int sweepMin = EnvVars::GetEnvVar("SWEEP_MIN" , 1);
int sweepRandBytes = EnvVars::GetEnvVar("SWEEP_RAND_BYTES" , 0);
int sweepSeed = EnvVars::GetEnvVar("SWEEP_SEED" , time(NULL));
std::string sweepSrc = EnvVars::GetEnvVar("SWEEP_SRC" , "CG");
int sweepTestLimit = EnvVars::GetEnvVar("SWEEP_TEST_LIMIT" , 0);
int sweepTimeLimit = EnvVars::GetEnvVar("SWEEP_TIME_LIMIT" , 0);
int sweepXgmiMin = EnvVars::GetEnvVar("SWEEP_XGMI_MIN" , 0);
int sweepXgmiMax = EnvVars::GetEnvVar("SWEEP_XGMI_MAX" , -1);
auto generator = new std::default_random_engine(sweepSeed);
// Display env var settings
ev.DisplayEnvVars();
if (!ev.hideEnv) {
int outputToCsv = ev.outputToCsv;
if (!outputToCsv) printf("[Sweep Related]\n");
ev.Print("CONTINUE_ON_ERROR", continueOnErr, continueOnErr ? "Continue on mismatch error" : "Stop after first error");
ev.Print("NUM_CPU_DEVICES", numCpuDevices, "Using %d CPUs", numCpuDevices);
ev.Print("NUM_CPU_SE", numCpuSubExecs, "Using %d CPU threads per CPU executed Transfer", numCpuSubExecs);
ev.Print("NUM_GPU_DEVICES", numGpuDevices, "Using %d GPUs", numGpuDevices);
ev.Print("NUM_GPU_SE", numGpuSubExecs, "Using %d subExecutors/CUs per GPU executed Transfer", numGpuSubExecs);
ev.Print("SWEEP_DST", sweepDst.c_str(), "Destination Memory Types to sweep");
ev.Print("SWEEP_EXE", sweepExe.c_str(), "Executor Types to sweep");
ev.Print("SWEEP_FILE", sweepFile.c_str(),"File to store the executing sweep configuration");
ev.Print("SWEEP_MAX", sweepMax, "Max simultaneous transfers (0 = no limit)");
ev.Print("SWEEP_MIN", sweepMin, "Min simultaenous transfers");
ev.Print("SWEEP_RAND_BYTES", sweepRandBytes, "Using %s number of bytes per Transfer", (sweepRandBytes ? "random" : "constant"));
ev.Print("SWEEP_SEED", sweepSeed, "Random seed set to %d", sweepSeed);
ev.Print("SWEEP_SRC", sweepSrc.c_str(), "Source Memory Types to sweep");
ev.Print("SWEEP_TEST_LIMIT", sweepTestLimit, "Max number of tests to run during sweep (0 = no limit)");
ev.Print("SWEEP_TIME_LIMIT", sweepTimeLimit, "Max number of seconds to run sweep for (0 = no limit)");
ev.Print("SWEEP_XGMI_MAX", sweepXgmiMax, "Max number of XGMI hops for Transfers (-1 = no limit)");
ev.Print("SWEEP_XGMI_MIN", sweepXgmiMin, "Min number of XGMI hops for Transfers");
printf("\n");
}
// Validate env vars
for (auto ch : sweepSrc) {
if (!strchr(MemTypeStr, ch)) {
printf("[ERROR] Unrecognized memory type '%c' specified for sweep source\n", ch);
exit(1);
}
if (strchr(sweepSrc.c_str(), ch) != strrchr(sweepSrc.c_str(), ch)) {
printf("[ERROR] Duplicate memory type '%c' specified for sweep source\n", ch);
exit(1);
}
}
for (auto ch : sweepDst) {
if (!strchr(MemTypeStr, ch)) {
printf("[ERROR] Unrecognized memory type '%c' specified for sweep destination\n", ch);
exit(1);
}
if (strchr(sweepDst.c_str(), ch) != strrchr(sweepDst.c_str(), ch)) {
printf("[ERROR] Duplicate memory type '%c' specified for sweep destination\n", ch);
exit(1);
}
}
for (auto ch : sweepExe) {
if (!strchr(ExeTypeStr, ch)) {
printf("[ERROR] Unrecognized executor type '%c' specified for sweep executor\n", ch);
exit(1);
}
if (strchr(sweepExe.c_str(), ch) != strrchr(sweepExe.c_str(), ch)) {
printf("[ERROR] Duplicate executor type '%c' specified for sweep executor\n", ch);
exit(1);
}
}
TransferBench::ConfigOptions cfg = ev.ToConfigOptions();
TransferBench::TestResults results;
// Compute how many possible Transfers are permitted (unique SRC/EXE/DST triplets)
std::vector<ExeDevice> exeList;
for (auto exe : sweepExe) {
ExeType exeType;
CharToExeType(exe, exeType);
if (IsGpuExeType(exeType)) {
for (int exeIndex = 0; exeIndex < numGpuDevices; ++exeIndex)
exeList.push_back({exeType, exeIndex});
}
else if (IsCpuExeType(exeType)) {
for (int exeIndex = 0; exeIndex < numCpuDevices; ++exeIndex) {
// Skip NUMA nodes that have no CPUs (e.g. CXL)
if (TransferBench::GetNumSubExecutors({EXE_CPU, exeIndex}) == 0) continue;
exeList.push_back({exeType, exeIndex});
}
}
}
int numExes = exeList.size();
std::vector<MemDevice> srcList;
for (auto src : sweepSrc) {
MemType srcType;
CharToMemType(src, srcType);
int const numDevices = (srcType == MEM_NULL) ? 1 : IsGpuMemType(srcType) ? numGpuDevices : numCpuDevices;
for (int srcIndex = 0; srcIndex < numDevices; ++srcIndex)
srcList.push_back({srcType, srcIndex});
}
int numSrcs = srcList.size();
std::vector<MemDevice> dstList;
for (auto dst : sweepDst) {
MemType dstType;
CharToMemType(dst, dstType);
int const numDevices = (dstType == MEM_NULL) ? 1 : IsGpuMemType(dstType) ? numGpuDevices : numCpuDevices;
for (int dstIndex = 0; dstIndex < numDevices; ++dstIndex)
dstList.push_back({dstType, dstIndex});
}
int numDsts = dstList.size();
// Build array of possibilities, respecting any additional restrictions (e.g. XGMI hop count)
struct TransferInfo
{
MemDevice srcMem;
ExeDevice exeDevice;
MemDevice dstMem;
};
// If either XGMI minimum is non-zero, or XGMI maximum is specified and non-zero then both links must be XGMI
bool const useXgmiOnly = (sweepXgmiMin > 0 || sweepXgmiMax > 0);
std::vector<TransferInfo> possibleTransfers;
TransferInfo tinfo;
for (int i = 0; i < numExes; ++i) {
// Skip CPU executors if XGMI link must be used
if (useXgmiOnly && !IsGpuExeType(exeList[i].exeType)) continue;
tinfo.exeDevice = exeList[i];
bool isXgmiSrc = false;
int numHopsSrc = 0;
for (int j = 0; j < numSrcs; ++j) {
if (IsGpuExeType(exeList[i].exeType) && IsGpuMemType(srcList[j].memType)) {
if (exeList[i].exeIndex != srcList[j].memIndex) {
#if defined(__NVCC__)
isXgmiSrc = false;
#else
uint32_t exeToSrcLinkType, exeToSrcHopCount;
HIP_CALL(hipExtGetLinkTypeAndHopCount(exeList[i].exeIndex,
srcList[j].memIndex,
&exeToSrcLinkType,
&exeToSrcHopCount));
isXgmiSrc = (exeToSrcLinkType == HSA_AMD_LINK_INFO_TYPE_XGMI);
if (isXgmiSrc) numHopsSrc = exeToSrcHopCount;
#endif
} else {
isXgmiSrc = true;
numHopsSrc = 0;
}
// Skip this SRC if it is not XGMI but only XGMI links may be used
if (useXgmiOnly && !isXgmiSrc) continue;
// Skip this SRC if XGMI distance is already past limit
if (sweepXgmiMax >= 0 && isXgmiSrc && numHopsSrc > sweepXgmiMax) continue;
} else if (srcList[j].memType != MEM_NULL && useXgmiOnly) continue;
tinfo.srcMem = srcList[j];
bool isXgmiDst = false;
int numHopsDst = 0;
for (int k = 0; k < numDsts; ++k) {
if (IsGpuExeType(exeList[i].exeType) && IsGpuMemType(dstList[k].memType)) {
if (exeList[i].exeIndex != dstList[k].memIndex) {
#if defined(__NVCC__)
isXgmiSrc = false;
#else
uint32_t exeToDstLinkType, exeToDstHopCount;
HIP_CALL(hipExtGetLinkTypeAndHopCount(exeList[i].exeIndex,
dstList[k].memIndex,
&exeToDstLinkType,
&exeToDstHopCount));
isXgmiDst = (exeToDstLinkType == HSA_AMD_LINK_INFO_TYPE_XGMI);
if (isXgmiDst) numHopsDst = exeToDstHopCount;
#endif
} else {
isXgmiDst = true;
numHopsDst = 0;
}
}
// Skip this DST if it is not XGMI but only XGMI links may be used
if (dstList[k].memType != MEM_NULL && useXgmiOnly && !isXgmiDst) continue;
// Skip this DST if total XGMI distance (SRC + DST) is less than min limit
if (sweepXgmiMin > 0 && (numHopsSrc + numHopsDst < sweepXgmiMin)) continue;
// Skip this DST if total XGMI distance (SRC + DST) is greater than max limit
if (sweepXgmiMax >= 0 && (numHopsSrc + numHopsDst) > sweepXgmiMax) continue;
#if defined(__NVCC__)
// Skip CPU executors on GPU memory on NVIDIA platform
if (IsCpuExeType(exeList[i].exeType) && (IsGpuMemType(dstList[j].memType) || IsGpuMemType(dstList[k].memType)))
continue;
#endif
tinfo.dstMem = dstList[k];
// Skip if there is no src and dst
if (tinfo.srcMem.memType == MEM_NULL && tinfo.dstMem.memType == MEM_NULL) continue;
possibleTransfers.push_back(tinfo);
}
}
}
int const numPossible = (int)possibleTransfers.size();
int maxParallelTransfers = (sweepMax == 0 ? numPossible : sweepMax);
if (sweepMin > numPossible) {
printf("No valid test configurations exist\n");
return;
}
if (ev.outputToCsv) {
printf("\nTest#,Transfer#,NumBytes,Src,Exe,Dst,CUs,BW(GB/s),Time(ms),"
"ExeToSrcLinkType,ExeToDstLinkType,SrcAddr,DstAddr\n");
}
int numTestsRun = 0;
int M = sweepMin;
std::uniform_int_distribution<int> randSize(1, numBytesPerTransfer / sizeof(float));
std::uniform_int_distribution<int> distribution(sweepMin, maxParallelTransfers);
// Log sweep to configuration file
char absPath[1024];
auto const res = realpath(sweepFile.c_str(), absPath);
FILE *fp = fopen(sweepFile.c_str(), "w");
if (!fp) {
printf("[WARN] Unable to open %s. Skipping output of sweep configuration file\n", res ? absPath : sweepFile.c_str());
} else {
printf("Sweep configuration saved to: %s\n", res ? absPath : sweepFile.c_str());
}
// Create bitmask of numPossible triplets, of which M will be chosen
std::string bitmask(M, 1); bitmask.resize(numPossible, 0);
auto cpuStart = std::chrono::high_resolution_clock::now();
while (1) {
if (isRandom) {
// Pick random number of simultaneous transfers to execute
// NOTE: This currently skews distribution due to some #s having more possibilities than others
M = distribution(*generator);
// Generate a random bitmask
for (int i = 0; i < numPossible; i++)
bitmask[i] = (i < M) ? 1 : 0;
std::shuffle(bitmask.begin(), bitmask.end(), *generator);
}
// Convert bitmask to list of Transfers
std::vector<Transfer> transfers;
for (int value = 0; value < numPossible; ++value) {
if (bitmask[value]) {
// Convert integer value to (SRC->EXE->DST) triplet
Transfer transfer;
if (possibleTransfers[value].srcMem.memType != MEM_NULL)
transfer.srcs.push_back(possibleTransfers[value].srcMem);
transfer.exeDevice = possibleTransfers[value].exeDevice;
if (possibleTransfers[value].dstMem.memType != MEM_NULL)
transfer.dsts.push_back(possibleTransfers[value].dstMem);
transfer.exeSubIndex = -1;
transfer.numSubExecs = IsGpuExeType(transfer.exeDevice.exeType) ? numGpuSubExecs : numCpuSubExecs;
transfer.numBytes = sweepRandBytes ? randSize(*generator) * sizeof(float) : numBytesPerTransfer;
transfers.push_back(transfer);
}
}
LogTransfers(fp, ++numTestsRun, transfers);
if (!TransferBench::RunTransfers(cfg, transfers, results)) {
PrintErrors(results.errResults);
if (!continueOnErr) exit(1);
} else {
PrintResults(ev, numTestsRun, transfers, results);
}
// Check for test limit
if (numTestsRun == sweepTestLimit) {
printf("Sweep Test limit reached\n");
break;
}
// Check for time limit
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double totalCpuTime = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count();
if (sweepTimeLimit && totalCpuTime > sweepTimeLimit) {
printf("Sweep Time limit exceeded\n");
break;
}
// Increment bitmask if not random sweep
if (!isRandom && !std::prev_permutation(bitmask.begin(), bitmask.end())) {
M++;
// Check for completion
if (M > maxParallelTransfers) {
printf("Sweep complete\n");
break;
}
for (int i = 0; i < numPossible; i++)
bitmask[i] = (i < M) ? 1 : 0;
}
}
if (fp) fclose(fp);
}
/*
Copyright (c) 2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#pragma once
#include "TransferBench.hpp"
static int RemappedCpuIndex(int origIdx)
{
static std::vector<int> remappingCpu;
// Build CPU remapping on first use
// Skip numa nodes that are not configured
if (remappingCpu.empty()) {
for (int node = 0; node <= numa_max_node(); node++)
if (numa_bitmask_isbitset(numa_get_mems_allowed(), node))
remappingCpu.push_back(node);
}
return remappingCpu[origIdx];
}
static void PrintNicToGPUTopo(bool outputToCsv)
{
#ifdef NIC_EXEC_ENABLED
printf(" NIC | Device Name | Active | PCIe Bus ID | NUMA | Closest GPU(s) | GID Index | GID Descriptor\n");
if(!outputToCsv)
printf("-----+-------------+--------+--------------+------+----------------+-----------+-------------------\n");
int numGpus = TransferBench::GetNumExecutors(EXE_GPU_GFX);
auto const& ibvDeviceList = GetIbvDeviceList();
for (int i = 0; i < ibvDeviceList.size(); i++) {
std::string closestGpusStr = "";
for (int j = 0; j < numGpus; j++) {
if (TransferBench::GetClosestNicToGpu(j) == i) {
if (closestGpusStr != "") closestGpusStr += ",";
closestGpusStr += std::to_string(j);
}
}
printf(" %-3d | %-11s | %-6s | %-12s | %-4d | %-14s | %-9s | %-20s\n",
i, ibvDeviceList[i].name.c_str(),
ibvDeviceList[i].hasActivePort ? "Yes" : "No",
ibvDeviceList[i].busId.c_str(),
ibvDeviceList[i].numaNode,
closestGpusStr.c_str(),
ibvDeviceList[i].isRoce && ibvDeviceList[i].hasActivePort? std::to_string(ibvDeviceList[i].gidIndex).c_str() : "N/A",
ibvDeviceList[i].isRoce && ibvDeviceList[i].hasActivePort? ibvDeviceList[i].gidDescriptor.c_str() : "N/A"
);
}
printf("\n");
#endif
}
void DisplayTopology(bool outputToCsv)
{
int numCpus = TransferBench::GetNumExecutors(EXE_CPU);
int numGpus = TransferBench::GetNumExecutors(EXE_GPU_GFX);
int numNics = TransferBench::GetNumExecutors(EXE_NIC);
char sep = (outputToCsv ? ',' : '|');
if (outputToCsv) {
printf("NumCpus,%d\n", numCpus);
printf("NumGpus,%d\n", numGpus);
printf("NumNics,%d\n", numNics);
} else {
printf("\nDetected Topology:\n");
printf("==================\n");
printf(" %d configured CPU NUMA node(s) [%d total]\n", numCpus, numa_max_node() + 1);
printf(" %d GPU device(s)\n", numGpus);
printf(" %d Supported NIC device(s)\n", numNics);
}
// Print out detected CPU topology
printf("\n %c", sep);
for (int j = 0; j < numCpus; j++)
printf("NUMA %02d%c", j, sep);
printf(" #Cpus %c Closest GPU(s)\n", sep);
if (!outputToCsv) {
printf("------------+");
for (int j = 0; j <= numCpus; j++)
printf("-------+");
printf("---------------\n");
}
for (int i = 0; i < numCpus; i++) {
int nodeI = RemappedCpuIndex(i);
printf("NUMA %02d (%02d)%c", i, nodeI, sep);
for (int j = 0; j < numCpus; j++) {
int nodeJ = RemappedCpuIndex(j);
int numaDist = numa_distance(nodeI, nodeJ);
printf(" %5d %c", numaDist, sep);
}
int numCpuCores = 0;
for (int j = 0; j < numa_num_configured_cpus(); j++)
if (numa_node_of_cpu(j) == nodeI) numCpuCores++;
printf(" %5d %c", numCpuCores, sep);
for (int j = 0; j < numGpus; j++) {
if (TransferBench::GetClosestCpuNumaToGpu(j) == nodeI) {
printf(" %d", j);
}
}
printf("\n");
}
printf("\n");
// Print out detected NIC topology
PrintNicToGPUTopo(outputToCsv);
// Print out detected GPU topology
#if defined(__NVCC__)
for (int i = 0; i < numGpus; i++) {
hipDeviceProp_t prop;
HIP_CALL(hipGetDeviceProperties(&prop, i));
printf(" GPU %02d | %s\n", i, prop.name);
}
// No further topology detection done for NVIDIA platforms
return;
#else
// Print headers
if (!outputToCsv) {
printf(" |");
for (int j = 0; j < numGpus; j++) {
hipDeviceProp_t prop;
HIP_CALL(hipGetDeviceProperties(&prop, j));
std::string fullName = prop.gcnArchName;
std::string archName = fullName.substr(0, fullName.find(':'));
printf(" %6s |", archName.c_str());
}
printf("\n");
}
printf(" %c", sep);
for (int j = 0; j < numGpus; j++)
printf(" GPU %02d %c", j, sep);
printf(" PCIe Bus ID %c #CUs %c NUMA %c #DMA %c #XCC %c NIC\n", sep, sep, sep, sep, sep);
if (!outputToCsv) {
for (int j = 0; j <= numGpus; j++)
printf("--------+");
printf("--------------+------+------+------+------+------\n");
}
// Loop over each GPU device
for (int i = 0; i < numGpus; i++) {
printf(" GPU %02d %c", i, sep);
// Print off link information
for (int j = 0; j < numGpus; j++) {
if (i == j) {
printf(" N/A %c", sep);
} else {
uint32_t linkType, hopCount;
HIP_CALL(hipExtGetLinkTypeAndHopCount(i, j, &linkType, &hopCount));
printf(" %s-%d %c",
linkType == HSA_AMD_LINK_INFO_TYPE_HYPERTRANSPORT ? " HT" :
linkType == HSA_AMD_LINK_INFO_TYPE_QPI ? " QPI" :
linkType == HSA_AMD_LINK_INFO_TYPE_PCIE ? "PCIE" :
linkType == HSA_AMD_LINK_INFO_TYPE_INFINBAND ? "INFB" :
linkType == HSA_AMD_LINK_INFO_TYPE_XGMI ? "XGMI" : "????",
hopCount, sep);
}
}
char pciBusId[20];
HIP_CALL(hipDeviceGetPCIBusId(pciBusId, 20, i));
printf(" %-11s %c %-4d %c %-4d %c %-4d %c %-4d %c %-4d\n",
pciBusId, sep,
TransferBench::GetNumSubExecutors({EXE_GPU_GFX, i}), sep,
TransferBench::GetClosestCpuNumaToGpu(i), sep,
TransferBench::GetNumExecutorSubIndices({EXE_GPU_DMA, i}), sep,
TransferBench::GetNumExecutorSubIndices({EXE_GPU_GFX, i}), sep,
TransferBench::GetClosestNicToGpu(i));
}
#endif
}
/*
Copyright (c) 2019-2024 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
/// @cond
#pragma once
#include <algorithm>
#include <cstring>
#include <future>
#include <map>
#include <numa.h> // If not found, try installing libnuma-dev (e.g apt-get install libnuma-dev)
#include <numaif.h>
#include <random>
#include <set>
#include <sstream>
#include <stdarg.h>
#include <thread>
#include <unistd.h>
#include <vector>
#ifdef NIC_EXEC_ENABLED
#include <infiniband/verbs.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <filesystem>
#include <fstream>
#endif
#if defined(__NVCC__)
#include <cuda_runtime.h>
#else
#include <hip/hip_ext.h>
#include <hip/hip_runtime.h>
#include <hsa/hsa.h>
#include <hsa/hsa_ext_amd.h>
#endif
/// @endcond
namespace TransferBench
{
using std::map;
using std::pair;
using std::set;
using std::vector;
constexpr char VERSION[] = "1.62";
/**
* Enumeration of supported Executor types
*
* @note The Executor is the device used to perform a Transfer
*/
enum ExeType
{
EXE_CPU = 0, ///< CPU executor (subExecutor = CPU thread)
EXE_GPU_GFX = 1, ///< GPU kernel-based executor (subExecutor = threadblock/CU)
EXE_GPU_DMA = 2, ///< GPU SDMA executor (subExecutor = not supported)
EXE_NIC = 3, ///< NIC RDMA executor (subExecutor = queue pair)
EXE_NIC_NEAREST = 4 ///< NIC RDMA nearest executor (subExecutor = queue pair)
};
char const ExeTypeStr[6] = "CGDIN";
inline bool IsCpuExeType(ExeType e){ return e == EXE_CPU; }
inline bool IsGpuExeType(ExeType e){ return e == EXE_GPU_GFX || e == EXE_GPU_DMA; }
inline bool IsNicExeType(ExeType e){ return e == EXE_NIC || e == EXE_NIC_NEAREST; }
/**
* A ExeDevice defines a specific Executor
*/
struct ExeDevice
{
ExeType exeType; ///< Executor type
int32_t exeIndex; ///< Executor index
bool operator<(ExeDevice const& other) const {
return (exeType < other.exeType) || (exeType == other.exeType && exeIndex < other.exeIndex);
}
};
/**
* Enumeration of supported memory types
*
* @note These are possible types of memory to be used as sources/destinations
*/
enum MemType
{
MEM_CPU = 0, ///< Coarse-grained pinned CPU memory
MEM_GPU = 1, ///< Coarse-grained global GPU memory
MEM_CPU_FINE = 2, ///< Fine-grained pinned CPU memory
MEM_GPU_FINE = 3, ///< Fine-grained global GPU memory
MEM_CPU_UNPINNED = 4, ///< Unpinned CPU memory
MEM_NULL = 5, ///< NULL memory - used for empty
MEM_MANAGED = 6, ///< Managed memory
MEM_CPU_CLOSEST = 7, ///< Coarse-grained pinned CPU memory indexed by closest GPU
};
char const MemTypeStr[9] = "CGBFUNMP";
inline bool IsCpuMemType(MemType m) { return (m == MEM_CPU || m == MEM_CPU_FINE || m == MEM_CPU_UNPINNED || m == MEM_CPU_CLOSEST); }
inline bool IsGpuMemType(MemType m) { return (m == MEM_GPU || m == MEM_GPU_FINE || m == MEM_MANAGED); }
/**
* A MemDevice indicates a memory type on a specific device
*/
struct MemDevice
{
MemType memType; ///< Memory type
int32_t memIndex; ///< Device index
bool operator<(MemDevice const& other) const {
return (memType < other.memType) || (memType == other.memType && memIndex < other.memIndex);
}
};
/**
* A Transfer adds together data from zero or more sources then writes the sum to zero or more desintations
*/
struct Transfer
{
size_t numBytes = 0; ///< Number of bytes to Transfer
vector<MemDevice> srcs = {}; ///< List of source memory devices
vector<MemDevice> dsts = {}; ///< List of destination memory devices
ExeDevice exeDevice = {}; ///< Executor to use
int32_t exeSubIndex = -1; ///< Executor subindex
int numSubExecs = 0; ///< Number of subExecutors to use for this Transfer
};
/**
* General options
*/
struct GeneralOptions
{
int numIterations = 10; ///< Number of timed iterations to perform. If negative, run for -numIterations seconds instead
int numSubIterations = 1; ///< Number of sub-iterations per iteration
int numWarmups = 3; ///< Number of un-timed warmup iterations to perform
int recordPerIteration = 0; ///< Record per-iteration timing information
int useInteractive = 0; ///< Pause for user-input before starting transfer loop
};
/**
* Data options
*/
struct DataOptions
{
int alwaysValidate = 0; ///< Validate after each iteration instead of once at end
int blockBytes = 256; ///< Each subexecutor works on a multiple of this many bytes
int byteOffset = 0; ///< Byte-offset for memory allocations
vector<float> fillPattern = {}; ///< Pattern of floats used to fill source data
int validateDirect = 0; ///< Validate GPU results directly instead of copying to host
int validateSource = 0; ///< Validate src GPU memory immediately after preparation
};
/**
* GFX Executor options
*/
struct GfxOptions
{
int blockOrder = 0; ///< Determines how threadblocks are ordered (0=sequential, 1=interleaved, 2=random)
int blockSize = 256; ///< Size of each threadblock (must be multiple of 64)
vector<uint32_t> cuMask = {}; ///< Bit-vector representing the CU mask
vector<vector<int>> prefXccTable = {}; ///< 2D table with preferred XCD to use for a specific [src][dst] GPU device
int temporalMode = 0; ///< Non-temporal load/store mode 0=none, 1=load, 2=store, 3=both
int unrollFactor = 4; ///< GFX-kernel unroll factor
int useHipEvents = 1; ///< Use HIP events for timing GFX Executor
int useMultiStream = 0; ///< Use multiple streams for GFX
int useSingleTeam = 0; ///< Team all subExecutors across the data array
int waveOrder = 0; ///< GFX-kernel wavefront ordering
int wordSize = 4; ///< GFX-kernel packed data size (4=dwordx4, 2=dwordx2, 1=dwordx1)
};
/**
* DMA Executor options
*/
struct DmaOptions
{
int useHipEvents = 1; ///< Use HIP events for timing DMA Executor
int useHsaCopy = 0; ///< Use HSA copy instead of HIP copy to perform DMA
};
/**
* NIC Executor options
*/
struct NicOptions
{
vector<int> closestNics = {}; ///< Overrides the auto-detected closest NIC per GPU
int ibGidIndex = -1; ///< GID Index for RoCE NICs (-1 is auto)
uint8_t ibPort = 1; ///< NIC port number to be used
int ipAddressFamily = 4; ///< 4=IPv4, 6=IPv6 (used for auto GID detection)
int maxRecvWorkReq = 16; ///< Maximum number of recv work requests per queue pair
int maxSendWorkReq = 16; ///< Maximum number of send work requests per queue pair
int queueSize = 100; ///< Completion queue size
int roceVersion = 2; ///< RoCE version (used for auto GID detection)
int useRelaxedOrder = 1; ///< Use relaxed ordering
int useNuma = 0; ///< Switch to closest numa thread for execution
};
/**
* Configuration options for performing Transfers
*/
struct ConfigOptions
{
GeneralOptions general; ///< General options
DataOptions data; ///< Data options
GfxOptions gfx; ///< GFX executor options
DmaOptions dma; ///< DMA executor options
NicOptions nic; ///< NIC executor options
};
/**
* Enumeration of possible error types
*/
enum ErrType
{
ERR_NONE = 0, ///< No errors
ERR_WARN = 1, ///< Warning - results may not be accurate
ERR_FATAL = 2, ///< Fatal error - results are invalid
};
/**
* Enumeration of GID priority
*
* @note These are the GID types ordered in priority from lowest (0) to highest
*/
enum GidPriority
{
UNKNOWN = -1, ///< Default
ROCEV1_LINK_LOCAL = 0, ///< RoCEv1 Link-local
ROCEV2_LINK_LOCAL = 1, ///< RoCEv2 Link-local fe80::/10
ROCEV1_IPV6 = 2, ///< RoCEv1 IPv6
ROCEV2_IPV6 = 3, ///< RoCEv2 IPv6
ROCEV1_IPV4 = 4, ///< RoCEv1 IPv4-mapped IPv6
ROCEV2_IPV4 = 5, ///< RoCEv2 IPv4-mapped IPv6 ::ffff:192.168.x.x
};
const char* GidPriorityStr[] = {
"RoCEv1 Link-local",
"RoCEv2 Link-local",
"RoCEv1 IPv6",
"RoCEv2 IPv6",
"RoCEv1 IPv4-mapped IPv6",
"RoCEv2 IPv4-mapped IPv6"
};
/**
* ErrResult consists of error type and error message
*/
struct ErrResult
{
ErrType errType; ///< Error type
std::string errMsg; ///< Error details
ErrResult() = default;
#if defined(__NVCC__)
ErrResult(cudaError_t err);
#else
ErrResult(hipError_t err);
ErrResult(hsa_status_t err);
#endif
ErrResult(ErrType err);
ErrResult(ErrType errType, const char* format, ...);
};
/**
* Results for a single Executor
*/
struct ExeResult
{
size_t numBytes; ///< Total bytes transferred by this Executor
double avgDurationMsec; ///< Averaged duration for all the Transfers for this Executor
double avgBandwidthGbPerSec; ///< Average bandwidth for this Executor
double sumBandwidthGbPerSec; ///< Naive sum of individual Transfer average bandwidths
vector<int> transferIdx; ///< Indicies of Transfers this Executor executed
};
/**
* Results for a single Transfer
*/
struct TransferResult
{
size_t numBytes; ///< Number of bytes transferred by this Transfer
double avgDurationMsec; ///< Duration for this Transfer, averaged over all timed iterations
double avgBandwidthGbPerSec; ///< Bandwidth for this Transfer based on averaged duration
// Only filled in if recordPerIteration = 1
vector<double> perIterMsec; ///< Duration for each individual iteration
vector<set<pair<int,int>>> perIterCUs; ///< GFX-Executor only. XCC:CU used per iteration
ExeDevice exeDevice; ///< Tracks which executor performed this Transfer (e.g. for EXE_NIC_NEAREST)
ExeDevice exeDstDevice; ///< Tracks actual destination executor (only valid for EXE_NIC/EXE_NIC_NEAREST)
};
/**
* TestResults contain timing results for a set of Transfers as a group as well as per Executor and per Transfer
* timing information
*/
struct TestResults
{
int numTimedIterations; ///< Number of iterations executed
size_t totalBytesTransferred; ///< Total bytes transferred per iteration
double avgTotalDurationMsec; ///< Wall-time (msec) to finish all Transfers (averaged across all timed iterations)
double avgTotalBandwidthGbPerSec; ///< Bandwidth based on all Transfers and average wall time
double overheadMsec; ///< Difference between total wall time and slowest executor
map<ExeDevice, ExeResult> exeResults; ///< Per Executor results
vector<TransferResult> tfrResults; ///< Per Transfer results
vector<ErrResult> errResults; ///< List of any errors/warnings that occurred
};
/**
* Run a set of Transfers
*
* @param[in] config Configuration options
* @param[in] transfers Set of Transfers to execute
* @param[out] results Timing results
* @returns true if and only if Transfers were run successfully without any fatal errors
*/
bool RunTransfers(ConfigOptions const& config,
vector<Transfer> const& transfers,
TestResults& results);
/**
* Enumeration of implementation attributes
*/
enum IntAttribute
{
ATR_GFX_MAX_BLOCKSIZE, ///< Maximum blocksize for GFX executor
ATR_GFX_MAX_UNROLL, ///< Maximum unroll factor for GFX executor
};
enum StrAttribute
{
ATR_SRC_PREP_DESCRIPTION ///< Description of how source memory is prepared
};
/**
* Query attributes (integer)
*
* @note This allows querying of implementation information such as limits
*
* @param[in] attribute Attribute to query
* @returns Value of the attribute
*/
int GetIntAttribute(IntAttribute attribute);
/**
* Query attributes (string)
*
* @note This allows query of implementation details such as limits
*
* @param[in] attrtibute Attribute to query
* @returns Value of the attribute
*/
std::string GetStrAttribute(StrAttribute attribute);
/**
* Returns information about number of available available Executors
*
* @param[in] exeType Executor type to query
* @returns Number of detected Executors of exeType
*/
int GetNumExecutors(ExeType exeType);
/**
* Returns the number of possible Executor subindices
*
* @note For CPU, this is 0
* @note For GFX, this refers to the number of XCDs
* @note For DMA, this refers to the number of DMA engines
*
* @param[in] exeDevice The specific Executor to query
* @returns Number of detected executor subindices
*/
int GetNumExecutorSubIndices(ExeDevice exeDevice);
/**
* Returns number of subExecutors for a given ExeDevice
*
* @param[in] exeDevice The specific Executor to query
* @returns Number of detected subExecutors for the given ExePair
*/
int GetNumSubExecutors(ExeDevice exeDevice);
/**
* Returns the index of the NUMA node closest to the given GPU
*
* @param[in] gpuIndex Index of the GPU to query
* @returns NUMA node index closest to GPU gpuIndex, or -1 if unable to detect
*/
int GetClosestCpuNumaToGpu(int gpuIndex);
/**
* Returns the index of the NUMA node closest to the given NIC
*
* @param[in] nicIndex Index of the NIC to query
* @returns NUMA node index closest to the NIC nicIndex, or -1 if unable to detect
*/
int GetClosestCpuNumaToNic(int nicIndex);
/**
* Returns the index of the NIC closest to the given GPU
*
* @param[in] gpuIndex Index of the GPU to query
* @note This function is applicable when the IBV/RDMA executor is available
* @returns IB Verbs capable NIC index closest to GPU gpuIndex, or -1 if unable to detect
*/
int GetClosestNicToGpu(int gpuIndex);
/**
* Helper function to parse a line containing Transfers into a vector of Transfers
*
* @param[in] str String containing description of Transfers
* @param[out] transfers List of Transfers described by 'str'
* @returns Information about any error that may have occured
*/
ErrResult ParseTransfers(std::string str,
std::vector<Transfer>& transfers);
};
//==========================================================================================
// End of TransferBench API
//==========================================================================================
// Redefinitions for CUDA compatibility
//==========================================================================================
#if defined(__NVCC__)
// ROCm specific
#define wall_clock64 clock64
#define gcnArchName name
// Datatypes
#define hipDeviceProp_t cudaDeviceProp
#define hipError_t cudaError_t
#define hipEvent_t cudaEvent_t
#define hipStream_t cudaStream_t
// Enumerations
#define hipDeviceAttributeClockRate cudaDevAttrClockRate
#define hipDeviceAttributeMultiprocessorCount cudaDevAttrMultiProcessorCount
#define hipErrorPeerAccessAlreadyEnabled cudaErrorPeerAccessAlreadyEnabled
#define hipFuncCachePreferShared cudaFuncCachePreferShared
#define hipMemcpyDefault cudaMemcpyDefault
#define hipMemcpyDeviceToHost cudaMemcpyDeviceToHost
#define hipMemcpyHostToDevice cudaMemcpyHostToDevice
#define hipSuccess cudaSuccess
// Functions
#define hipDeviceCanAccessPeer cudaDeviceCanAccessPeer
#define hipDeviceEnablePeerAccess cudaDeviceEnablePeerAccess
#define hipDeviceGetAttribute cudaDeviceGetAttribute
#define hipDeviceGetPCIBusId cudaDeviceGetPCIBusId
#define hipDeviceSetCacheConfig cudaDeviceSetCacheConfig
#define hipDeviceSynchronize cudaDeviceSynchronize
#define hipEventCreate cudaEventCreate
#define hipEventDestroy cudaEventDestroy
#define hipEventElapsedTime cudaEventElapsedTime
#define hipEventRecord cudaEventRecord
#define hipFree cudaFree
#define hipGetDeviceCount cudaGetDeviceCount
#define hipGetDeviceProperties cudaGetDeviceProperties
#define hipGetErrorString cudaGetErrorString
#define hipHostFree cudaFreeHost
#define hipHostMalloc cudaMallocHost
#define hipMalloc cudaMalloc
#define hipMallocManaged cudaMallocManaged
#define hipMemcpy cudaMemcpy
#define hipMemcpyAsync cudaMemcpyAsync
#define hipMemset cudaMemset
#define hipMemsetAsync cudaMemsetAsync
#define hipSetDevice cudaSetDevice
#define hipStreamCreate cudaStreamCreate
#define hipStreamDestroy cudaStreamDestroy
#define hipStreamSynchronize cudaStreamSynchronize
// Define float2 addition operator for NVIDIA platform
__device__ inline float2& operator +=(float2& a, const float2& b)
{
a.x += b.x;
a.y += b.y;
return a;
}
// Define float4 addition operator for NVIDIA platform
__device__ inline float4& operator +=(float4& a, const float4& b)
{
a.x += b.x;
a.y += b.y;
a.z += b.z;
a.w += b.w;
return a;
}
#endif
// Helper macro functions
//==========================================================================================
// Macro for collecting CU/SM GFX kernel is running on
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1200__) || defined(__gfx1201__)
#define GetHwId(hwId) hwId = 0
#elif defined(__NVCC__)
#define GetHwId(hwId) asm("mov.u32 %0, %smid;" : "=r"(hwId))
#else
#define GetHwId(hwId) asm volatile ("s_getreg_b32 %0, hwreg(HW_REG_HW_ID)" : "=s" (hwId));
#endif
// Macro for collecting XCC GFX kernel is running on
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) || defined(__gfx950__)
#define GetXccId(val) asm volatile ("s_getreg_b32 %0, hwreg(HW_REG_XCC_ID)" : "=s" (val));
#else
#define GetXccId(val) val = 0
#endif
// Error check macro (NOTE: This will return even for ERR_WARN)
#define ERR_CHECK(cmd) \
do { \
ErrResult err = (cmd); \
if (err.errType != ERR_NONE) \
return err; \
} while (0)
// Appends warn/fatal errors to a list, return false if fatal
#define ERR_APPEND(cmd, list) \
do { \
ErrResult err = (cmd); \
if (err.errType != ERR_NONE) \
list.push_back(err); \
if (err.errType == ERR_FATAL) \
return false; \
} while (0)
// Helper macros for calling RDMA functions and reporting errors
#ifdef VERBS_DEBUG
#define IBV_CALL(__func__, ...) \
do { \
int error = __func__(__VA_ARGS__); \
if (error != 0) { \
return {ERR_FATAL, "Encountered IbVerbs error (%d) at line (%d) " \
"and function (%s)", (error), __LINE__, #__func__}; \
} \
} while (0)
#define IBV_PTR_CALL(__ptr__, __func__, ...) \
do { \
__ptr__ = __func__(__VA_ARGS__); \
if (__ptr__ == nullptr) { \
return {ERR_FATAL, "Encountered IbVerbs nullptr error at line (%d) " \
"and function (%s)", __LINE__, #__func__}; \
} \
} while (0)
#else
#define IBV_CALL(__func__, ...) \
do { \
int error = __func__(__VA_ARGS__); \
if (error != 0) { \
return {ERR_FATAL, "Encountered IbVerbs error (%d) in func (%s) " \
, error, #__func__}; \
} \
} while (0)
#define IBV_PTR_CALL(__ptr__, __func__, ...) \
do { \
__ptr__ = __func__(__VA_ARGS__); \
if (__ptr__ == nullptr) { \
return {ERR_FATAL, "Encountered IbVerbs nullptr error in func (%s) " \
, #__func__}; \
} \
} while (0)
#endif
namespace TransferBench
{
/// @cond
// Helper functions ('hidden' in anonymous namespace)
//========================================================================================
namespace {
// Constants
//========================================================================================
int constexpr MAX_BLOCKSIZE = 512; // Max threadblock size
int constexpr MAX_WAVEGROUPS = MAX_BLOCKSIZE / 64; // Max wavegroups/warps
int constexpr MAX_UNROLL = 8; // Max unroll factor
int constexpr MAX_SRCS = 8; // Max srcs per Transfer
int constexpr MAX_DSTS = 8; // Max dsts per Transfer
int constexpr MEMSET_CHAR = 75; // Value to memset (char)
float constexpr MEMSET_VAL = 13323083.0f; // Value to memset (double)
// Parsing-related functions
//========================================================================================
static ErrResult CharToMemType(char const c, MemType& memType)
{
char const* val = strchr(MemTypeStr, toupper(c));
if (val) {
memType = (MemType)(val - MemTypeStr);
return ERR_NONE;
}
return {ERR_FATAL, "Unexpected memory type (%c)", c};
}
static ErrResult CharToExeType(char const c, ExeType& exeType)
{
char const* val = strchr(ExeTypeStr, toupper(c));
if (val) {
exeType = (ExeType)(val - ExeTypeStr);
return ERR_NONE;
}
return {ERR_FATAL, "Unexpected executor type (%c)", c};
}
static ErrResult ParseMemType(std::string const& token,
std::vector<MemDevice>& memDevices)
{
char memTypeChar;
int offset = 0, memIndex, inc;
MemType memType;
bool found = false;
memDevices.clear();
while (sscanf(token.c_str() + offset, " %c %d%n", &memTypeChar, &memIndex, &inc) == 2) {
offset += inc;
ErrResult err = CharToMemType(memTypeChar, memType);
if (err.errType != ERR_NONE) return err;
if (memType != MEM_NULL)
memDevices.push_back({memType, memIndex});
found = true;
}
if (found) return ERR_NONE;
return {ERR_FATAL,
"Unable to parse memory type token %s. Expected one of %s followed by an index",
token.c_str(), MemTypeStr};
}
static ErrResult ParseExeType(std::string const& token,
ExeDevice& exeDevice,
int& exeSubIndex)
{
char exeTypeChar;
exeSubIndex = -1;
int numTokensParsed = sscanf(token.c_str(),
" %c%d.%d", &exeTypeChar, &exeDevice.exeIndex, &exeSubIndex);
if (numTokensParsed < 2) {
return {ERR_FATAL,
"Unable to parse valid executor token (%s)."
"Expected one of %s followed by an index",
token.c_str(), ExeTypeStr};
}
return CharToExeType(exeTypeChar, exeDevice.exeType);
}
// Memory-related functions
//========================================================================================
// Enable peer access between two GPUs
static ErrResult EnablePeerAccess(int const deviceId, int const peerDeviceId)
{
int canAccess;
ERR_CHECK(hipDeviceCanAccessPeer(&canAccess, deviceId, peerDeviceId));
if (!canAccess)
return {ERR_FATAL,
"Unable to enable peer access from GPU devices %d to %d", peerDeviceId, deviceId};
ERR_CHECK(hipSetDevice(deviceId));
hipError_t error = hipDeviceEnablePeerAccess(peerDeviceId, 0);
if (error != hipSuccess && error != hipErrorPeerAccessAlreadyEnabled) {
return {ERR_FATAL,
"Unable to enable peer to peer access from %d to %d (%s)",
deviceId, peerDeviceId, hipGetErrorString(error)};
}
return ERR_NONE;
}
// Check that CPU memory array of numBytes has been allocated on targetId NUMA node
static ErrResult CheckPages(char* array, size_t numBytes, int targetId)
{
size_t const pageSize = getpagesize();
size_t const numPages = (numBytes + pageSize - 1) / pageSize;
std::vector<void *> pages(numPages);
std::vector<int> status(numPages);
pages[0] = array;
for (int i = 1; i < numPages; i++) {
pages[i] = (char*)pages[i-1] + pageSize;
}
long const retCode = move_pages(0, numPages, pages.data(), NULL, status.data(), 0);
if (retCode)
return {ERR_FATAL,
"Unable to collect page table information for allocated memory. "
"Ensure NUMA library is installed properly"};
size_t mistakeCount = 0;
for (size_t i = 0; i < numPages; i++) {
if (status[i] < 0)
return {ERR_FATAL,
"Unexpected page status (%d) for page %llu", status[i], i};
if (status[i] != targetId) mistakeCount++;
}
if (mistakeCount > 0) {
return {ERR_FATAL,
"%lu out of %lu pages for memory allocation were not on NUMA node %d."
" This could be due to hardware memory issues, or the use of numa-rebalancing daemons such as numad",
mistakeCount, numPages, targetId};
}
return ERR_NONE;
}
// Allocate memory
static ErrResult AllocateMemory(MemDevice memDevice, size_t numBytes, void** memPtr)
{
if (numBytes == 0) {
return {ERR_FATAL, "Unable to allocate 0 bytes"};
}
*memPtr = nullptr;
MemType const& memType = memDevice.memType;
if (IsCpuMemType(memType)) {
// Determine which NUMA device to use
int numaIdx = memDevice.memIndex;
if (memType == MEM_CPU_CLOSEST) {
numaIdx = GetClosestCpuNumaToGpu(memDevice.memIndex);
}
// Set NUMA policy prior to call to hipHostMalloc
numa_set_preferred(numaIdx);
// Allocate host-pinned memory (should respect NUMA mem policy)
if (memType == MEM_CPU_FINE) {
#if defined (__NVCC__)
return {ERR_FATAL, "Fine-grained CPU memory not supported on NVIDIA platform"};
#else
ERR_CHECK(hipHostMalloc((void **)memPtr, numBytes, hipHostMallocNumaUser));
#endif
} else if (memType == MEM_CPU || memType == MEM_CPU_CLOSEST) {
#if defined (__NVCC__)
ERR_CHECK(hipHostMalloc((void **)memPtr, numBytes, 0));
#else
ERR_CHECK(hipHostMalloc((void **)memPtr, numBytes, hipHostMallocNumaUser | hipHostMallocNonCoherent));
#endif
} else if (memType == MEM_CPU_UNPINNED) {
*memPtr = numa_alloc_onnode(numBytes, numaIdx);
}
// Check that the allocated pages are actually on the correct NUMA node
memset(*memPtr, 0, numBytes);
ERR_CHECK(CheckPages((char*)*memPtr, numBytes, numaIdx));
// Reset to default numa mem policy
numa_set_preferred(-1);
} else if (IsGpuMemType(memType)) {
// Switch to the appropriate GPU
ERR_CHECK(hipSetDevice(memDevice.memIndex));
if (memType == MEM_GPU) {
// Allocate GPU memory on appropriate device
ERR_CHECK(hipMalloc((void**)memPtr, numBytes));
} else if (memType == MEM_GPU_FINE) {
#if defined (__NVCC__)
return {ERR_FATAL, "Fine-grained GPU memory not supported on NVIDIA platform"};
#else
int flag = hipDeviceMallocUncached;
ERR_CHECK(hipExtMallocWithFlags((void**)memPtr, numBytes, flag));
#endif
} else if (memType == MEM_MANAGED) {
ERR_CHECK(hipMallocManaged((void**)memPtr, numBytes));
}
// Clear the memory
ERR_CHECK(hipMemset(*memPtr, 0, numBytes));
ERR_CHECK(hipDeviceSynchronize());
} else {
return {ERR_FATAL, "Unsupported memory type (%d)", memType};
}
return ERR_NONE;
}
// Deallocate memory
static ErrResult DeallocateMemory(MemType memType, void *memPtr, size_t const bytes)
{
// Avoid deallocating nullptr
if (memPtr == nullptr)
return {ERR_FATAL, "Attempted to free null pointer for %lu bytes", bytes};
switch (memType) {
case MEM_CPU: case MEM_CPU_FINE: case MEM_CPU_CLOSEST:
{
ERR_CHECK(hipHostFree(memPtr));
break;
}
case MEM_CPU_UNPINNED:
{
numa_free(memPtr, bytes);
break;
}
case MEM_GPU : case MEM_GPU_FINE: case MEM_MANAGED:
{
ERR_CHECK(hipFree(memPtr));
break;
}
default:
return {ERR_FATAL, "Attempting to deallocate unrecognized memory type (%d)", memType};
}
return ERR_NONE;
}
// HSA-related functions
//========================================================================================
#if !defined(__NVCC__)
// Get the hsa_agent_t associated with a ExeDevice
static ErrResult GetHsaAgent(ExeDevice const& exeDevice, hsa_agent_t& agent)
{
static bool isInitialized = false;
static std::vector<hsa_agent_t> cpuAgents;
static std::vector<hsa_agent_t> gpuAgents;
int const& exeIndex = exeDevice.exeIndex;
int const numCpus = GetNumExecutors(EXE_CPU);
int const numGpus = GetNumExecutors(EXE_GPU_GFX);
// Initialize results on first use
if (!isInitialized) {
hsa_amd_pointer_info_t info;
info.size = sizeof(info);
ErrResult err;
int32_t* tempBuffer;
// Index CPU agents
cpuAgents.clear();
for (int i = 0; i < numCpus; i++) {
ERR_CHECK(AllocateMemory({MEM_CPU, i}, 1024, (void**)&tempBuffer));
ERR_CHECK(hsa_amd_pointer_info(tempBuffer, &info, NULL, NULL, NULL));
cpuAgents.push_back(info.agentOwner);
ERR_CHECK(DeallocateMemory(MEM_CPU, tempBuffer, 1024));
}
// Index GPU agents
gpuAgents.clear();
for (int i = 0; i < numGpus; i++) {
ERR_CHECK(AllocateMemory({MEM_GPU, i}, 1024, (void**)&tempBuffer));
ERR_CHECK(hsa_amd_pointer_info(tempBuffer, &info, NULL, NULL, NULL));
gpuAgents.push_back(info.agentOwner);
ERR_CHECK(DeallocateMemory(MEM_GPU, tempBuffer, 1024));
}
isInitialized = true;
}
switch (exeDevice.exeType) {
case EXE_CPU:
if (exeIndex < 0 || exeIndex >= numCpus)
return {ERR_FATAL, "CPU index must be between 0 and %d inclusively", numCpus - 1};
agent = cpuAgents[exeDevice.exeIndex];
break;
case EXE_GPU_GFX: case EXE_GPU_DMA:
if (exeIndex < 0 || exeIndex >= numGpus)
return {ERR_FATAL, "GPU index must be between 0 and %d inclusively", numGpus - 1};
agent = gpuAgents[exeIndex];
break;
default:
return {ERR_FATAL,
"Attempting to get HSA agent of unknown or unsupported executor type (%d)",
exeDevice.exeType};
}
return ERR_NONE;
}
// Get the hsa_agent_t associated with a MemDevice
static ErrResult GetHsaAgent(MemDevice const& memDevice, hsa_agent_t& agent)
{
if (IsCpuMemType(memDevice.memType)) return GetHsaAgent({EXE_CPU, memDevice.memIndex}, agent);
if (IsGpuMemType(memDevice.memType)) return GetHsaAgent({EXE_GPU_GFX, memDevice.memIndex}, agent);
return {ERR_FATAL,
"Unable to get HSA agent for memDevice (%d,%d)",
memDevice.memType, memDevice.memIndex};
}
#endif
// Setup validation-related functions
//========================================================================================
static ErrResult GetActualExecutor(ConfigOptions const& cfg,
ExeDevice const& origExeDevice,
ExeDevice& actualExeDevice)
{
// By default, nothing needs to change
actualExeDevice = origExeDevice;
// When using NIC_NEAREST, remap to the closest NIC to the GPU
if (origExeDevice.exeType == EXE_NIC_NEAREST) {
actualExeDevice.exeType = EXE_NIC;
if (cfg.nic.closestNics.size() > 0) {
if (origExeDevice.exeIndex < 0 || origExeDevice.exeIndex >= cfg.nic.closestNics.size())
return {ERR_FATAL, "NIC index is out of range (%d)", origExeDevice.exeIndex};
actualExeDevice.exeIndex = cfg.nic.closestNics[origExeDevice.exeIndex];
} else {
actualExeDevice.exeIndex = GetClosestNicToGpu(origExeDevice.exeIndex);
}
}
return ERR_NONE;
}
// Validate that MemDevice exists
static ErrResult CheckMemDevice(MemDevice const& memDevice)
{
if (memDevice.memType == MEM_NULL)
return ERR_NONE;
if (IsCpuMemType(memDevice.memType) && memDevice.memType != MEM_CPU_CLOSEST) {
int numCpus = GetNumExecutors(EXE_CPU);
if (memDevice.memIndex < 0 || memDevice.memIndex >= numCpus)
return {ERR_FATAL,
"CPU index must be between 0 and %d (instead of %d)", numCpus - 1, memDevice.memIndex};
return ERR_NONE;
}
if (IsGpuMemType(memDevice.memType) || memDevice.memType == MEM_CPU_CLOSEST) {
int numGpus = GetNumExecutors(EXE_GPU_GFX);
if (memDevice.memIndex < 0 || memDevice.memIndex >= numGpus)
return {ERR_FATAL,
"GPU index must be between 0 and %d (instead of %d)", numGpus - 1, memDevice.memIndex};
if (memDevice.memType == MEM_CPU_CLOSEST) {
if (GetClosestCpuNumaToGpu(memDevice.memIndex) == -1) {
return {ERR_FATAL, "Unable to determine closest NUMA node for GPU %d", memDevice.memIndex};
}
}
return ERR_NONE;
}
return {ERR_FATAL, "Unsupported memory type (%d)", memDevice.memType};
}
// Validate configuration options - return trues if and only if an fatal error is detected
static bool ConfigOptionsHaveErrors(ConfigOptions const& cfg,
std::vector<ErrResult>& errors)
{
// Check general options
if (cfg.general.numWarmups < 0)
errors.push_back({ERR_FATAL, "[general.numWarmups] must be a non-negative number"});
// Check data options
if (cfg.data.blockBytes == 0 || cfg.data.blockBytes % 4)
errors.push_back({ERR_FATAL, "[data.blockBytes] must be positive multiple of %lu", sizeof(float)});
if (cfg.data.byteOffset < 0 || cfg.data.byteOffset % sizeof(float))
errors.push_back({ERR_FATAL, "[data.byteOffset] must be positive multiple of %lu", sizeof(float)});
// Check GFX options
if (cfg.gfx.blockOrder < 0 || cfg.gfx.blockOrder > 2)
errors.push_back({ERR_FATAL,
"[gfx.blockOrder] must be 0 for sequential, 1 for interleaved, or 2 for random"});
if (cfg.gfx.useMultiStream && cfg.gfx.blockOrder > 0)
errors.push_back({ERR_WARN, "[gfx.blockOrder] will be ignored when running in multi-stream mode"});
int gfxMaxBlockSize = GetIntAttribute(ATR_GFX_MAX_BLOCKSIZE);
if (cfg.gfx.blockSize < 0 || cfg.gfx.blockSize % 64 || cfg.gfx.blockSize > gfxMaxBlockSize)
errors.push_back({ERR_FATAL,
"[gfx.blockSize] must be positive multiple of 64 less than or equal to %d",
gfxMaxBlockSize});
if (cfg.gfx.temporalMode < 0 || cfg.gfx.temporalMode > 3)
errors.push_back({ERR_FATAL,
"[gfx.temporalMode] must be non-negative and less than or equal to 3"});
#if defined(__NVCC__)
if (cfg.gfx.temporalMode > 0)
errors.push_back({ERR_FATAL,
"[gfx.temporalMode] is not supported on NVIDIA hardware"});
#endif
int gfxMaxUnroll = GetIntAttribute(ATR_GFX_MAX_UNROLL);
if (cfg.gfx.unrollFactor < 0 || cfg.gfx.unrollFactor > gfxMaxUnroll)
errors.push_back({ERR_FATAL,
"[gfx.unrollFactor] must be non-negative and less than or equal to %d",
gfxMaxUnroll});
if (cfg.gfx.waveOrder < 0 || cfg.gfx.waveOrder >= 6)
errors.push_back({ERR_FATAL,
"[gfx.waveOrder] must be non-negative and less than 6"});
if (!(cfg.gfx.wordSize == 1 || cfg.gfx.wordSize == 2 || cfg.gfx.wordSize == 4))
errors.push_back({ERR_FATAL, "[gfx.wordSize] must be either 1, 2 or 4"});
int numGpus = GetNumExecutors(EXE_GPU_GFX);
int numXccs = GetNumExecutorSubIndices({EXE_GPU_GFX, 0});
vector<vector<int>> const& table = cfg.gfx.prefXccTable;
if (!table.empty()) {
if (table.size() != numGpus) {
errors.push_back({ERR_FATAL, "[gfx.prefXccTable] must be have size %dx%d", numGpus, numGpus});
} else {
for (int i = 0; i < table.size(); i++) {
if (table[i].size() != numGpus) {
errors.push_back({ERR_FATAL, "[gfx.prefXccTable] must be have size %dx%d", numGpus, numGpus});
break;
} else {
for (auto x : table[i]) {
if (x < 0 || x >= numXccs) {
errors.push_back({ERR_FATAL, "[gfx.prefXccTable] must contain values between 0 and %d",
numXccs - 1});
break;
}
}
}
}
}
}
// Check NIC options
#ifdef NIC_EXEC_ENABLED
int numNics = GetNumExecutors(EXE_NIC);
for (auto const& nic : cfg.nic.closestNics)
if (nic < 0 || nic >= numNics)
errors.push_back({ERR_FATAL, "NIC index (%d) in user-specified closest NIC list must be between 0 and %d",
nic, numNics - 1});
size_t closetNicsSize = cfg.nic.closestNics.size();
if (closetNicsSize > 0 && closetNicsSize < numGpus)
errors.push_back({ERR_FATAL, "User-specified closest NIC list must match GPU count of %d",
numGpus});
#endif
// NVIDIA specific
#if defined(__NVCC__)
if (cfg.data.validateDirect)
errors.push_back({ERR_FATAL, "[data.validateDirect] is not supported on NVIDIA hardware"});
#else
// AMD specific
// Check for largeBar enablement on GPUs
for (int i = 0; i < numGpus; i++) {
int isLargeBar = 0;
hipError_t err = hipDeviceGetAttribute(&isLargeBar, hipDeviceAttributeIsLargeBar, i);
if (err != hipSuccess) {
errors.push_back({ERR_FATAL, "Unable to query if GPU %d has largeBAR enabled", i});
} else if (!isLargeBar) {
errors.push_back({ERR_WARN,
"Large BAR is not enabled for GPU %d in BIOS. "
"Large BAR is required to enable multi-gpu data access", i});
}
}
#endif
// Check for fatal errors
for (auto const& err : errors)
if (err.errType == ERR_FATAL) return true;
return false;
}
// Validate Transfers to execute - returns true if and only if fatal error detected
static bool TransfersHaveErrors(ConfigOptions const& cfg,
std::vector<Transfer> const& transfers,
std::vector<ErrResult>& errors)
{
int numCpus = GetNumExecutors(EXE_CPU);
int numGpus = GetNumExecutors(EXE_GPU_GFX);
int numNics = GetNumExecutors(EXE_NIC);
std::set<ExeDevice> executors;
std::map<ExeDevice, int> transferCount;
std::map<ExeDevice, int> useSubIndexCount;
std::map<ExeDevice, int> totalSubExecs;
// Per-Transfer checks
for (size_t i = 0; i < transfers.size(); i++) {
Transfer const& t = transfers[i];
if (t.numBytes == 0)
errors.push_back({ERR_FATAL, "Transfer %d: Cannot perform 0-byte transfers", i});
if (t.exeDevice.exeType == EXE_GPU_GFX || t.exeDevice.exeType == EXE_CPU) {
size_t const N = t.numBytes / sizeof(float);
int const targetMultiple = cfg.data.blockBytes / sizeof(float);
int const maxSubExecToUse = std::min((size_t)(N + targetMultiple - 1) / targetMultiple,
(size_t)t.numSubExecs);
if (maxSubExecToUse < t.numSubExecs)
errors.push_back({ERR_WARN,
"Transfer %d data size is too small - will only use %d of %d subexecutors",
i, maxSubExecToUse, t.numSubExecs});
}
// Check sources and destinations
if (t.srcs.empty() && t.dsts.empty())
errors.push_back({ERR_FATAL, "Transfer %d: Must have at least one source or destination", i});
for (int j = 0; j < t.srcs.size(); j++) {
ErrResult err = CheckMemDevice(t.srcs[j]);
if (err.errType != ERR_NONE)
errors.push_back({ERR_FATAL, "Transfer %d: SRC %d: %s", i, j, err.errMsg.c_str()});
}
for (int j = 0; j < t.dsts.size(); j++) {
ErrResult err = CheckMemDevice(t.dsts[j]);
if (err.errType != ERR_NONE)
errors.push_back({ERR_FATAL, "Transfer %d: DST %d: %s", i, j, err.errMsg.c_str()});
}
// Check executor
executors.insert(t.exeDevice);
transferCount[t.exeDevice]++;
switch (t.exeDevice.exeType) {
case EXE_CPU:
if (t.exeDevice.exeIndex < 0 || t.exeDevice.exeIndex >= numCpus)
errors.push_back({ERR_FATAL,
"Transfer %d: CPU index must be between 0 and %d (instead of %d)",
i, numCpus - 1, t.exeDevice.exeIndex});
break;
case EXE_GPU_GFX:
if (t.exeDevice.exeIndex < 0 || t.exeDevice.exeIndex >= numGpus) {
errors.push_back({ERR_FATAL,
"Transfer %d: GFX index must be between 0 and %d (instead of %d)",
i, numGpus - 1, t.exeDevice.exeIndex});
} else {
if (t.exeSubIndex != -1) {
#if defined(__NVCC__)
errors.push_back({ERR_FATAL,
"Transfer %d: GFX executor subindex not supported on NVIDIA hardware", i});
#else
useSubIndexCount[t.exeDevice]++;
int numSubIndices = GetNumExecutorSubIndices(t.exeDevice);
if (t.exeSubIndex >= numSubIndices)
errors.push_back({ERR_FATAL,
"Transfer %d: GFX subIndex (XCC) must be between 0 and %d", i, numSubIndices - 1});
#endif
}
}
break;
case EXE_GPU_DMA:
if (t.srcs.size() != 1 || t.dsts.size() != 1) {
errors.push_back({ERR_FATAL,
"Transfer %d: DMA executor must have exactly 1 source and 1 destination", i});
}
if (t.exeDevice.exeIndex < 0 || t.exeDevice.exeIndex >= numGpus) {
errors.push_back({ERR_FATAL,
"Transfer %d: DMA index must be between 0 and %d (instead of %d)",
i, numGpus - 1, t.exeDevice.exeIndex});
// Cannot proceed with any further checks
continue;
}
if (t.exeSubIndex != -1) {
#if defined(__NVCC__)
errors.push_back({ERR_FATAL,
"Transfer %d: DMA executor subindex not supported on NVIDIA hardware", i});
#else
useSubIndexCount[t.exeDevice]++;
int numSubIndices = GetNumExecutorSubIndices(t.exeDevice);
if (t.exeSubIndex >= numSubIndices)
errors.push_back({ERR_FATAL,
"Transfer %d: DMA subIndex (engine) must be between 0 and %d",
i, numSubIndices - 1});
// Check that engine Id exists between agents
hsa_agent_t srcAgent, dstAgent;
ErrResult err;
err = GetHsaAgent(t.srcs[0], srcAgent);
if (err.errType != ERR_NONE) {
errors.push_back(err);
if (err.errType == ERR_FATAL) break;
}
err = GetHsaAgent(t.dsts[0], dstAgent);
if (err.errType != ERR_NONE) {
errors.push_back(err);
if (err.errType == ERR_FATAL) break;
}
uint32_t engineIdMask = 0;
err = hsa_amd_memory_copy_engine_status(dstAgent, srcAgent, &engineIdMask);
if (err.errType != ERR_NONE) {
errors.push_back(err);
if (err.errType == ERR_FATAL) break;
}
hsa_amd_sdma_engine_id_t sdmaEngineId = (hsa_amd_sdma_engine_id_t)(1U << t.exeSubIndex);
if (!(sdmaEngineId & engineIdMask)) {
errors.push_back({ERR_FATAL,
"Transfer %d: DMA %d.%d does not exist or cannot copy between src/dst",
i, t.exeDevice.exeIndex, t.exeSubIndex});
}
#endif
}
if (!IsGpuMemType(t.srcs[0].memType) && !IsGpuMemType(t.dsts[0].memType)) {
errors.push_back({ERR_WARN,
"Transfer %d: No GPU memory for source or destination. Copy might not execute on DMA %d",
i, t.exeDevice.exeIndex});
} else {
// Currently HIP will use src agent if source memory is GPU, otherwise dst agent
if (IsGpuMemType(t.srcs[0].memType)) {
if (t.srcs[0].memIndex != t.exeDevice.exeIndex) {
errors.push_back({ERR_WARN,
"Transfer %d: DMA executor will automatically switch to using the source memory device (%d) not (%d)",
i, t.srcs[0].memIndex, t.exeDevice.exeIndex});
}
} else if (t.dsts[0].memIndex != t.exeDevice.exeIndex) {
errors.push_back({ERR_WARN,
"Transfer %d: DMA executor will automatically switch to using the destination memory device (%d) not (%d)",
i, t.dsts[0].memIndex, t.exeDevice.exeIndex});
}
}
break;
case EXE_NIC:
#ifdef NIC_EXEC_ENABLED
{
int srcIndex = t.exeDevice.exeIndex;
int dstIndex = t.exeSubIndex;
if (srcIndex < 0 || srcIndex >= numNics)
errors.push_back({ERR_FATAL, "Transfer %d: src NIC executor indexes an out-of-range NIC (%d)", i, srcIndex});
if (dstIndex < 0 || dstIndex >= numNics)
errors.push_back({ERR_FATAL, "Transfer %d: dst NIC executor indexes an out-of-range NIC (%d)", i, dstIndex});
}
#else
errors.push_back({ERR_FATAL, "Transfer %d: NIC executor is requested but is not available", i});
#endif
break;
case EXE_NIC_NEAREST:
#ifdef NIC_EXEC_ENABLED
{
ExeDevice srcExeDevice;
ErrResult errSrc = GetActualExecutor(cfg, t.exeDevice, srcExeDevice);
if (errSrc.errType != ERR_NONE) errors.push_back(errSrc);
ExeDevice dstExeDevice;
ErrResult errDst = GetActualExecutor(cfg, {t.exeDevice.exeType, t.exeSubIndex}, dstExeDevice);
if (errDst.errType != ERR_NONE) errors.push_back(errDst);
}
#else
errors.push_back({ERR_FATAL, "Transfer %d: NIC executor is requested but is not available", i});
#endif
break;
}
// Check subexecutors
if (t.numSubExecs <= 0)
errors.push_back({ERR_FATAL, "Transfer %d: # of subexecutors must be positive", i});
else
totalSubExecs[t.exeDevice] += t.numSubExecs;
}
int gpuMaxHwQueues = 4;
if (getenv("GPU_MAX_HW_QUEUES"))
gpuMaxHwQueues = atoi(getenv("GPU_MAX_HW_QUEUES"));
// Aggregate checks
for (auto const& exeDevice : executors) {
switch (exeDevice.exeType) {
case EXE_CPU:
{
// Check total number of subexecutors requested
int numCpuSubExec = GetNumSubExecutors(exeDevice);
if (totalSubExecs[exeDevice] > numCpuSubExec)
errors.push_back({ERR_WARN,
"CPU %d requests %d total cores however only %d available. "
"Serialization will occur",
exeDevice.exeIndex, totalSubExecs[exeDevice], numCpuSubExec});
break;
}
case EXE_GPU_GFX:
{
// Check total number of subexecutors requested
int numGpuSubExec = GetNumSubExecutors(exeDevice);
if (totalSubExecs[exeDevice] > numGpuSubExec)
errors.push_back({ERR_WARN,
"GPU %d requests %d total CUs however only %d available. "
"Serialization will occur",
exeDevice.exeIndex, totalSubExecs[exeDevice], numGpuSubExec});
// Check that if executor subindices are used, all Transfers specify executor subindices
if (useSubIndexCount[exeDevice] > 0 && useSubIndexCount[exeDevice] != transferCount[exeDevice]) {
errors.push_back({ERR_FATAL,
"GPU %d specifies XCC on only %d of %d Transfers. "
"Must either specific none or all",
exeDevice.exeIndex, useSubIndexCount[exeDevice], transferCount[exeDevice]});
}
if (cfg.gfx.useMultiStream && transferCount[exeDevice] > gpuMaxHwQueues) {
errors.push_back({ERR_WARN,
"GPU %d attempting %d parallel transfers, however GPU_MAX_HW_QUEUES only set to %d",
exeDevice.exeIndex, transferCount[exeDevice], gpuMaxHwQueues});
}
break;
}
case EXE_GPU_DMA:
{
// Check that if executor subindices are used, all Transfers specify executor subindices
if (useSubIndexCount[exeDevice] > 0 && useSubIndexCount[exeDevice] != transferCount[exeDevice]) {
errors.push_back({ERR_FATAL,
"DMA %d specifies engine on only %d of %d Transfers. "
"Must either specific none or all",
exeDevice.exeIndex, useSubIndexCount[exeDevice], transferCount[exeDevice]});
}
if (transferCount[exeDevice] > gpuMaxHwQueues) {
errors.push_back({ERR_WARN,
"DMA %d attempting %d parallel transfers, however GPU_MAX_HW_QUEUES only set to %d",
exeDevice.exeIndex, transferCount[exeDevice], gpuMaxHwQueues});
}
char* enableSdma = getenv("HSA_ENABLE_SDMA");
if (enableSdma && !strcmp(enableSdma, "0"))
errors.push_back({ERR_WARN,
"DMA functionality disabled due to environment variable HSA_ENABLE_SDMA=0. "
"DMA %d copies will fallback to blit (GFX) kernels", exeDevice.exeIndex});
break;
}
default:
break;
}
}
// Check for fatal errors
for (auto const& err : errors)
if (err.errType == ERR_FATAL) return true;
return false;
}
// Internal data structures
//========================================================================================
// Parameters for each SubExecutor
struct SubExecParam
{
// Inputs
size_t N; ///< Number of floats this subExecutor works on
int numSrcs; ///< Number of source arrays
int numDsts; ///< Number of destination arrays
float* src[MAX_SRCS]; ///< Source array pointers
float* dst[MAX_DSTS]; ///< Destination array pointers
int32_t preferredXccId; ///< XCC ID to execute on (GFX only)
// Prepared
int teamSize; ///< Index of this sub executor amongst team
int teamIdx; ///< Size of team this sub executor is part of
// Outputs
long long startCycle; ///< Start timestamp for in-kernel timing (GPU-GFX executor)
long long stopCycle; ///< Stop timestamp for in-kernel timing (GPU-GFX executor)
uint32_t hwId; ///< Hardware ID
uint32_t xccId; ///< XCC ID
};
// Internal resources allocated per Transfer
struct TransferResources
{
int transferIdx; ///< The associated Transfer
size_t numBytes; ///< Number of bytes to Transfer
vector<float*> srcMem; ///< Source memory
vector<float*> dstMem; ///< Destination memory
vector<SubExecParam> subExecParamCpu; ///< Defines subarrays for each subexecutor
vector<int> subExecIdx; ///< Indices into subExecParamGpu
int numaNode; ///< NUMA node to use for this Transfer
// For GFX executor
SubExecParam* subExecParamGpuPtr;
// For targeted-SDMA
#if !defined(__NVCC__)
hsa_agent_t dstAgent; ///< DMA destination memory agent
hsa_agent_t srcAgent; ///< DMA source memory agent
hsa_signal_t signal; ///< HSA signal for completion
hsa_amd_sdma_engine_id_t sdmaEngineId; ///< DMA engine ID
#endif
// For IBV executor
#ifdef NIC_EXEC_ENABLED
int srcNicIndex; ///< SRC NIC index
int dstNicIndex; ///< DST NIC index
ibv_context* srcContext; ///< Device context for SRC NIC
ibv_context* dstContext; ///< Device context for DST NIC
ibv_pd* srcProtect; ///< Protection domain for SRC NIC
ibv_pd* dstProtect; ///< Protection domain for DST NIC
ibv_cq* srcCompQueue; ///< Completion queue for SRC NIC
ibv_cq* dstCompQueue; ///< Completion queue for DST NIC
ibv_port_attr srcPortAttr; ///< Port attributes for SRC NIC
ibv_port_attr dstPortAttr; ///< Port attributes for DST NIC
ibv_gid srcGid; ///< GID handle for SRC NIC
ibv_gid dstGid; ///< GID handle for DST NIC
vector<ibv_qp*> srcQueuePairs; ///< Queue pairs for SRC NIC
vector<ibv_qp*> dstQueuePairs; ///< Queue pairs for DST NIC
ibv_mr* srcMemRegion; ///< Memory region for SRC
ibv_mr* dstMemRegion; ///< Memory region for DST
uint8_t qpCount; ///< Number of QPs to be used for transferring data
vector<ibv_sge> sgePerQueuePair; ///< Scatter-gather elements per queue pair
vector<ibv_send_wr> sendWorkRequests; ///< Send work requests per queue pair
#endif
// Counters
double totalDurationMsec; ///< Total duration for all iterations for this Transfer
vector<double> perIterMsec; ///< Duration for each individual iteration
vector<set<pair<int,int>>> perIterCUs; ///< GFX-Executor only. XCC:CU used per iteration
};
// Internal resources allocated per Executor
struct ExeInfo
{
size_t totalBytes; ///< Total bytes this executor transfers
double totalDurationMsec; ///< Total duration for all iterations for this Executor
int totalSubExecs; ///< Total number of subExecutors to use
bool useSubIndices; ///< Use subexecutor indicies
int numSubIndices; ///< Number of subindices this ExeDevice has
vector<SubExecParam> subExecParamCpu; ///< Subexecutor parameters for this executor
vector<TransferResources> resources; ///< Per-Transfer resources
// For GPU-Executors
SubExecParam* subExecParamGpu; ///< GPU copy of subExecutor parameters
vector<hipStream_t> streams; ///< HIP streams to launch on
vector<hipEvent_t> startEvents; ///< HIP start timing event
vector<hipEvent_t> stopEvents; ///< HIP stop timing event
int wallClockRate; ///< (GFX-only) Device wall clock rate
};
// Structure to track PCIe topology
struct PCIeNode
{
std::string address; ///< PCIe address for this PCIe node
std::string description; ///< Description for this PCIe node
std::set<PCIeNode> children; ///< Children PCIe nodes
// Default constructor
PCIeNode() : address(""), description("") {}
// Constructor
PCIeNode(std::string const& addr) : address(addr) {}
// Constructor
PCIeNode(std::string const& addr, std::string const& desc)
:address(addr), description(desc) {}
// Comparison operator for std::set
bool operator<(PCIeNode const& other) const {
return address < other.address;
}
};
#ifdef NIC_EXEC_ENABLED
// Structure to track information about IBV devices
struct IbvDevice
{
ibv_device* devicePtr;
std::string name;
std::string busId;
bool hasActivePort;
int numaNode;
int gidIndex;
std::string gidDescriptor;
bool isRoce;
};
#endif
#ifdef NIC_EXEC_ENABLED
// Function to collect information about IBV devices
//========================================================================================
static bool IsConfiguredGid(union ibv_gid const& gid)
{
const struct in6_addr *a = (struct in6_addr *) gid.raw;
int trailer = (a->s6_addr32[1] | a->s6_addr32[2] | a->s6_addr32[3]);
if (((a->s6_addr32[0] | trailer) == 0UL) ||
((a->s6_addr32[0] == htonl(0xfe800000)) && (trailer == 0UL))) {
return false;
}
return true;
}
static bool LinkLocalGid(union ibv_gid const& gid)
{
const struct in6_addr *a = (struct in6_addr *) gid.raw;
if (a->s6_addr32[0] == htonl(0xfe800000) && a->s6_addr32[1] == 0UL) {
return true;
}
return false;
}
static ErrResult GetRoceVersionNumber(struct ibv_context* const& context,
int const& portNum,
int const& gidIndex,
int& version)
{
char const* deviceName = ibv_get_device_name(context->device);
char gidRoceVerStr[16] = {};
char roceTypePath[PATH_MAX] = {};
sprintf(roceTypePath, "/sys/class/infiniband/%s/ports/%d/gid_attrs/types/%d",
deviceName, portNum, gidIndex);
int fd = open(roceTypePath, O_RDONLY);
if (fd == -1)
return {ERR_FATAL, "Failed while opening RoCE file path (%s)", roceTypePath};
int ret = read(fd, gidRoceVerStr, 15);
close(fd);
if (ret == -1)
return {ERR_FATAL, "Failed while reading RoCE version"};
if (strlen(gidRoceVerStr)) {
if (strncmp(gidRoceVerStr, "IB/RoCE v1", strlen("IB/RoCE v1")) == 0
|| strncmp(gidRoceVerStr, "RoCE v1", strlen("RoCE v1")) == 0) {
version = 1;
}
else if (strncmp(gidRoceVerStr, "RoCE v2", strlen("RoCE v2")) == 0) {
version = 2;
}
}
return ERR_NONE;
}
static bool IsIPv4MappedIPv6(const union ibv_gid &gid)
{
// look for ::ffff:x.x.x.x format
// From Broadcom documentation
// https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/frequently-asked-questions1.html
// "The IPv4 address is really an IPv4 address mapped into the IPv6 address space.
// This can be identified by 80 “0” bits, followed by 16 “1” bits (“FFFF” in hexadecimal)
// followed by the original 32-bit IPv4 address."
return (gid.global.subnet_prefix == 0 &&
gid.raw[8] == 0 &&
gid.raw[9] == 0 &&
gid.raw[10] == 0xff &&
gid.raw[11] == 0xff);
}
static ErrResult GetGidIndex(struct ibv_context* context,
int const& gidTblLen,
int const& portNum,
std::pair<int, std::string>& gidInfo)
{
if(gidInfo.first >= 0) return ERR_NONE; // honor user choice
union ibv_gid gid;
GidPriority highestPriority = GidPriority::UNKNOWN;
int gidIndex = -1;
for (int i = 0; i < gidTblLen; ++i) {
IBV_CALL(ibv_query_gid, context, portNum, i, &gid);
if (!IsConfiguredGid(gid)) continue;
int gidCurrRoceVersion;
if(GetRoceVersionNumber(context, portNum, i, gidCurrRoceVersion).errType != ERR_NONE) continue;
GidPriority currPriority;
if (IsIPv4MappedIPv6(gid)) {
currPriority = (gidCurrRoceVersion == 2) ? GidPriority::ROCEV2_IPV4 : GidPriority::ROCEV1_IPV4;
} else if (!LinkLocalGid(gid)) {
currPriority = (gidCurrRoceVersion == 2) ? GidPriority::ROCEV2_IPV6 : GidPriority::ROCEV1_IPV6;
} else {
currPriority = (gidCurrRoceVersion == 2) ? GidPriority::ROCEV2_LINK_LOCAL : GidPriority::ROCEV1_LINK_LOCAL;
}
if(currPriority > highestPriority) {
highestPriority = currPriority;
gidIndex = i;
}
}
if (highestPriority == GidPriority::UNKNOWN) {
gidInfo.first = -1;
return {ERR_FATAL, "Failed to auto-detect a valid GID index. Try setting it manually through IB_GID_INDEX"};
}
gidInfo.first = gidIndex;
gidInfo.second = GidPriorityStr[highestPriority];
return ERR_NONE;
}
static vector<IbvDevice>& GetIbvDeviceList()
{
static bool isInitialized = false;
static vector<IbvDevice> ibvDeviceList = {};
// Build list on first use
if (!isInitialized) {
// Query the number of IBV devices
int numIbvDevices = 0;
ibv_device** deviceList = ibv_get_device_list(&numIbvDevices);
if (deviceList && numIbvDevices > 0) {
// Loop over each device to collect information
for (int i = 0; i < numIbvDevices; i++) {
IbvDevice ibvDevice;
ibvDevice.devicePtr = deviceList[i];
ibvDevice.name = deviceList[i]->name;
ibvDevice.hasActivePort = false;
{
struct ibv_context *context = ibv_open_device(ibvDevice.devicePtr);
if (context) {
struct ibv_device_attr deviceAttr;
if (!ibv_query_device(context, &deviceAttr)) {
int activePort;
ibvDevice.gidIndex = -1;
for (int port = 1; port <= deviceAttr.phys_port_cnt; ++port) {
struct ibv_port_attr portAttr;
if (ibv_query_port(context, port, &portAttr)) continue;
if (portAttr.state == IBV_PORT_ACTIVE) {
activePort = port;
ibvDevice.hasActivePort = true;
if(portAttr.link_layer == IBV_LINK_LAYER_ETHERNET) {
ibvDevice.isRoce = true;
std::pair<int, std::string> gidInfo (-1, "");
auto res = GetGidIndex(context, portAttr.gid_tbl_len, activePort, gidInfo);
if (res.errType == ERR_NONE) {
ibvDevice.gidIndex = gidInfo.first;
ibvDevice.gidDescriptor = gidInfo.second;
}
}
break;
}
}
}
ibv_close_device(context);
}
}
ibvDevice.busId = "";
{
std::string device_path(ibvDevice.devicePtr->dev_path);
if (std::filesystem::exists(device_path)) {
std::string pciPath = std::filesystem::canonical(device_path + "/device").string();
std::size_t pos = pciPath.find_last_of('/');
if (pos != std::string::npos) {
ibvDevice.busId = pciPath.substr(pos + 1);
}
}
}
// Get nearest numa node for this device
ibvDevice.numaNode = -1;
std::filesystem::path devicePath = "/sys/bus/pci/devices/" + ibvDevice.busId + "/numa_node";
std::string canonicalPath = std::filesystem::canonical(devicePath).string();
if (std::filesystem::exists(canonicalPath)) {
std::ifstream file(canonicalPath);
if (file.is_open()) {
std::string numaNodeStr;
std::getline(file, numaNodeStr);
int numaNodeVal;
if (sscanf(numaNodeStr.c_str(), "%d", &numaNodeVal) == 1)
ibvDevice.numaNode = numaNodeVal;
file.close();
}
}
ibvDeviceList.push_back(ibvDevice);
}
}
ibv_free_device_list(deviceList);
isInitialized = true;
}
return ibvDeviceList;
}
#endif // NIC_EXEC_ENABLED
#ifdef NIC_EXEC_ENABLED
// PCIe-related functions
//========================================================================================
// Prints off PCIe tree
static void PrintPCIeTree(PCIeNode const& node,
std::string const& prefix = "",
bool isLast = true)
{
if (!node.address.empty()) {
printf("%s%s%s", prefix.c_str(), (isLast ? "└── " : "├── "), node.address.c_str());
if (!node.description.empty()) {
printf("(%s)", node.description.c_str());
}
printf("\n");
}
auto const& children = node.children;
for (auto it = children.begin(); it != children.end(); ++it) {
PrintPCIeTree(*it, prefix + (isLast ? " " : "│ "), std::next(it) == children.end());
}
}
// Inserts nodes along pcieAddress down a tree starting from root
static ErrResult InsertPCIePathToTree(std::string const& pcieAddress,
std::string const& description,
PCIeNode& root)
{
std::filesystem::path devicePath = "/sys/bus/pci/devices/" + pcieAddress;
std::string canonicalPath = std::filesystem::canonical(devicePath).string();
if (!std::filesystem::exists(devicePath)) {
return {ERR_FATAL, "Device path %s does not exist", devicePath.c_str()};
}
std::istringstream iss(canonicalPath);
std::string token;
PCIeNode* currNode = &root;
while (std::getline(iss, token, '/')) {
auto it = (currNode->children.insert(PCIeNode(token))).first;
currNode = const_cast<PCIeNode*>(&(*it));
}
currNode->description = description;
return ERR_NONE;
}
// Returns root node for PCIe tree. Constructed on first use
static PCIeNode* GetPCIeTreeRoot()
{
static bool isInitialized = false;
static PCIeNode pcieRoot;
// Build PCIe tree on first use
if (!isInitialized) {
// Add NICs to the tree
int numNics = GetNumExecutors(EXE_NIC);
auto const& ibvDeviceList = GetIbvDeviceList();
for (IbvDevice const& ibvDevice : ibvDeviceList) {
if (!ibvDevice.hasActivePort || ibvDevice.busId == "") continue;
InsertPCIePathToTree(ibvDevice.busId, ibvDevice.name, pcieRoot);
}
// Add GPUs to the tree
int numGpus = GetNumExecutors(EXE_GPU_GFX);
for (int i = 0; i < numGpus; ++i) {
char hipPciBusId[64];
if (hipDeviceGetPCIBusId(hipPciBusId, sizeof(hipPciBusId), i) == hipSuccess) {
InsertPCIePathToTree(hipPciBusId, "GPU " + std::to_string(i), pcieRoot);
}
}
#ifdef VERBS_DEBUG
PrintPCIeTree(pcieRoot);
#endif
isInitialized = true;
}
return &pcieRoot;
}
// Finds the lowest common ancestor in PCIe tree between two nodes
static PCIeNode const* GetLcaBetweenNodes(PCIeNode const* root,
std::string const& node1Address,
std::string const& node2Address)
{
if (!root || root->address == node1Address || root->address == node2Address)
return root;
PCIeNode const* lcaFound1 = nullptr;
PCIeNode const* lcaFound2 = nullptr;
// Recursively iterate over children
for (auto const& child : root->children) {
PCIeNode const* lca = GetLcaBetweenNodes(&child, node1Address, node2Address);
if (!lca) continue;
if (!lcaFound1) {
// First time found
lcaFound1 = lca;
} else {
// Second time found
lcaFound2 = lca;
break;
}
}
// If two children were found, then current node is the lowest common ancestor
return (lcaFound1 && lcaFound2) ? root : lcaFound1;
}
// Gets the depth of an node in the PCIe tree
static int GetLcaDepth(std::string const& targetBusID,
PCIeNode const* const& node,
int depth = 0)
{
if (!node) return -1;
if (targetBusID == node->address) return depth;
for (auto const& child : node->children) {
int distance = GetLcaDepth(targetBusID, &child, depth + 1);
if (distance != -1)
return distance;
}
return -1;
}
// Function to extract the bus number from a PCIe address (domain:bus:device.function)
static int ExtractBusNumber(std::string const& pcieAddress)
{
int domain, bus, device, function;
char delimiter;
std::istringstream iss(pcieAddress);
iss >> std::hex >> domain >> delimiter >> bus >> delimiter >> device >> delimiter >> function;
if (iss.fail()) {
#ifdef VERBS_DEBUG
printf("Invalid PCIe address format: %s\n", pcieAddress.c_str());
#endif
return -1;
}
return bus;
}
// Function to compute the distance between two bus IDs
static int GetBusIdDistance(std::string const& pcieAddress1,
std::string const& pcieAddress2)
{
int bus1 = ExtractBusNumber(pcieAddress1);
int bus2 = ExtractBusNumber(pcieAddress2);
return (bus1 < 0 || bus2 < 0) ? -1 : std::abs(bus1 - bus2);
}
// Given a target busID and a set of candidate devices, returns a set of indices
// that is "closest" to the target
static std::set<int> GetNearestDevicesInTree(std::string const& targetBusId,
std::vector<std::string> const& candidateBusIdList)
{
int maxDepth = -1;
int minDistance = std::numeric_limits<int>::max();
std::set<int> matches = {};
// Loop over the candidates to find the ones with the lowest common ancestor (LCA)
for (int i = 0; i < candidateBusIdList.size(); i++) {
std::string const& candidateBusId = candidateBusIdList[i];
if (candidateBusId == "") continue;
PCIeNode const* lca = GetLcaBetweenNodes(GetPCIeTreeRoot(), targetBusId, candidateBusId);
if (!lca) continue;
int depth = GetLcaDepth(lca->address, GetPCIeTreeRoot());
int currDistance = GetBusIdDistance(targetBusId, candidateBusId);
// When more than one LCA match is found, choose the one with smallest busId difference
// NOTE: currDistance could be -1, which signals problem with parsing, however still
// remains a valid "closest" candidate, so is included
if (depth > maxDepth || (depth == maxDepth && depth >= 0 && currDistance < minDistance)) {
maxDepth = depth;
matches.clear();
matches.insert(i);
minDistance = currDistance;
} else if (depth == maxDepth && depth >= 0 && currDistance == minDistance) {
matches.insert(i);
}
}
return matches;
}
#endif // NIC_EXEC_ENABLED
#ifdef NIC_EXEC_ENABLED
// IB Verbs-related functions
//========================================================================================
// Create a queue pair
static ErrResult CreateQueuePair(ConfigOptions const& cfg,
struct ibv_pd* pd,
struct ibv_cq* cq,
struct ibv_qp*& qp)
{
// Set queue pair attributes
struct ibv_qp_init_attr attr = {};
attr.qp_type = IBV_QPT_RC; // Set type to reliable connection
attr.send_cq = cq; // Send completion queue
attr.recv_cq = cq; // Recv completion queue
attr.cap.max_send_wr = cfg.nic.maxSendWorkReq; // Max send work requests
attr.cap.max_recv_wr = cfg.nic.maxRecvWorkReq; // Max recv work requests
attr.cap.max_send_sge = 1; // Max send scatter-gather entries
attr.cap.max_recv_sge = 1; // Max recv scatter-gather entries
qp = ibv_create_qp(pd, &attr);
if (qp == NULL)
return {ERR_FATAL, "Error while creating QP"};
return ERR_NONE;
}
// Initialize a queue pair
static ErrResult InitQueuePair(struct ibv_qp* qp,
uint8_t port,
unsigned flags)
{
struct ibv_qp_attr attr = {}; // Clear all attributes
attr.qp_state = IBV_QPS_INIT; // Set the QP state to INIT
attr.pkey_index = 0; // Set the partition key index to 0
attr.port_num = port; // Set the port number to the defined IB_PORT
attr.qp_access_flags = flags; // Set the QP access flags to the provided flags
int ret = ibv_modify_qp(qp, &attr,
IBV_QP_STATE | // Modify the QP state
IBV_QP_PKEY_INDEX | // Modify the partition key index
IBV_QP_PORT | // Modify the port number
IBV_QP_ACCESS_FLAGS); // Modify the access flags
if (ret != 0)
return {ERR_FATAL, "Error during QP Init. IB Verbs Error code: %d", ret};
return ERR_NONE;
}
// Transition QueuePair to Ready to Receive State
static ErrResult TransitionQpToRtr(ibv_qp* qp,
uint16_t const& dlid,
uint32_t const& dqpn,
ibv_gid const& gid,
uint8_t const& gidIndex,
uint8_t const& port,
bool const& isRoCE,
ibv_mtu const& mtu)
{
// Prepare QP attributes
struct ibv_qp_attr attr = {};
attr.qp_state = IBV_QPS_RTR;
attr.path_mtu = mtu;
attr.rq_psn = 0;
attr.max_dest_rd_atomic = 1;
attr.min_rnr_timer = 12;
if (isRoCE) {
attr.ah_attr.is_global = 1;
attr.ah_attr.grh.dgid.global.subnet_prefix = gid.global.subnet_prefix;
attr.ah_attr.grh.dgid.global.interface_id = gid.global.interface_id;
attr.ah_attr.grh.flow_label = 0;
attr.ah_attr.grh.sgid_index = gidIndex;
attr.ah_attr.grh.hop_limit = 255;
} else {
attr.ah_attr.is_global = 0;
attr.ah_attr.dlid = dlid;
}
attr.ah_attr.sl = 0;
attr.ah_attr.src_path_bits = 0;
attr.ah_attr.port_num = port;
attr.dest_qp_num = dqpn;
// Modify the QP
int ret = ibv_modify_qp(qp, &attr,
IBV_QP_STATE |
IBV_QP_AV |
IBV_QP_PATH_MTU |
IBV_QP_DEST_QPN |
IBV_QP_RQ_PSN |
IBV_QP_MAX_DEST_RD_ATOMIC |
IBV_QP_MIN_RNR_TIMER);
if (ret != 0)
return {ERR_FATAL, "Error during QP RTR. IB Verbs Error code: %d", ret};
return ERR_NONE;
}
// Transition QueuePair to Ready to Send state
static ErrResult TransitionQpToRts(struct ibv_qp *qp)
{
struct ibv_qp_attr attr = {};
attr.qp_state = IBV_QPS_RTS;
attr.sq_psn = 0;
attr.timeout = 14;
attr.retry_cnt = 7;
attr.rnr_retry = 7;
attr.max_rd_atomic = 1;
int ret = ibv_modify_qp(qp, &attr,
IBV_QP_STATE |
IBV_QP_TIMEOUT |
IBV_QP_RETRY_CNT |
IBV_QP_RNR_RETRY |
IBV_QP_SQ_PSN |
IBV_QP_MAX_QP_RD_ATOMIC);
if (ret != 0)
return {ERR_FATAL, "Error during QP RTS. IB Verbs Error code: %d", ret};
return ERR_NONE;
}
static ErrResult PrepareNicTransferResources(ConfigOptions const& cfg,
ExeDevice const& srcExeDevice,
Transfer const& t,
TransferResources& rss)
{
// Switch to the closest NUMA node to this NIC
int numaNode = GetIbvDeviceList()[srcExeDevice.exeIndex].numaNode;
if (numaNode != -1)
numa_run_on_node(numaNode);
int const port = cfg.nic.ibPort;
// Figure out destination NIC (Accounts for possible remap due to use of EXE_NIC_NEAREST)
ExeDevice dstExeDevice;
ERR_CHECK(GetActualExecutor(cfg, {t.exeDevice.exeType, t.exeSubIndex}, dstExeDevice));
rss.srcNicIndex = srcExeDevice.exeIndex;
rss.dstNicIndex = dstExeDevice.exeIndex;
rss.qpCount = t.numSubExecs;
// Check for valid NICs and active ports
int numNics = GetNumExecutors(EXE_NIC);
if (rss.srcNicIndex < 0 || rss.srcNicIndex >= numNics)
return {ERR_FATAL, "SRC NIC index is out of range (%d)", rss.srcNicIndex};
if (rss.dstNicIndex < 0 || rss.dstNicIndex >= numNics)
return {ERR_FATAL, "DST NIC index is out of range (%d)", rss.dstNicIndex};
if (!GetIbvDeviceList()[rss.srcNicIndex].hasActivePort)
return {ERR_FATAL, "SRC NIC %d is not active\n", rss.srcNicIndex};
if (!GetIbvDeviceList()[rss.dstNicIndex].hasActivePort)
return {ERR_FATAL, "DST NIC %d is not active\n", rss.dstNicIndex};
// Queue pair flags
unsigned int rdmaAccessFlags = (IBV_ACCESS_LOCAL_WRITE |
IBV_ACCESS_REMOTE_READ |
IBV_ACCESS_REMOTE_WRITE |
IBV_ACCESS_REMOTE_ATOMIC);
unsigned int rdmaMemRegFlags = rdmaAccessFlags;
if (cfg.nic.useRelaxedOrder) rdmaMemRegFlags |= IBV_ACCESS_RELAXED_ORDERING;
// Open NIC contexts
IBV_PTR_CALL(rss.srcContext, ibv_open_device, GetIbvDeviceList()[rss.srcNicIndex].devicePtr);
IBV_PTR_CALL(rss.dstContext, ibv_open_device, GetIbvDeviceList()[rss.dstNicIndex].devicePtr);
// Open protection domains
IBV_PTR_CALL(rss.srcProtect, ibv_alloc_pd, rss.srcContext);
IBV_PTR_CALL(rss.dstProtect, ibv_alloc_pd, rss.dstContext);
// Register memory region
IBV_PTR_CALL(rss.srcMemRegion, ibv_reg_mr, rss.srcProtect, rss.srcMem[0], rss.numBytes, rdmaMemRegFlags);
IBV_PTR_CALL(rss.dstMemRegion, ibv_reg_mr, rss.dstProtect, rss.dstMem[0], rss.numBytes, rdmaMemRegFlags);
// Create completion queues
IBV_PTR_CALL(rss.srcCompQueue, ibv_create_cq, rss.srcContext, cfg.nic.queueSize, NULL, NULL, 0);
IBV_PTR_CALL(rss.dstCompQueue, ibv_create_cq, rss.dstContext, cfg.nic.queueSize, NULL, NULL, 0);
// Get port attributes
IBV_CALL(ibv_query_port, rss.srcContext, port, &rss.srcPortAttr);
IBV_CALL(ibv_query_port, rss.dstContext, port, &rss.dstPortAttr);
if (rss.srcPortAttr.link_layer != rss.dstPortAttr.link_layer)
return {ERR_FATAL, "SRC NIC (%d) and DST NIC (%d) do not have the same link layer", rss.srcNicIndex, rss.dstNicIndex};
// Prepare GID index
int srcGidIndex = cfg.nic.ibGidIndex;
int dstGidIndex = cfg.nic.ibGidIndex;
// Check for RDMA over Converged Ethernet (RoCE) and update GID index appropriately
bool isRoCE = (rss.srcPortAttr.link_layer == IBV_LINK_LAYER_ETHERNET);
if (isRoCE) {
// Try to auto-detect the GID index
std::pair<int, std::string> srcGidInfo (srcGidIndex, "");
std::pair<int, std::string> dstGidInfo (dstGidIndex, "");
ERR_CHECK(GetGidIndex(rss.srcContext, rss.srcPortAttr.gid_tbl_len, cfg.nic.ibPort, srcGidInfo));
ERR_CHECK(GetGidIndex(rss.dstContext, rss.dstPortAttr.gid_tbl_len, cfg.nic.ibPort, dstGidInfo));
srcGidIndex = srcGidInfo.first;
dstGidIndex = dstGidInfo.first;
IBV_CALL(ibv_query_gid, rss.srcContext, port, srcGidIndex, &rss.srcGid);
IBV_CALL(ibv_query_gid, rss.dstContext, port, dstGidIndex, &rss.dstGid);
}
// Prepare queue pairs and send elements
rss.srcQueuePairs.resize(rss.qpCount);
rss.dstQueuePairs.resize(rss.qpCount);
rss.sgePerQueuePair.resize(rss.qpCount);
rss.sendWorkRequests.resize(rss.qpCount);
for (int i = 0; i < rss.qpCount; ++i) {
// Create scatter-gather element for the portion of memory assigned to this queue pair
ibv_sge sg = {};
sg.addr = (uint64_t)rss.subExecParamCpu[i].src[0];
sg.length = rss.subExecParamCpu[i].N * sizeof(float);
sg.lkey = rss.srcMemRegion->lkey;
rss.sgePerQueuePair[i] = sg;
// Create send work request
ibv_send_wr wr = {};
wr.wr_id = i;
wr.sg_list = &rss.sgePerQueuePair[i];
wr.num_sge = 1;
wr.opcode = IBV_WR_RDMA_WRITE;
wr.send_flags = IBV_SEND_SIGNALED;
wr.wr.rdma.remote_addr = (uint64_t)rss.subExecParamCpu[i].dst[0];
wr.wr.rdma.rkey = rss.dstMemRegion->rkey;
rss.sendWorkRequests[i] = wr;
// Create SRC/DST queue pairs
ERR_CHECK(CreateQueuePair(cfg, rss.srcProtect, rss.srcCompQueue, rss.srcQueuePairs[i]));
ERR_CHECK(CreateQueuePair(cfg, rss.dstProtect, rss.dstCompQueue, rss.dstQueuePairs[i]));
// Initialize SRC/DST queue pairs
ERR_CHECK(InitQueuePair(rss.srcQueuePairs[i], port, rdmaAccessFlags));
ERR_CHECK(InitQueuePair(rss.dstQueuePairs[i], port, rdmaAccessFlags));
// Transition the SRC queue pair to ready to receive
ERR_CHECK(TransitionQpToRtr(rss.srcQueuePairs[i], rss.dstPortAttr.lid,
rss.dstQueuePairs[i]->qp_num, rss.dstGid,
dstGidIndex, port, isRoCE,
rss.srcPortAttr.active_mtu));
// Transition the SRC queue pair to ready to send
ERR_CHECK(TransitionQpToRts(rss.srcQueuePairs[i]));
// Transition the DST queue pair to ready to receive
ERR_CHECK(TransitionQpToRtr(rss.dstQueuePairs[i], rss.srcPortAttr.lid,
rss.srcQueuePairs[i]->qp_num, rss.srcGid,
srcGidIndex, port, isRoCE,
rss.dstPortAttr.active_mtu));
// Transition the DST queue pair to ready to send
ERR_CHECK(TransitionQpToRts(rss.dstQueuePairs[i]));
}
return ERR_NONE;
}
static ErrResult TeardownNicTransferResources(TransferResources& rss)
{
// Deregister memory regions
IBV_CALL(ibv_dereg_mr, rss.srcMemRegion);
IBV_CALL(ibv_dereg_mr, rss.dstMemRegion);
// Destroy queue pairs
for (auto srcQueuePair : rss.srcQueuePairs)
IBV_CALL(ibv_destroy_qp, srcQueuePair);
rss.srcQueuePairs.clear();
for (auto dstQueuePair : rss.dstQueuePairs)
IBV_CALL(ibv_destroy_qp, dstQueuePair);
rss.dstQueuePairs.clear();
// Destroy completion queues
IBV_CALL(ibv_destroy_cq, rss.srcCompQueue);
IBV_CALL(ibv_destroy_cq, rss.dstCompQueue);
// Deallocate protection domains
IBV_CALL(ibv_dealloc_pd, rss.srcProtect);
IBV_CALL(ibv_dealloc_pd, rss.dstProtect);
// Destroy context
IBV_CALL(ibv_close_device, rss.srcContext);
IBV_CALL(ibv_close_device, rss.dstContext);
return ERR_NONE;
}
#endif // NIC_EXEC_ENABLED
// Data validation-related functions
//========================================================================================
// Pseudo-random formula for each element in array
static __host__ float PrepSrcValue(int srcBufferIdx, size_t idx)
{
return (((idx % 383) * 517) % 383 + 31) * (srcBufferIdx + 1);
}
// Fills a pre-sized buffer with the pattern, based on which src index buffer
// Note: Can also generate expected dst buffer
static void PrepareReference(ConfigOptions const& cfg, std::vector<float>& cpuBuffer, int bufferIdx)
{
size_t N = cpuBuffer.size();
// Source buffer
if (bufferIdx >= 0) {
// Use fill pattern if specified
size_t patternLen = cfg.data.fillPattern.size();
if (patternLen > 0) {
size_t copies = N / patternLen;
size_t leftOver = N % patternLen;
float* cpuBufferPtr = cpuBuffer.data();
for (int i = 0; i < copies; i++) {
memcpy(cpuBufferPtr, cfg.data.fillPattern.data(), patternLen * sizeof(float));
cpuBufferPtr += patternLen;
}
if (leftOver)
memcpy(cpuBufferPtr, cfg.data.fillPattern.data(), leftOver * sizeof(float));
} else {
for (size_t i = 0; i < N; ++i)
cpuBuffer[i] = PrepSrcValue(bufferIdx, i);
}
} else { // Destination buffer
int numSrcs = -bufferIdx - 1;
if (numSrcs == 0) {
// Note: 0x75757575 = 13323083.0
memset(cpuBuffer.data(), MEMSET_CHAR, N * sizeof(float));
} else {
PrepareReference(cfg, cpuBuffer, 0);
if (numSrcs > 1) {
std::vector<float> temp(N);
for (int i = 1; i < numSrcs; i++) {
PrepareReference(cfg, temp, i);
for (int j = 0; j < N; j++) {
cpuBuffer[i] += temp[i];
}
}
}
}
}
}
// Checks that destination buffers match expected values
static ErrResult ValidateAllTransfers(ConfigOptions const& cfg,
vector<Transfer> const& transfers,
vector<TransferResources*> const& transferResources,
vector<vector<float>> const& dstReference,
vector<float>& outputBuffer)
{
float* output;
size_t initOffset = cfg.data.byteOffset / sizeof(float);
for (auto rss : transferResources) {
int transferIdx = rss->transferIdx;
Transfer const& t = transfers[transferIdx];
size_t N = t.numBytes / sizeof(float);
float const* expected = dstReference[t.srcs.size()].data();
for (int dstIdx = 0; dstIdx < rss->dstMem.size(); dstIdx++) {
if (IsCpuMemType(t.dsts[dstIdx].memType) || cfg.data.validateDirect) {
output = (rss->dstMem[dstIdx]) + initOffset;
} else {
ERR_CHECK(hipMemcpy(outputBuffer.data(), (rss->dstMem[dstIdx]) + initOffset, t.numBytes, hipMemcpyDefault));
ERR_CHECK(hipDeviceSynchronize());
output = outputBuffer.data();
}
if (memcmp(output, expected, t.numBytes)) {
// Difference found - find first error
for (size_t i = 0; i < N; i++) {
if (output[i] != expected[i]) {
return {ERR_FATAL, "Transfer %d: Unexpected mismatch at index %lu of destination %d: Expected %10.5f Actual: %10.5f",
transferIdx, i, dstIdx, expected[i], output[i]};
}
}
return {ERR_FATAL, "Transfer %d: Unexpected output mismatch for destination %d", transferIdx, dstIdx};
}
}
}
return ERR_NONE;
}
// Preparation-related functions
//========================================================================================
// Prepares input parameters for each subexecutor
// Determines how sub-executors will split up the work
// Initializes counters
static ErrResult PrepareSubExecParams(ConfigOptions const& cfg,
Transfer const& transfer,
TransferResources& rss)
{
// Each subExecutor needs to know src/dst pointers and how many elements to transfer
// Figure out the sub-array each subExecutor works on for this Transfer
// - Partition N as evenly as possible, but try to keep subarray sizes as multiples of data.blockBytes
// except the very last one, for alignment reasons
size_t const N = transfer.numBytes / sizeof(float);
int const initOffset = cfg.data.byteOffset / sizeof(float);
int const targetMultiple = cfg.data.blockBytes / sizeof(float);
// In some cases, there may not be enough data for all subExectors
int const maxSubExecToUse = std::min((size_t)(N + targetMultiple - 1) / targetMultiple,
(size_t)transfer.numSubExecs);
vector<SubExecParam>& subExecParam = rss.subExecParamCpu;
subExecParam.clear();
subExecParam.resize(transfer.numSubExecs);
size_t assigned = 0;
for (int i = 0; i < transfer.numSubExecs; ++i) {
SubExecParam& p = subExecParam[i];
p.numSrcs = rss.srcMem.size();
p.numDsts = rss.dstMem.size();
p.startCycle = 0;
p.stopCycle = 0;
p.hwId = 0;
p.xccId = 0;
// In single team mode, subexecutors stripe across the entire array
if (cfg.gfx.useSingleTeam && transfer.exeDevice.exeType == EXE_GPU_GFX) {
p.N = N;
p.teamSize = transfer.numSubExecs;
p.teamIdx = i;
for (int iSrc = 0; iSrc < p.numSrcs; ++iSrc) p.src[iSrc] = rss.srcMem[iSrc] + initOffset;
for (int iDst = 0; iDst < p.numDsts; ++iDst) p.dst[iDst] = rss.dstMem[iDst] + initOffset;
} else {
// Otherwise, each subexecutor works on separate subarrays
int const subExecLeft = std::max(0, maxSubExecToUse - i);
size_t const leftover = N - assigned;
size_t const roundedN = (leftover + targetMultiple - 1) / targetMultiple;
p.N = subExecLeft ? std::min(leftover, ((roundedN / subExecLeft) * targetMultiple)) : 0;
p.teamSize = 1;
p.teamIdx = 0;
for (int iSrc = 0; iSrc < p.numSrcs; ++iSrc) p.src[iSrc] = rss.srcMem[iSrc] + initOffset + assigned;
for (int iDst = 0; iDst < p.numDsts; ++iDst) p.dst[iDst] = rss.dstMem[iDst] + initOffset + assigned;
assigned += p.N;
}
p.preferredXccId = transfer.exeSubIndex;
// Override if XCC table has been specified
vector<vector<int>> const& table = cfg.gfx.prefXccTable;
if (transfer.exeDevice.exeType == EXE_GPU_GFX && transfer.exeSubIndex == -1 && !table.empty() &&
transfer.dsts.size() == 1 && IsGpuMemType(transfer.dsts[0].memType)) {
if (table.size() <= transfer.exeDevice.exeIndex ||
table[transfer.exeDevice.exeIndex].size() <= transfer.dsts[0].memIndex) {
return {ERR_FATAL, "[gfx.xccPrefTable] is too small"};
}
p.preferredXccId = table[transfer.exeDevice.exeIndex][transfer.dsts[0].memIndex];
if (p.preferredXccId < 0 || p.preferredXccId >= GetNumExecutorSubIndices(transfer.exeDevice)) {
return {ERR_FATAL, "[gfx.xccPrefTable] defines out-of-bound XCC index %d", p.preferredXccId};
}
}
}
// Clear counters
rss.totalDurationMsec = 0.0;
return ERR_NONE;
}
// Prepare each executor
// Allocates memory for src/dst, prepares subexecutors, executor-specific data structures
static ErrResult PrepareExecutor(ConfigOptions const& cfg,
vector<Transfer> const& transfers,
ExeDevice const& exeDevice,
ExeInfo& exeInfo)
{
exeInfo.totalDurationMsec = 0.0;
// Loop over each transfer this executor is involved in
for (auto& rss : exeInfo.resources) {
Transfer const& t = transfers[rss.transferIdx];
rss.numBytes = t.numBytes;
// Allocate source memory
rss.srcMem.resize(t.srcs.size());
for (int iSrc = 0; iSrc < t.srcs.size(); ++iSrc) {
MemDevice const& srcMemDevice = t.srcs[iSrc];
// Ensure executing GPU can access source memory
if (IsGpuExeType(exeDevice.exeType) && IsGpuMemType(srcMemDevice.memType) &&
srcMemDevice.memIndex != exeDevice.exeIndex) {
ERR_CHECK(EnablePeerAccess(exeDevice.exeIndex, srcMemDevice.memIndex));
}
ERR_CHECK(AllocateMemory(srcMemDevice, t.numBytes + cfg.data.byteOffset, (void**)&rss.srcMem[iSrc]));
}
// Allocate destination memory
rss.dstMem.resize(t.dsts.size());
for (int iDst = 0; iDst < t.dsts.size(); ++iDst) {
MemDevice const& dstMemDevice = t.dsts[iDst];
// Ensure executing GPU can access destination memory
if (IsGpuExeType(exeDevice.exeType) && IsGpuMemType(dstMemDevice.memType) &&
dstMemDevice.memIndex != exeDevice.exeIndex) {
ERR_CHECK(EnablePeerAccess(exeDevice.exeIndex, dstMemDevice.memIndex));
}
ERR_CHECK(AllocateMemory(dstMemDevice, t.numBytes + cfg.data.byteOffset, (void**)&rss.dstMem[iDst]));
}
if (exeDevice.exeType == EXE_GPU_DMA && (t.exeSubIndex != -1 || cfg.dma.useHsaCopy)) {
#if !defined(__NVCC__)
// Collect HSA agent information
hsa_amd_pointer_info_t info;
info.size = sizeof(info);
ERR_CHECK(hsa_amd_pointer_info(rss.dstMem[0], &info, NULL, NULL, NULL));
rss.dstAgent = info.agentOwner;
ERR_CHECK(hsa_amd_pointer_info(rss.srcMem[0], &info, NULL, NULL, NULL));
rss.srcAgent = info.agentOwner;
// Create HSA completion signal
ERR_CHECK(hsa_signal_create(1, 0, NULL, &rss.signal));
if (t.exeSubIndex != -1)
rss.sdmaEngineId = (hsa_amd_sdma_engine_id_t)(1U << t.exeSubIndex);
#endif
}
// Prepare subexecutor parameters
ERR_CHECK(PrepareSubExecParams(cfg, t, rss));
}
// Prepare additional requirements for GPU-based executors
if (exeDevice.exeType == EXE_GPU_GFX || exeDevice.exeType == EXE_GPU_DMA) {
ERR_CHECK(hipSetDevice(exeDevice.exeIndex));
// Determine how many streams to use
int const numStreamsToUse = (exeDevice.exeType == EXE_GPU_DMA ||
(exeDevice.exeType == EXE_GPU_GFX && cfg.gfx.useMultiStream))
? exeInfo.resources.size() : 1;
exeInfo.streams.resize(numStreamsToUse);
// Create streams
for (int i = 0; i < numStreamsToUse; ++i) {
if (cfg.gfx.cuMask.size()) {
#if !defined(__NVCC__)
ERR_CHECK(hipExtStreamCreateWithCUMask(&exeInfo.streams[i], cfg.gfx.cuMask.size(),
cfg.gfx.cuMask.data()));
#else
return {ERR_FATAL, "CU Masking in not supported on NVIDIA hardware"};
#endif
} else {
ERR_CHECK(hipStreamCreate(&exeInfo.streams[i]));
}
}
if (cfg.gfx.useHipEvents || cfg.dma.useHipEvents) {
exeInfo.startEvents.resize(numStreamsToUse);
exeInfo.stopEvents.resize(numStreamsToUse);
for (int i = 0; i < numStreamsToUse; ++i) {
ERR_CHECK(hipEventCreate(&exeInfo.startEvents[i]));
ERR_CHECK(hipEventCreate(&exeInfo.stopEvents[i]));
}
}
}
// Prepare for GPU GFX executor
if (exeDevice.exeType == EXE_GPU_GFX) {
// Allocate one contiguous chunk of GPU memory for threadblock parameters
// This allows support for executing one transfer per stream, or all transfers in a single stream
#if !defined(__NVCC__)
MemType memType = MEM_GPU; // AMD hardware can directly access GPU memory from host
#else
MemType memType = MEM_MANAGED; // NVIDIA hardware requires managed memory to access from host
#endif
ERR_CHECK(AllocateMemory({memType, exeDevice.exeIndex}, exeInfo.totalSubExecs * sizeof(SubExecParam),
(void**)&exeInfo.subExecParamGpu));
// Create subexecutor parameter array for entire executor
exeInfo.subExecParamCpu.clear();
exeInfo.numSubIndices = GetNumExecutorSubIndices(exeDevice);
#if defined(__NVCC__)
exeInfo.wallClockRate = 1000000;
#else
ERR_CHECK(hipDeviceGetAttribute(&exeInfo.wallClockRate, hipDeviceAttributeWallClockRate,
exeDevice.exeIndex));
#endif
int transferOffset = 0;
if (cfg.gfx.useMultiStream || cfg.gfx.blockOrder == 0) {
// Threadblocks are ordered sequentially one transfer at a time
for (auto& rss : exeInfo.resources) {
Transfer const& t = transfers[rss.transferIdx];
rss.subExecParamGpuPtr = exeInfo.subExecParamGpu + transferOffset;
for (auto p : rss.subExecParamCpu) {
rss.subExecIdx.push_back(exeInfo.subExecParamCpu.size());
exeInfo.subExecParamCpu.push_back(p);
transferOffset++;
}
}
} else if (cfg.gfx.blockOrder == 1) {
// Interleave threadblocks of different Transfers
for (int subExecIdx = 0; exeInfo.subExecParamCpu.size() < exeInfo.totalSubExecs; ++subExecIdx) {
for (auto& rss : exeInfo.resources) {
Transfer const& t = transfers[rss.transferIdx];
if (subExecIdx < t.numSubExecs) {
rss.subExecIdx.push_back(exeInfo.subExecParamCpu.size());
exeInfo.subExecParamCpu.push_back(rss.subExecParamCpu[subExecIdx]);
}
}
}
} else if (cfg.gfx.blockOrder == 2) {
// Build randomized threadblock list
std::vector<std::pair<int,int>> indices;
for (int i = 0; i < exeInfo.resources.size(); i++) {
auto const& rss = exeInfo.resources[i];
Transfer const& t = transfers[rss.transferIdx];
for (int j = 0; j < t.numSubExecs; j++)
indices.push_back(std::make_pair(i,j));
}
std::random_device rd;
std::default_random_engine gen(rd());
std::shuffle(indices.begin(), indices.end(), gen);
// Build randomized threadblock list
for (auto p : indices) {
auto& rss = exeInfo.resources[p.first];
rss.subExecIdx.push_back(exeInfo.subExecParamCpu.size());
exeInfo.subExecParamCpu.push_back(rss.subExecParamCpu[p.second]);
}
}
// Copy sub executor parameters to GPU
ERR_CHECK(hipSetDevice(exeDevice.exeIndex));
ERR_CHECK(hipMemcpy(exeInfo.subExecParamGpu,
exeInfo.subExecParamCpu.data(),
exeInfo.totalSubExecs * sizeof(SubExecParam),
hipMemcpyHostToDevice));
ERR_CHECK(hipDeviceSynchronize());
}
// Prepare for NIC-based executors
if (IsNicExeType(exeDevice.exeType)) {
#ifdef NIC_EXEC_ENABLED
for (auto& rss : exeInfo.resources) {
Transfer const& t = transfers[rss.transferIdx];
ERR_CHECK(PrepareNicTransferResources(cfg, exeDevice, t, rss));
}
#else
return {ERR_FATAL, "RDMA executor is not supported"};
#endif
}
return ERR_NONE;
}
// Teardown-related functions
//========================================================================================
// Clean up all resources
static ErrResult TeardownExecutor(ConfigOptions const& cfg,
ExeDevice const& exeDevice,
vector<Transfer> const& transfers,
ExeInfo& exeInfo)
{
// Loop over each transfer this executor is involved in
for (auto& rss : exeInfo.resources) {
Transfer const& t = transfers[rss.transferIdx];
// Deallocate source memory
for (int iSrc = 0; iSrc < t.srcs.size(); ++iSrc) {
ERR_CHECK(DeallocateMemory(t.srcs[iSrc].memType, rss.srcMem[iSrc], t.numBytes + cfg.data.byteOffset));
}
// Deallocate destination memory
for (int iDst = 0; iDst < t.dsts.size(); ++iDst) {
ERR_CHECK(DeallocateMemory(t.dsts[iDst].memType, rss.dstMem[iDst], t.numBytes + cfg.data.byteOffset));
}
// Destroy HSA signal for DMA executor
#if !defined(__NVCC__)
if (exeDevice.exeType == EXE_GPU_DMA && (t.exeSubIndex != -1 || cfg.dma.useHsaCopy)) {
ERR_CHECK(hsa_signal_destroy(rss.signal));
}
#endif
// Destroy NIC related resources
#ifdef NIC_EXEC_ENABLED
if (IsNicExeType(exeDevice.exeType)) {
ERR_CHECK(TeardownNicTransferResources(rss));
}
#endif
}
// Teardown additional requirements for GPU-based executors
if (exeDevice.exeType == EXE_GPU_GFX || exeDevice.exeType == EXE_GPU_DMA) {
for (auto stream : exeInfo.streams)
ERR_CHECK(hipStreamDestroy(stream));
if (cfg.gfx.useHipEvents || cfg.dma.useHipEvents) {
for (auto event : exeInfo.startEvents)
ERR_CHECK(hipEventDestroy(event));
for (auto event : exeInfo.stopEvents)
ERR_CHECK(hipEventDestroy(event));
}
}
if (exeDevice.exeType == EXE_GPU_GFX) {
#if !defined(__NVCC__)
MemType memType = MEM_GPU;
#else
MemType memType = MEM_MANAGED;
#endif
ERR_CHECK(DeallocateMemory(memType, exeInfo.subExecParamGpu, exeInfo.totalSubExecs * sizeof(SubExecParam)));
}
return ERR_NONE;
}
// CPU Executor-related functions
//========================================================================================
// Kernel for CPU execution (run by a single subexecutor)
static void CpuReduceKernel(SubExecParam const& p, int numSubIterations)
{
if (p.N == 0) return;
int subIteration = 0;
do {
int const& numSrcs = p.numSrcs;
int const& numDsts = p.numDsts;
if (numSrcs == 0) {
for (int i = 0; i < numDsts; ++i) {
memset(p.dst[i], MEMSET_CHAR, p.N * sizeof(float));
//for (int j = 0; j < p.N; j++) p.dst[i][j] = MEMSET_VAL;
}
} else if (numSrcs == 1) {
float const* __restrict__ src = p.src[0];
if (numDsts == 0) {
float sum = 0.0;
for (int j = 0; j < p.N; j++)
sum += p.src[0][j];
// Add a dummy check to ensure the read is not optimized out
if (sum != sum) {
printf("[ERROR] Nan detected\n");
}
} else {
for (int i = 0; i < numDsts; ++i)
memcpy(p.dst[i], src, p.N * sizeof(float));
}
} else {
float sum = 0.0f;
for (int j = 0; j < p.N; j++) {
sum = p.src[0][j];
for (int i = 1; i < numSrcs; i++) sum += p.src[i][j];
for (int i = 0; i < numDsts; i++) p.dst[i][j] = sum;
}
}
} while (++subIteration != numSubIterations);
}
// Execution of a single CPU Transfers
static void ExecuteCpuTransfer(int const iteration,
ConfigOptions const& cfg,
int const exeIndex,
TransferResources& rss)
{
auto cpuStart = std::chrono::high_resolution_clock::now();
vector<std::thread> childThreads;
for (auto const& subExecParam : rss.subExecParamCpu)
childThreads.emplace_back(std::thread(CpuReduceKernel, std::cref(subExecParam), cfg.general.numSubIterations));
for (auto& subExecThread : childThreads)
subExecThread.join();
childThreads.clear();
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double deltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
if (iteration >= 0) {
rss.totalDurationMsec += deltaMsec;
if (cfg.general.recordPerIteration)
rss.perIterMsec.push_back(deltaMsec);
}
}
// Execution of a single CPU executor
static ErrResult RunCpuExecutor(int const iteration,
ConfigOptions const& cfg,
int const exeIndex,
ExeInfo& exeInfo)
{
numa_run_on_node(exeIndex);
auto cpuStart = std::chrono::high_resolution_clock::now();
vector<std::thread> asyncTransfers;
for (auto& rss : exeInfo.resources) {
asyncTransfers.emplace_back(std::thread(ExecuteCpuTransfer,
iteration,
std::cref(cfg),
exeIndex,
std::ref(rss)));
}
for (auto& asyncTransfer : asyncTransfers)
asyncTransfer.join();
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double deltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
if (iteration >= 0)
exeInfo.totalDurationMsec += deltaMsec;
return ERR_NONE;
}
#ifdef NIC_EXEC_ENABLED
// Execution of a single NIC Transfer
static ErrResult ExecuteNicTransfer(int const iteration,
ConfigOptions const& cfg,
int const exeIndex,
TransferResources& rss)
{
// Loop over each of the queue pairs and post the send
ibv_send_wr* badWorkReq;
for (int qpIndex = 0; qpIndex < rss.qpCount; qpIndex++) {
int error = ibv_post_send(rss.srcQueuePairs[qpIndex], &rss.sendWorkRequests[qpIndex], &badWorkReq);
if (error)
return {ERR_FATAL, "Transfer %d: Error when calling ibv_post_send for QP %d Error code %d\n",
rss.transferIdx, qpIndex, error};
}
return ERR_NONE;
}
// Execution of a single NIC executor
static ErrResult RunNicExecutor(int const iteration,
ConfigOptions const& cfg,
int const exeIndex,
ExeInfo& exeInfo)
{
// Switch to the closest NUMA node to this NIC
if (cfg.nic.useNuma) {
int numaNode = GetIbvDeviceList()[exeIndex].numaNode;
if (numaNode != -1)
numa_run_on_node(numaNode);
}
int subIterations = 0;
do {
auto cpuStart = std::chrono::high_resolution_clock::now();
size_t completedTransfers = 0;
auto transferCount = exeInfo.resources.size();
std::vector<uint8_t> receivedQPs(transferCount);
std::vector<std::chrono::high_resolution_clock::time_point> transferTimers(transferCount);
// post the sends
for (auto i = 0; i < transferCount; i++) {
transferTimers[i] = std::chrono::high_resolution_clock::now();
ERR_CHECK(ExecuteNicTransfer(iteration, cfg, exeIndex, exeInfo.resources[i]));
}
// poll for completions
do {
for (auto i = 0; i < transferCount; i++) {
if(receivedQPs[i] < exeInfo.resources[i].qpCount) {
auto& rss = exeInfo.resources[i];
// Poll the completion queue until all queue pairs are complete
// The order of completion doesn't matter because this completion queue is dedicated to this Transfer
ibv_wc wc;
int nc = ibv_poll_cq(rss.srcCompQueue, 1, &wc);
if (nc > 0) {
receivedQPs[i]++;
if (wc.status != IBV_WC_SUCCESS) {
return {ERR_FATAL, "Transfer %d: Received unsuccessful work completion", rss.transferIdx};
}
} else if (nc < 0) {
return {ERR_FATAL, "Transfer %d: Received negative work completion", rss.transferIdx};
}
if(receivedQPs[i] == rss.qpCount) {
auto cpuDelta = std::chrono::high_resolution_clock::now() - transferTimers[i];
double deltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
if (iteration >= 0) {
rss.totalDurationMsec += deltaMsec;
if (cfg.general.recordPerIteration)
rss.perIterMsec.push_back(deltaMsec);
}
completedTransfers++;
}
}
}
} while(completedTransfers < transferCount);
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double deltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
if (iteration >= 0)
exeInfo.totalDurationMsec += deltaMsec;
} while(++subIterations < cfg.general.numSubIterations);
return ERR_NONE;
}
#endif
// GFX Executor-related functions
//========================================================================================
// Converts register value to a CU/SM index
static uint32_t GetId(uint32_t hwId)
{
#if defined(__NVCC_)
return hwId;
#else
// Based on instinct-mi200-cdna2-instruction-set-architecture.pdf
int const shId = (hwId >> 12) & 1;
int const cuId = (hwId >> 8) & 15;
int const seId = (hwId >> 13) & 3;
return (shId << 5) + (cuId << 2) + seId;
#endif
}
// Device level timestamp function
__device__ int64_t GetTimestamp()
{
#if defined(__NVCC__)
int64_t result;
asm volatile("mov.u64 %0, %%globaltimer;" : "=l"(result));
return result;
#else
return wall_clock64();
#endif
}
// Helper function for memset
template <typename T> __device__ __forceinline__ T MemsetVal();
template <> __device__ __forceinline__ float MemsetVal(){ return MEMSET_VAL; };
template <> __device__ __forceinline__ float2 MemsetVal(){ return make_float2(MEMSET_VAL,
MEMSET_VAL); };
template <> __device__ __forceinline__ float4 MemsetVal(){ return make_float4(MEMSET_VAL,
MEMSET_VAL,
MEMSET_VAL,
MEMSET_VAL); }
// Helper function for temporal/non-temporal reads / writes
#define TEMPORAL_NONE 0
#define TEMPORAL_LOAD 1
#define TEMPORAL_STORE 2
#define TEMPORAL_BOTH 3
template <int TEMPORAL_MODE>
__device__ __forceinline__ void Load(float const* src, float& dst) {
if (TEMPORAL_MODE & TEMPORAL_LOAD) {
#if !defined(__NVCC__)
dst = __builtin_nontemporal_load(src);
#endif
} else {
dst = *src;
}
}
template <int TEMPORAL_MODE>
__device__ __forceinline__ void Load(float2 const* src, float2& dst) {
if (TEMPORAL_MODE & TEMPORAL_LOAD) {
#if !defined(__NVCC__)
dst.x = __builtin_nontemporal_load(&(src->x));
dst.y = __builtin_nontemporal_load(&(src->y));
#endif
} else {
dst = *src;
}
}
template <int TEMPORAL_MODE>
__device__ __forceinline__ void Load(float4 const* src, float4& dst) {
if (TEMPORAL_MODE & TEMPORAL_LOAD) {
#if !defined(__NVCC__)
dst.x = __builtin_nontemporal_load(&(src->x));
dst.y = __builtin_nontemporal_load(&(src->y));
dst.z = __builtin_nontemporal_load(&(src->z));
dst.w = __builtin_nontemporal_load(&(src->w));
#endif
} else {
dst = *src;
}
}
template <int TEMPORAL_MODE>
__device__ __forceinline__ void Store(float const& src, float* dst) {
if (TEMPORAL_MODE & TEMPORAL_STORE) {
#if !defined(__NVCC__)
__builtin_nontemporal_store(src, dst);
#endif
} else {
*dst = src;
}
}
template <int TEMPORAL_MODE>
__device__ __forceinline__ void Store(float2 const& src, float2* dst) {
if (TEMPORAL_MODE & TEMPORAL_STORE) {
#if !defined(__NVCC__)
__builtin_nontemporal_store(src.x, &(dst->x));
__builtin_nontemporal_store(src.y, &(dst->y));
#endif
} else {
*dst = src;
}
}
template <int TEMPORAL_MODE>
__device__ __forceinline__ void Store(float4 const& src, float4* dst) {
if (TEMPORAL_MODE & TEMPORAL_STORE) {
#if !defined(__NVCC__)
__builtin_nontemporal_store(src.x, &(dst->x));
__builtin_nontemporal_store(src.y, &(dst->y));
__builtin_nontemporal_store(src.z, &(dst->z));
__builtin_nontemporal_store(src.w, &(dst->w));
#endif
} else {
*dst = src;
}
}
// Kernel for GFX execution
template <typename PACKED_FLOAT, int BLOCKSIZE, int UNROLL, int TEMPORAL_MODE>
__global__ void __launch_bounds__(BLOCKSIZE)
GpuReduceKernel(SubExecParam* params, int waveOrder, int numSubIterations)
{
int64_t startCycle;
if (threadIdx.x == 0) startCycle = GetTimestamp();
SubExecParam& p = params[blockIdx.y];
// Filter by XCC
#if !defined(__NVCC__)
int32_t xccId;
GetXccId(xccId);
if (p.preferredXccId != -1 && xccId != p.preferredXccId) return;
#endif
// Collect data information
int32_t const numSrcs = p.numSrcs;
int32_t const numDsts = p.numDsts;
PACKED_FLOAT const* __restrict__ srcFloatPacked[MAX_SRCS];
PACKED_FLOAT* __restrict__ dstFloatPacked[MAX_DSTS];
for (int i = 0; i < numSrcs; i++) srcFloatPacked[i] = (PACKED_FLOAT const*)p.src[i];
for (int i = 0; i < numDsts; i++) dstFloatPacked[i] = (PACKED_FLOAT*)p.dst[i];
// Operate on wavefront granularity
int32_t const nTeams = p.teamSize; // Number of threadblocks working together on this subarray
int32_t const teamIdx = p.teamIdx; // Index of this threadblock within the team
int32_t const nWaves = BLOCKSIZE / warpSize; // Number of wavefronts within this threadblock
int32_t const waveIdx = threadIdx.x / warpSize; // Index of this wavefront within the threadblock
int32_t const tIdx = threadIdx.x % warpSize; // Thread index within wavefront
size_t const numPackedFloat = p.N / (sizeof(PACKED_FLOAT)/sizeof(float));
int32_t teamStride, waveStride, unrlStride, teamStride2, waveStride2;
switch (waveOrder) {
case 0: /* U,W,C */ unrlStride = 1; waveStride = UNROLL; teamStride = UNROLL * nWaves; teamStride2 = nWaves; waveStride2 = 1 ; break;
case 1: /* U,C,W */ unrlStride = 1; teamStride = UNROLL; waveStride = UNROLL * nTeams; teamStride2 = 1; waveStride2 = nTeams; break;
case 2: /* W,U,C */ waveStride = 1; unrlStride = nWaves; teamStride = nWaves * UNROLL; teamStride2 = nWaves; waveStride2 = 1 ; break;
case 3: /* W,C,U */ waveStride = 1; teamStride = nWaves; unrlStride = nWaves * nTeams; teamStride2 = nWaves; waveStride2 = 1 ; break;
case 4: /* C,U,W */ teamStride = 1; unrlStride = nTeams; waveStride = nTeams * UNROLL; teamStride2 = 1; waveStride2 = nTeams; break;
case 5: /* C,W,U */ teamStride = 1; waveStride = nTeams; unrlStride = nTeams * nWaves; teamStride2 = 1; waveStride2 = nTeams; break;
}
int subIterations = 0;
while (1) {
// First loop: Each wavefront in the team works on UNROLL PACKED_FLOAT per thread
size_t const loop1Stride = nTeams * nWaves * UNROLL * warpSize;
size_t const loop1Limit = numPackedFloat / loop1Stride * loop1Stride;
{
PACKED_FLOAT val[UNROLL];
PACKED_FLOAT tmp[UNROLL];
if (numSrcs == 0) {
#pragma unroll
for (int u = 0; u < UNROLL; u++)
val[u] = MemsetVal<PACKED_FLOAT>();
}
for (size_t idx = (teamIdx * teamStride + waveIdx * waveStride) * warpSize + tIdx; idx < loop1Limit; idx += loop1Stride) {
// Read sources into memory and accumulate in registers
if (numSrcs) {
#pragma unroll
for (int u = 0; u < UNROLL; u++)
Load<TEMPORAL_MODE>(&srcFloatPacked[0][idx + u * unrlStride * warpSize], val[u]);
for (int s = 1; s < numSrcs; s++) {
#pragma unroll
for (int u = 0; u < UNROLL; u++)
Load<TEMPORAL_MODE>(&srcFloatPacked[s][idx + u * unrlStride * warpSize], tmp[u]);
#pragma unroll
for (int u = 0; u < UNROLL; u++)
val[u] += tmp[u];
}
}
// Write accumulation to all outputs
for (int d = 0; d < numDsts; d++) {
#pragma unroll
for (int u = 0; u < UNROLL; u++)
Store<TEMPORAL_MODE>(val[u], &dstFloatPacked[d][idx + u * unrlStride * warpSize]);
}
}
}
// Second loop: Deal with remaining PACKED_FLOAT
{
if (loop1Limit < numPackedFloat) {
PACKED_FLOAT val, tmp;
if (numSrcs == 0) val = MemsetVal<PACKED_FLOAT>();
size_t const loop2Stride = nTeams * nWaves * warpSize;
for (size_t idx = loop1Limit + (teamIdx * teamStride2 + waveIdx * waveStride2) * warpSize + tIdx;
idx < numPackedFloat; idx += loop2Stride) {
if (numSrcs) {
Load<TEMPORAL_MODE>(&srcFloatPacked[0][idx], val);
for (int s = 1; s < numSrcs; s++) {
Load<TEMPORAL_MODE>(&srcFloatPacked[s][idx], tmp);
val += tmp;
}
}
for (int d = 0; d < numDsts; d++)
Store<TEMPORAL_MODE>(val, &dstFloatPacked[d][idx]);
}
}
}
// Third loop; Deal with remaining floats
{
if (numPackedFloat * (sizeof(PACKED_FLOAT)/sizeof(float)) < p.N) {
float val, tmp;
if (numSrcs == 0) val = MemsetVal<float>();
size_t const loop3Stride = nTeams * nWaves * warpSize;
for (size_t idx = numPackedFloat * (sizeof(PACKED_FLOAT)/sizeof(float)) + (teamIdx * teamStride2 + waveIdx * waveStride2) * warpSize + tIdx; idx < p.N; idx += loop3Stride) {
if (numSrcs) {
Load<TEMPORAL_MODE>(&p.src[0][idx], val);
for (int s = 1; s < numSrcs; s++) {
Load<TEMPORAL_MODE>(&p.src[s][idx], tmp);
val += tmp;
}
}
for (int d = 0; d < numDsts; d++)
Store<TEMPORAL_MODE>(val, &p.dst[d][idx]);
}
}
}
if (++subIterations == numSubIterations) break;
}
// Wait for all threads to finish
__syncthreads();
if (threadIdx.x == 0) {
__threadfence_system();
p.stopCycle = GetTimestamp();
p.startCycle = startCycle;
GetHwId(p.hwId);
GetXccId(p.xccId);
}
}
#define GPU_KERNEL_TEMPORAL_DECL(BLOCKSIZE, UNROLL, DWORD) \
{GpuReduceKernel<DWORD, BLOCKSIZE, UNROLL, TEMPORAL_NONE>, \
GpuReduceKernel<DWORD, BLOCKSIZE, UNROLL, TEMPORAL_LOAD>, \
GpuReduceKernel<DWORD, BLOCKSIZE, UNROLL, TEMPORAL_STORE>, \
GpuReduceKernel<DWORD, BLOCKSIZE, UNROLL, TEMPORAL_BOTH>}
#define GPU_KERNEL_DWORD_DECL(BLOCKSIZE, UNROLL) \
{GPU_KERNEL_TEMPORAL_DECL(BLOCKSIZE, UNROLL, float), \
GPU_KERNEL_TEMPORAL_DECL(BLOCKSIZE, UNROLL, float2), \
GPU_KERNEL_TEMPORAL_DECL(BLOCKSIZE, UNROLL, float4)}
#define GPU_KERNEL_UNROLL_DECL(BLOCKSIZE) \
{GPU_KERNEL_DWORD_DECL(BLOCKSIZE, 1), \
GPU_KERNEL_DWORD_DECL(BLOCKSIZE, 2), \
GPU_KERNEL_DWORD_DECL(BLOCKSIZE, 3), \
GPU_KERNEL_DWORD_DECL(BLOCKSIZE, 4), \
GPU_KERNEL_DWORD_DECL(BLOCKSIZE, 5), \
GPU_KERNEL_DWORD_DECL(BLOCKSIZE, 6), \
GPU_KERNEL_DWORD_DECL(BLOCKSIZE, 7), \
GPU_KERNEL_DWORD_DECL(BLOCKSIZE, 8)}
// Table of all GPU Reduction kernel functions (templated blocksize / unroll / dword size)
typedef void (*GpuKernelFuncPtr)(SubExecParam*, int, int);
GpuKernelFuncPtr GpuKernelTable[MAX_WAVEGROUPS][MAX_UNROLL][3][4] =
{
GPU_KERNEL_UNROLL_DECL(64),
GPU_KERNEL_UNROLL_DECL(128),
GPU_KERNEL_UNROLL_DECL(192),
GPU_KERNEL_UNROLL_DECL(256),
GPU_KERNEL_UNROLL_DECL(320),
GPU_KERNEL_UNROLL_DECL(384),
GPU_KERNEL_UNROLL_DECL(448),
GPU_KERNEL_UNROLL_DECL(512)
};
#undef GPU_KERNEL_UNROLL_DECL
#undef GPU_KERNEL_DWORD_DECL
#undef GPU_KERNEL_TEMPORAL_DECL
// Execute a single GPU Transfer (when using 1 stream per Transfer)
static ErrResult ExecuteGpuTransfer(int const iteration,
hipStream_t const stream,
hipEvent_t const startEvent,
hipEvent_t const stopEvent,
int const xccDim,
ConfigOptions const& cfg,
TransferResources& rss)
{
auto cpuStart = std::chrono::high_resolution_clock::now();
int numSubExecs = rss.subExecParamCpu.size();
dim3 const gridSize(xccDim, numSubExecs, 1);
dim3 const blockSize(cfg.gfx.blockSize, 1);
int wordSizeIdx = cfg.gfx.wordSize == 1 ? 0 :
cfg.gfx.wordSize == 2 ? 1 :
2;
auto gpuKernel = GpuKernelTable[cfg.gfx.blockSize/64 - 1][cfg.gfx.unrollFactor - 1][wordSizeIdx][cfg.gfx.temporalMode];
#if defined(__NVCC__)
if (startEvent != NULL)
ERR_CHECK(hipEventRecord(startEvent, stream));
gpuKernel<<<gridSize, blockSize, 0, stream>>>(rss.subExecParamGpuPtr, cfg.gfx.waveOrder, cfg.general.numSubIterations);
if (stopEvent != NULL)
ERR_CHECK(hipEventRecord(stopEvent, stream));
#else
hipExtLaunchKernelGGL(gpuKernel, gridSize, blockSize, 0, stream, startEvent, stopEvent,
0, rss.subExecParamGpuPtr, cfg.gfx.waveOrder, cfg.general.numSubIterations);
#endif
ERR_CHECK(hipStreamSynchronize(stream));
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double cpuDeltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
if (iteration >= 0) {
double deltaMsec = cpuDeltaMsec;
if (startEvent != NULL) {
float gpuDeltaMsec;
ERR_CHECK(hipEventElapsedTime(&gpuDeltaMsec, startEvent, stopEvent));
deltaMsec = gpuDeltaMsec;
}
rss.totalDurationMsec += deltaMsec;
if (cfg.general.recordPerIteration) {
rss.perIterMsec.push_back(deltaMsec);
std::set<std::pair<int,int>> CUs;
for (int i = 0; i < numSubExecs; i++) {
CUs.insert(std::make_pair(rss.subExecParamGpuPtr[i].xccId,
GetId(rss.subExecParamGpuPtr[i].hwId)));
}
rss.perIterCUs.push_back(CUs);
}
}
return ERR_NONE;
}
// Execute a single GPU executor
static ErrResult RunGpuExecutor(int const iteration,
ConfigOptions const& cfg,
int const exeIndex,
ExeInfo& exeInfo)
{
auto cpuStart = std::chrono::high_resolution_clock::now();
ERR_CHECK(hipSetDevice(exeIndex));
int xccDim = exeInfo.useSubIndices ? exeInfo.numSubIndices : 1;
if (cfg.gfx.useMultiStream) {
// Launch each Transfer separately in its own stream
vector<std::future<ErrResult>> asyncTransfers;
for (int i = 0; i < exeInfo.streams.size(); i++) {
asyncTransfers.emplace_back(std::async(std::launch::async,
ExecuteGpuTransfer,
iteration,
exeInfo.streams[i],
cfg.gfx.useHipEvents ? exeInfo.startEvents[i] : NULL,
cfg.gfx.useHipEvents ? exeInfo.stopEvents[i] : NULL,
xccDim,
std::cref(cfg),
std::ref(exeInfo.resources[i])));
}
for (auto& asyncTransfer : asyncTransfers)
ERR_CHECK(asyncTransfer.get());
} else {
// Combine all the Transfers into a single kernel launch
int numSubExecs = exeInfo.totalSubExecs;
dim3 const gridSize(xccDim, numSubExecs, 1);
dim3 const blockSize(cfg.gfx.blockSize, 1);
hipStream_t stream = exeInfo.streams[0];
int wordSizeIdx = cfg.gfx.wordSize == 1 ? 0 :
cfg.gfx.wordSize == 2 ? 1 :
2;
auto gpuKernel = GpuKernelTable[cfg.gfx.blockSize/64 - 1][cfg.gfx.unrollFactor - 1][wordSizeIdx][cfg.gfx.temporalMode];
#if defined(__NVCC__)
if (cfg.gfx.useHipEvents)
ERR_CHECK(hipEventRecord(exeInfo.startEvents[0], stream));
gpuKernel<<<gridSize, blockSize, 0 , stream>>>(exeInfo.subExecParamGpu, cfg.gfx.waveOrder, cfg.general.numSubIterations);
if (cfg.gfx.useHipEvents)
ERR_CHECK(hipEventRecord(exeInfo.stopEvents[0], stream));
#else
hipExtLaunchKernelGGL(gpuKernel, gridSize, blockSize, 0, stream,
cfg.gfx.useHipEvents ? exeInfo.startEvents[0] : NULL,
cfg.gfx.useHipEvents ? exeInfo.stopEvents[0] : NULL, 0,
exeInfo.subExecParamGpu, cfg.gfx.waveOrder, cfg.general.numSubIterations);
#endif
ERR_CHECK(hipStreamSynchronize(stream));
}
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double cpuDeltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
if (iteration >= 0) {
if (cfg.gfx.useHipEvents && !cfg.gfx.useMultiStream) {
float gpuDeltaMsec;
ERR_CHECK(hipEventElapsedTime(&gpuDeltaMsec, exeInfo.startEvents[0], exeInfo.stopEvents[0]));
exeInfo.totalDurationMsec += gpuDeltaMsec;
} else {
exeInfo.totalDurationMsec += cpuDeltaMsec;
}
// Determine timing for each of the individual transfers that were part of this launch
if (!cfg.gfx.useMultiStream) {
for (int i = 0; i < exeInfo.resources.size(); i++) {
TransferResources& rss = exeInfo.resources[i];
long long minStartCycle = std::numeric_limits<long long>::max();
long long maxStopCycle = std::numeric_limits<long long>::min();
std::set<std::pair<int, int>> CUs;
for (auto subExecIdx : rss.subExecIdx) {
minStartCycle = std::min(minStartCycle, exeInfo.subExecParamGpu[subExecIdx].startCycle);
maxStopCycle = std::max(maxStopCycle, exeInfo.subExecParamGpu[subExecIdx].stopCycle);
if (cfg.general.recordPerIteration) {
CUs.insert(std::make_pair(exeInfo.subExecParamGpu[subExecIdx].xccId,
GetId(exeInfo.subExecParamGpu[subExecIdx].hwId)));
}
}
double deltaMsec = (maxStopCycle - minStartCycle) / (double)(exeInfo.wallClockRate);
rss.totalDurationMsec += deltaMsec;
if (cfg.general.recordPerIteration) {
rss.perIterMsec.push_back(deltaMsec);
rss.perIterCUs.push_back(CUs);
}
}
}
}
return ERR_NONE;
}
// DMA Executor-related functions
//========================================================================================
// Execute a single DMA Transfer
static ErrResult ExecuteDmaTransfer(int const iteration,
bool const useSubIndices,
hipStream_t const stream,
hipEvent_t const startEvent,
hipEvent_t const stopEvent,
ConfigOptions const& cfg,
TransferResources& resources)
{
auto cpuStart = std::chrono::high_resolution_clock::now();
int subIterations = 0;
if (!useSubIndices && !cfg.dma.useHsaCopy) {
if (cfg.dma.useHipEvents)
ERR_CHECK(hipEventRecord(startEvent, stream));
// Use hipMemcpy
do {
ERR_CHECK(hipMemcpyAsync(resources.dstMem[0], resources.srcMem[0], resources.numBytes,
hipMemcpyDefault, stream));
} while (++subIterations != cfg.general.numSubIterations);
if (cfg.dma.useHipEvents)
ERR_CHECK(hipEventRecord(stopEvent, stream));
ERR_CHECK(hipStreamSynchronize(stream));
} else {
#if defined(__NVCC__)
return {ERR_FATAL, "HSA copy not supported on NVIDIA hardware"};
#else
// Use HSA async copy
do {
hsa_signal_store_screlease(resources.signal, 1);
if (!useSubIndices) {
ERR_CHECK(hsa_amd_memory_async_copy(resources.dstMem[0], resources.dstAgent,
resources.srcMem[0], resources.srcAgent,
resources.numBytes, 0, NULL,
resources.signal));
} else {
HSA_CALL(hsa_amd_memory_async_copy_on_engine(resources.dstMem[0], resources.dstAgent,
resources.srcMem[0], resources.srcAgent,
resources.numBytes, 0, NULL,
resources.signal,
resources.sdmaEngineId, true));
}
// Wait for SDMA transfer to complete
while(hsa_signal_wait_scacquire(resources.signal,
HSA_SIGNAL_CONDITION_LT, 1, UINT64_MAX,
HSA_WAIT_STATE_ACTIVE) >= 1);
} while (++subIterations != cfg.general.numSubIterations);
#endif
}
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double cpuDeltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
if (iteration >= 0) {
double deltaMsec = cpuDeltaMsec;
if (!useSubIndices && !cfg.dma.useHsaCopy && cfg.dma.useHipEvents) {
float gpuDeltaMsec;
ERR_CHECK(hipEventElapsedTime(&gpuDeltaMsec, startEvent, stopEvent));
deltaMsec = gpuDeltaMsec;
}
resources.totalDurationMsec += deltaMsec;
if (cfg.general.recordPerIteration)
resources.perIterMsec.push_back(deltaMsec);
}
return ERR_NONE;
}
// Execute a single DMA executor
static ErrResult RunDmaExecutor(int const iteration,
ConfigOptions const& cfg,
int const exeIndex,
ExeInfo& exeInfo)
{
auto cpuStart = std::chrono::high_resolution_clock::now();
ERR_CHECK(hipSetDevice(exeIndex));
vector<std::future<ErrResult>> asyncTransfers;
for (int i = 0; i < exeInfo.resources.size(); i++) {
asyncTransfers.emplace_back(std::async(std::launch::async,
ExecuteDmaTransfer,
iteration,
exeInfo.useSubIndices,
exeInfo.streams[i],
cfg.dma.useHipEvents ? exeInfo.startEvents[i] : NULL,
cfg.dma.useHipEvents ? exeInfo.stopEvents[i] : NULL,
std::cref(cfg),
std::ref(exeInfo.resources[i])));
}
for (auto& asyncTransfer : asyncTransfers)
ERR_CHECK(asyncTransfer.get());
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double deltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
if (iteration >= 0)
exeInfo.totalDurationMsec += deltaMsec;
return ERR_NONE;
}
// Executor-related functions
//========================================================================================
static ErrResult RunExecutor(int const iteration,
ConfigOptions const& cfg,
ExeDevice const& exeDevice,
ExeInfo& exeInfo)
{
switch (exeDevice.exeType) {
case EXE_CPU: return RunCpuExecutor(iteration, cfg, exeDevice.exeIndex, exeInfo);
case EXE_GPU_GFX: return RunGpuExecutor(iteration, cfg, exeDevice.exeIndex, exeInfo);
case EXE_GPU_DMA: return RunDmaExecutor(iteration, cfg, exeDevice.exeIndex, exeInfo);
#ifdef NIC_EXEC_ENABLED
case EXE_NIC: return RunNicExecutor(iteration, cfg, exeDevice.exeIndex, exeInfo);
#endif
default: return {ERR_FATAL, "Unsupported executor (%d)", exeDevice.exeType};
}
}
} // End of anonymous namespace
//========================================================================================
/// @endcond
ErrResult::ErrResult(ErrType err) : errType(err), errMsg("") {};
ErrResult::ErrResult(hipError_t err)
{
if (err == hipSuccess) {
this->errType = ERR_NONE;
this->errMsg = "";
} else {
this->errType = ERR_FATAL;
this->errMsg = std::string("HIP Error: ") + hipGetErrorString(err);
}
}
#if !defined(__NVCC__)
ErrResult::ErrResult(hsa_status_t err)
{
if (err == HSA_STATUS_SUCCESS) {
this->errType = ERR_NONE;
this->errMsg = "";
} else {
const char *errString = NULL;
hsa_status_string(err, &errString);
this->errType = ERR_FATAL;
this->errMsg = std::string("HSA Error: ") + errString;
}
}
#endif
ErrResult::ErrResult(ErrType errType, const char* format, ...)
{
this->errType = errType;
va_list args, args_temp;
va_start(args, format);
va_copy(args_temp, args);
int len = vsnprintf(nullptr, 0, format, args);
if (len < 0) {
va_end(args_temp);
va_end(args);
} else {
this->errMsg.resize(len);
vsnprintf(this->errMsg.data(), len+1, format, args_temp);
}
va_end(args_temp);
va_end(args);
}
bool RunTransfers(ConfigOptions const& cfg,
std::vector<Transfer> const& transfers,
TestResults& results)
{
// Clear all errors;
auto& errResults = results.errResults;
errResults.clear();
// Check for valid configuration
if (ConfigOptionsHaveErrors(cfg, errResults)) return false;
// Check for valid transfers
if (TransfersHaveErrors(cfg, transfers, errResults)) return false;
// Collect up transfers by executor
int minNumSrcs = MAX_SRCS + 1;
int maxNumSrcs = 0;
size_t maxNumBytes = 0;
std::map<ExeDevice, ExeInfo> executorMap;
for (int i = 0; i < transfers.size(); i++) {
Transfer const& t = transfers[i];
ExeDevice exeDevice;
ERR_APPEND(GetActualExecutor(cfg, t.exeDevice, exeDevice), errResults);
TransferResources resource = {};
resource.transferIdx = i;
ExeInfo& exeInfo = executorMap[exeDevice];
exeInfo.totalBytes += t.numBytes;
exeInfo.totalSubExecs += t.numSubExecs;
exeInfo.useSubIndices |= (t.exeSubIndex != -1 || (t.exeDevice.exeType == EXE_GPU_GFX && !cfg.gfx.prefXccTable.empty()));
exeInfo.resources.push_back(resource);
minNumSrcs = std::min(minNumSrcs, (int)t.srcs.size());
maxNumSrcs = std::max(maxNumSrcs, (int)t.srcs.size());
maxNumBytes = std::max(maxNumBytes, t.numBytes);
}
// Loop over each executor and prepare
// - Allocates memory for each Transfer
// - Set up work for subexecutors
vector<TransferResources*> transferResources;
for (auto& exeInfoPair : executorMap) {
ExeDevice const& exeDevice = exeInfoPair.first;
ExeInfo& exeInfo = exeInfoPair.second;
ERR_APPEND(PrepareExecutor(cfg, transfers, exeDevice, exeInfo), errResults);
for (auto& resource : exeInfo.resources) {
transferResources.push_back(&resource);
}
}
// Prepare reference src/dst arrays - only once for largest size
size_t maxN = maxNumBytes / sizeof(float);
vector<float> outputBuffer(maxN);
vector<vector<float>> dstReference(maxNumSrcs + 1, vector<float>(maxN));
{
vector<vector<float>> srcReference(maxNumSrcs, vector<float>(maxN));
memset(dstReference[0].data(), MEMSET_CHAR, maxNumBytes);
for (int numSrcs = 0; numSrcs < maxNumSrcs; numSrcs++) {
PrepareReference(cfg, srcReference[numSrcs], numSrcs);
for (int i = 0; i < maxN; i++) {
dstReference[numSrcs+1][i] = (numSrcs == 0 ? 0 : dstReference[numSrcs][i]) + srcReference[numSrcs][i];
}
}
// Release un-used partial sums
for (int numSrcs = 0; numSrcs < minNumSrcs; numSrcs++)
dstReference[numSrcs].clear();
// Initialize all src memory buffers
for (auto resource : transferResources) {
for (int srcIdx = 0; srcIdx < resource->srcMem.size(); srcIdx++) {
ERR_APPEND(hipMemcpy(resource->srcMem[srcIdx], srcReference[srcIdx].data(), resource->numBytes,
hipMemcpyDefault), errResults);
}
}
}
// Pause before starting when running in iteractive mode
if (cfg.general.useInteractive) {
printf("Memory prepared:\n");
for (int i = 0; i < transfers.size(); i++) {
ExeInfo const& exeInfo = executorMap[transfers[i].exeDevice];
printf("Transfer %03d:\n", i);
for (int iSrc = 0; iSrc < transfers[i].srcs.size(); ++iSrc)
printf(" SRC %0d: %p\n", iSrc, transferResources[i]->srcMem[iSrc]);
for (int iDst = 0; iDst < transfers[i].dsts.size(); ++iDst)
printf(" DST %0d: %p\n", iDst, transferResources[i]->dstMem[iDst]);
}
printf("Hit <Enter> to continue: ");
if (scanf("%*c") != 0) {
printf("[ERROR] Unexpected input\n");
exit(1);
}
printf("\n");
}
// Perform iterations
size_t numTimedIterations = 0;
double totalCpuTimeSec = 0.0;
for (int iteration = -cfg.general.numWarmups; ; iteration++) {
// Stop if number of iterations/seconds has reached limit
if (cfg.general.numIterations > 0 && iteration >= cfg.general.numIterations) break;
if (cfg.general.numIterations < 0 && totalCpuTimeSec > -cfg.general.numIterations) break;
// Start CPU timing for this iteration
auto cpuStart = std::chrono::high_resolution_clock::now();
// Execute all Transfers in parallel
std::vector<std::future<ErrResult>> asyncExecutors;
for (auto& exeInfoPair : executorMap) {
asyncExecutors.emplace_back(std::async(std::launch::async, RunExecutor,
iteration,
std::cref(cfg),
std::cref(exeInfoPair.first),
std::ref(exeInfoPair.second)));
}
// Wait for all threads to finish
for (auto& asyncExecutor : asyncExecutors) {
ERR_APPEND(asyncExecutor.get(), errResults);
}
// Stop CPU timing for this iteration
auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
double deltaSec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count();
if (cfg.data.alwaysValidate) {
ERR_APPEND(ValidateAllTransfers(cfg, transfers, transferResources, dstReference, outputBuffer),
errResults);
}
if (iteration >= 0) {
++numTimedIterations;
totalCpuTimeSec += deltaSec;
}
}
// Pause for interactive mode
if (cfg.general.useInteractive) {
printf("Transfers complete. Hit <Enter> to continue: ");
if (scanf("%*c") != 0) {
printf("[ERROR] Unexpected input\n");
exit(1);
}
printf("\n");
}
// Validate results
if (!cfg.data.alwaysValidate) {
ERR_APPEND(ValidateAllTransfers(cfg, transfers, transferResources, dstReference, outputBuffer),
errResults);
}
// Prepare results
results.exeResults.clear();
results.tfrResults.clear();
results.tfrResults.resize(transfers.size());
results.numTimedIterations = numTimedIterations;
results.totalBytesTransferred = 0;
results.avgTotalDurationMsec = (totalCpuTimeSec * 1000.0) / (numTimedIterations * cfg.general.numSubIterations);
results.overheadMsec = results.avgTotalDurationMsec;
for (auto& exeInfoPair : executorMap) {
ExeDevice const& exeDevice = exeInfoPair.first;
ExeInfo& exeInfo = exeInfoPair.second;
// Copy over executor results
ExeResult& exeResult = results.exeResults[exeDevice];
exeResult.numBytes = exeInfo.totalBytes;
exeResult.avgDurationMsec = exeInfo.totalDurationMsec / (numTimedIterations * cfg.general.numSubIterations);
exeResult.avgBandwidthGbPerSec = (exeResult.numBytes / 1.0e6) / exeResult.avgDurationMsec;
exeResult.sumBandwidthGbPerSec = 0.0;
exeResult.transferIdx.clear();
results.totalBytesTransferred += exeInfo.totalBytes;
results.overheadMsec = std::min(results.overheadMsec, (results.avgTotalDurationMsec -
exeResult.avgDurationMsec));
// Copy over transfer results
for (auto const& rss : exeInfo.resources) {
int const transferIdx = rss.transferIdx;
exeResult.transferIdx.push_back(transferIdx);
TransferResult& tfrResult = results.tfrResults[transferIdx];
tfrResult.exeDevice = exeDevice;
#ifdef NIC_EXEC_ENABLED
tfrResult.exeDstDevice = {exeDevice.exeType, rss.dstNicIndex};
#else
tfrResult.exeDstDevice = exeDevice;
#endif
tfrResult.numBytes = rss.numBytes;
tfrResult.avgDurationMsec = rss.totalDurationMsec / numTimedIterations;
tfrResult.avgBandwidthGbPerSec = (rss.numBytes / 1.0e6) / tfrResult.avgDurationMsec;
if (cfg.general.recordPerIteration) {
tfrResult.perIterMsec = rss.perIterMsec;
tfrResult.perIterCUs = rss.perIterCUs;
}
exeResult.sumBandwidthGbPerSec += tfrResult.avgBandwidthGbPerSec;
}
}
results.avgTotalBandwidthGbPerSec = (results.totalBytesTransferred / 1.0e6) / results.avgTotalDurationMsec;
// Teardown executors
for (auto& exeInfoPair : executorMap) {
ExeDevice const& exeDevice = exeInfoPair.first;
ExeInfo& exeInfo = exeInfoPair.second;
ERR_APPEND(TeardownExecutor(cfg, exeDevice, transfers, exeInfo), errResults);
}
return true;
}
int GetIntAttribute(IntAttribute attribute)
{
switch (attribute) {
case ATR_GFX_MAX_BLOCKSIZE: return MAX_BLOCKSIZE;
case ATR_GFX_MAX_UNROLL: return MAX_UNROLL;
default: return -1;
}
}
std::string GetStrAttribute(StrAttribute attribute)
{
switch (attribute) {
case ATR_SRC_PREP_DESCRIPTION:
return "Element i = ((i * 517) modulo 383 + 31) * (srcBufferIdx + 1)";
default:
return "";
}
}
ErrResult ParseTransfers(std::string line,
std::vector<Transfer>& transfers)
{
// Replace any round brackets or '->' with spaces,
for (int i = 1; line[i]; i++)
if (line[i] == '(' || line[i] == ')' || line[i] == '-' || line[i] == ':' || line[i] == '>' ) line[i] = ' ';
transfers.clear();
// Read in number of transfers
int numTransfers = 0;
std::istringstream iss(line);
iss >> numTransfers;
if (iss.fail()) return ERR_NONE;
// If numTransfers < 0, read 5-tuple (srcMem, exeMem, dstMem, #CUs, #Bytes)
// otherwise read triples (srcMem, exeMem, dstMem)
bool const advancedMode = (numTransfers < 0);
numTransfers = abs(numTransfers);
int numSubExecs;
std::string srcStr, exeStr, dstStr, numBytesToken;
if (!advancedMode) {
iss >> numSubExecs;
if (numSubExecs < 0 || iss.fail()) {
return {ERR_FATAL,
"Parsing error: Number of blocks to use (%d) must be non-negative", numSubExecs};
}
}
for (int i = 0; i < numTransfers; i++) {
Transfer transfer;
if (!advancedMode) {
iss >> srcStr >> exeStr >> dstStr;
transfer.numSubExecs = numSubExecs;
if (iss.fail()) {
return {ERR_FATAL,
"Parsing error: Unable to read valid Transfer %d (SRC EXE DST) triplet", i+1};
}
transfer.numBytes = 0;
} else {
iss >> srcStr >> exeStr >> dstStr >> transfer.numSubExecs >> numBytesToken;
if (iss.fail()) {
return {ERR_FATAL,
"Parsing error: Unable to read valid Transfer %d (SRC EXE DST $CU #Bytes) tuple", i+1};
}
if (sscanf(numBytesToken.c_str(), "%lu", &transfer.numBytes) != 1) {
return {ERR_FATAL,
"Parsing error: Unable to read valid Transfer %d (SRC EXE DST #CU #Bytes) tuple", i+1};
}
char units = numBytesToken.back();
switch (toupper(units)) {
case 'G': transfer.numBytes *= 1024;
case 'M': transfer.numBytes *= 1024;
case 'K': transfer.numBytes *= 1024;
}
}
ERR_CHECK(ParseMemType(srcStr, transfer.srcs));
ERR_CHECK(ParseMemType(dstStr, transfer.dsts));
ERR_CHECK(ParseExeType(exeStr, transfer.exeDevice, transfer.exeSubIndex));
transfers.push_back(transfer);
}
return ERR_NONE;
}
int GetNumExecutors(ExeType exeType)
{
switch (exeType) {
case EXE_CPU:
return numa_num_configured_nodes();
case EXE_GPU_GFX: case EXE_GPU_DMA:
{
int numDetectedGpus = 0;
hipError_t status = hipGetDeviceCount(&numDetectedGpus);
if (status != hipSuccess) numDetectedGpus = 0;
return numDetectedGpus;
}
#ifdef NIC_EXEC_ENABLED
case EXE_NIC: case EXE_NIC_NEAREST:
{
return GetIbvDeviceList().size();
}
#endif
default:
return 0;
}
}
int GetNumSubExecutors(ExeDevice exeDevice)
{
int const& exeIndex = exeDevice.exeIndex;
switch(exeDevice.exeType) {
case EXE_CPU:
{
int numCores = 0;
for (int i = 0; i < numa_num_configured_cpus(); i++)
if (numa_node_of_cpu(i) == exeIndex) numCores++;
return numCores;
}
case EXE_GPU_GFX:
{
int numGpus = GetNumExecutors(EXE_GPU_GFX);
if (exeIndex < 0 || numGpus <= exeIndex) return 0;
int numDeviceCUs = 0;
hipError_t status = hipDeviceGetAttribute(&numDeviceCUs, hipDeviceAttributeMultiprocessorCount, exeIndex);
if (status != hipSuccess) numDeviceCUs = 0;
return numDeviceCUs;
}
case EXE_GPU_DMA:
{
return 1;
}
default:
return 0;
}
}
int GetNumExecutorSubIndices(ExeDevice exeDevice)
{
// Executor subindices are not supported on NVIDIA hardware
#if defined(__NVCC__)
return 0;
#else
int const& exeIndex = exeDevice.exeIndex;
switch(exeDevice.exeType) {
case EXE_CPU: return 0;
case EXE_GPU_GFX:
{
hsa_agent_t agent;
ErrResult err = GetHsaAgent(exeDevice, agent);
if (err.errType != ERR_NONE) return 0;
int numXccs = 1;
if (hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_NUM_XCC, &numXccs) != HSA_STATUS_SUCCESS)
return 1;
return numXccs;
}
case EXE_GPU_DMA:
{
std::set<int> engineIds;
ErrResult err;
// Get HSA agent for this GPU
hsa_agent_t agent;
err = GetHsaAgent(exeDevice, agent);
if (err.errType != ERR_NONE) return 0;
int numTotalEngines = 0, numEnginesA = 0, numEnginesB = 0;
if (hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_NUM_SDMA_ENG, &numEnginesA)
== HSA_STATUS_SUCCESS)
numTotalEngines += numEnginesA;
if (hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_NUM_SDMA_XGMI_ENG, &numEnginesB)
== HSA_STATUS_SUCCESS)
numTotalEngines += numEnginesB;
return numTotalEngines;
}
default:
return 0;
}
#endif
}
int GetClosestCpuNumaToGpu(int gpuIndex)
{
// Closest NUMA is not supported on NVIDIA hardware at this time
#if defined(__NVCC__)
return -1;
#else
hsa_agent_t gpuAgent;
ErrResult err = GetHsaAgent({EXE_GPU_GFX, gpuIndex}, gpuAgent);
if (err.errType != ERR_NONE) return -1;
hsa_agent_t closestCpuAgent;
if (hsa_agent_get_info(gpuAgent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_NEAREST_CPU, &closestCpuAgent)
== HSA_STATUS_SUCCESS) {
int numCpus = GetNumExecutors(EXE_CPU);
for (int i = 0; i < numCpus; i++) {
hsa_agent_t cpuAgent;
err = GetHsaAgent({EXE_CPU, i}, cpuAgent);
if (err.errType != ERR_NONE) return -1;
if (cpuAgent.handle == closestCpuAgent.handle) return i;
}
}
return -1;
#endif
}
int GetClosestCpuNumaToNic(int nicIndex)
{
#ifdef NIC_EXEC_ENABLED
int numNics = GetNumExecutors(EXE_NIC);
if (nicIndex < 0 || nicIndex >= numNics) return -1;
return GetIbvDeviceList()[nicIndex].numaNode;
#else
return -1;
#endif
}
int GetClosestNicToGpu(int gpuIndex)
{
#ifdef NIC_EXEC_ENABLED
static bool isInitialized = false;
static std::vector<int> closestNicId;
int numGpus = GetNumExecutors(EXE_GPU_GFX);
if (gpuIndex < 0 || gpuIndex >= numGpus) return -1;
// Build closest NICs per GPU on first use
if (!isInitialized) {
closestNicId.resize(numGpus, -1);
// Build up list of NIC bus addresses
std::vector<std::string> ibvAddressList;
auto const& ibvDeviceList = GetIbvDeviceList();
for (auto const& ibvDevice : ibvDeviceList)
ibvAddressList.push_back(ibvDevice.hasActivePort ? ibvDevice.busId : "");
// Track how many times a device has been assigned as "closest"
// This allows distributed work across devices using multiple ports (sharing the same busID)
// NOTE: This isn't necessarily optimal, but likely to work in most cases involving multi-port
// Counter example:
//
// G0 prefers (N0,N1), picks N0
// G1 prefers (N1,N2), picks N1
// G2 prefers N0, picks N0
//
// instead of G0->N1, G1->N2, G2->N0
std::vector<int> assignedCount(ibvDeviceList.size(), 0);
// Loop over each GPU to find the closest NIC(s) based on PCIe address
for (int i = 0; i < numGpus; i++) {
// Collect PCIe address for the GPU
char hipPciBusId[64];
hipError_t err = hipDeviceGetPCIBusId(hipPciBusId, sizeof(hipPciBusId), i);
if (err != hipSuccess) {
#ifdef VERBS_DEBUG
printf("Failed to get PCI Bus ID for HIP device %d: %s\n", i, hipGetErrorString(err));
#endif
closestNicId[i] = -1;
continue;
}
// Find closest NICs
std::set<int> closestNicIdxs = GetNearestDevicesInTree(hipPciBusId, ibvAddressList);
// Pick the least-used NIC to assign as closest
int closestIdx = -1;
for (auto idx : closestNicIdxs) {
if (closestIdx == -1 || assignedCount[idx] < assignedCount[closestIdx])
closestIdx = idx;
}
// The following will only use distance between bus IDs
// to determine the closest NIC to GPU if the PCIe tree approach fails
if (closestIdx < 0) {
#ifdef VERBS_DEBUG
printf("[WARN] Falling back to PCIe bus ID distance to determine proximity\n");
#endif
int minDistance = std::numeric_limits<int>::max();
for (int j = 0; j < ibvDeviceList.size(); j++) {
if (ibvDeviceList[j].busId != "") {
int distance = GetBusIdDistance(hipPciBusId, ibvDeviceList[j].busId);
if (distance < minDistance && distance >= 0) {
minDistance = distance;
closestIdx = j;
}
}
}
}
closestNicId[i] = closestIdx;
if (closestIdx != -1) assignedCount[closestIdx]++;
}
isInitialized = true;
}
return closestNicId[gpuIndex];
#else
return -1;
#endif
}
// Undefine CUDA compatibility macros
#if defined(__NVCC__)
// ROCm specific
#undef wall_clock64
#undef gcnArchName
// Datatypes
#undef hipDeviceProp_t
#undef hipError_t
#undef hipEvent_t
#undef hipStream_t
// Enumerations
#undef hipDeviceAttributeClockRate
#undef hipDeviceAttributeMaxSharedMemoryPerMultiprocessor
#undef hipDeviceAttributeMultiprocessorCount
#undef hipErrorPeerAccessAlreadyEnabled
#undef hipFuncCachePreferShared
#undef hipMemcpyDefault
#undef hipMemcpyDeviceToHost
#undef hipMemcpyHostToDevice
#undef hipSuccess
// Functions
#undef hipDeviceCanAccessPeer
#undef hipDeviceEnablePeerAccess
#undef hipDeviceGetAttribute
#undef hipDeviceGetPCIBusId
#undef hipDeviceSetCacheConfig
#undef hipDeviceSynchronize
#undef hipEventCreate
#undef hipEventDestroy
#undef hipEventElapsedTime
#undef hipEventRecord
#undef hipFree
#undef hipGetDeviceCount
#undef hipGetDeviceProperties
#undef hipGetErrorString
#undef hipHostFree
#undef hipHostMalloc
#undef hipMalloc
#undef hipMallocManaged
#undef hipMemcpy
#undef hipMemcpyAsync
#undef hipMemset
#undef hipMemsetAsync
#undef hipSetDevice
#undef hipStreamCreate
#undef hipStreamDestroy
#undef hipStreamSynchronize
#endif
// Kernel macros
#undef GetHwId
#undef GetXccId
// Undefine helper macros
#undef ERR_CHECK
#undef ERR_APPEND
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment