Commit e00b0a19 authored by zhuwenwen's avatar zhuwenwen
Browse files

merge v0.3.3

parents ead94d93 3f1166ab
...@@ -3,9 +3,12 @@ ...@@ -3,9 +3,12 @@
import time import time
from typing import Dict, List, Literal, Optional, Union from typing import Dict, List, Literal, Optional, Union
from pydantic import BaseModel, Field from pydantic import BaseModel, Field, model_validator
from vllm.utils import random_uuid from vllm.utils import random_uuid
from vllm.sampling_params import SamplingParams
import torch
class ErrorResponse(BaseModel): class ErrorResponse(BaseModel):
...@@ -13,7 +16,7 @@ class ErrorResponse(BaseModel): ...@@ -13,7 +16,7 @@ class ErrorResponse(BaseModel):
message: str message: str
type: str type: str
param: Optional[str] = None param: Optional[str] = None
code: Optional[str] = None code: int
class ModelPermission(BaseModel): class ModelPermission(BaseModel):
...@@ -54,13 +57,16 @@ class UsageInfo(BaseModel): ...@@ -54,13 +57,16 @@ class UsageInfo(BaseModel):
class ChatCompletionRequest(BaseModel): class ChatCompletionRequest(BaseModel):
model: str model: str
messages: Union[str, List[Dict[str, str]]] messages: List[Dict[str, str]]
temperature: Optional[float] = 0.7 temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0 top_p: Optional[float] = 1.0
n: Optional[int] = 1 n: Optional[int] = 1
max_tokens: Optional[int] = None max_tokens: Optional[int] = None
seed: Optional[int] = None
stop: Optional[Union[str, List[str]]] = Field(default_factory=list) stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False stream: Optional[bool] = False
logprobs: Optional[bool] = False
top_logprobs: Optional[int] = None
presence_penalty: Optional[float] = 0.0 presence_penalty: Optional[float] = 0.0
frequency_penalty: Optional[float] = 0.0 frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[Dict[str, float]] = None logit_bias: Optional[Dict[str, float]] = None
...@@ -70,6 +76,7 @@ class ChatCompletionRequest(BaseModel): ...@@ -70,6 +76,7 @@ class ChatCompletionRequest(BaseModel):
top_k: Optional[int] = -1 top_k: Optional[int] = -1
ignore_eos: Optional[bool] = False ignore_eos: Optional[bool] = False
use_beam_search: Optional[bool] = False use_beam_search: Optional[bool] = False
early_stopping: Optional[bool] = False
stop_token_ids: Optional[List[int]] = Field(default_factory=list) stop_token_ids: Optional[List[int]] = Field(default_factory=list)
skip_special_tokens: Optional[bool] = True skip_special_tokens: Optional[bool] = True
spaces_between_special_tokens: Optional[bool] = True spaces_between_special_tokens: Optional[bool] = True
...@@ -77,6 +84,69 @@ class ChatCompletionRequest(BaseModel): ...@@ -77,6 +84,69 @@ class ChatCompletionRequest(BaseModel):
echo: Optional[bool] = False echo: Optional[bool] = False
repetition_penalty: Optional[float] = 1.0 repetition_penalty: Optional[float] = 1.0
min_p: Optional[float] = 0.0 min_p: Optional[float] = 0.0
include_stop_str_in_output: Optional[bool] = False
length_penalty: Optional[float] = 1.0
guided_json: Optional[Union[str, dict, BaseModel]] = None
guided_regex: Optional[str] = None
guided_choice: Optional[List[str]] = None
def to_sampling_params(self) -> SamplingParams:
if self.logprobs and not self.top_logprobs:
raise ValueError("Top logprobs must be set when logprobs is.")
logits_processors = None
if self.logit_bias:
def logit_bias_logits_processor(
token_ids: List[int],
logits: torch.Tensor) -> torch.Tensor:
for token_id, bias in self.logit_bias.items():
# Clamp the bias between -100 and 100 per OpenAI API spec
bias = min(100, max(-100, bias))
logits[int(token_id)] += bias
return logits
logits_processors = [logit_bias_logits_processor]
return SamplingParams(
n=self.n,
presence_penalty=self.presence_penalty,
frequency_penalty=self.frequency_penalty,
repetition_penalty=self.repetition_penalty,
temperature=self.temperature,
top_p=self.top_p,
min_p=self.min_p,
seed=self.seed,
stop=self.stop,
stop_token_ids=self.stop_token_ids,
max_tokens=self.max_tokens,
logprobs=self.top_logprobs if self.logprobs else None,
prompt_logprobs=self.top_logprobs if self.echo else None,
best_of=self.best_of,
top_k=self.top_k,
ignore_eos=self.ignore_eos,
use_beam_search=self.use_beam_search,
early_stopping=self.early_stopping,
skip_special_tokens=self.skip_special_tokens,
spaces_between_special_tokens=self.spaces_between_special_tokens,
include_stop_str_in_output=self.include_stop_str_in_output,
length_penalty=self.length_penalty,
logits_processors=logits_processors,
)
@model_validator(mode="before")
@classmethod
def check_guided_decoding_count(cls, data):
guide_count = sum([
"guided_json" in data and data["guided_json"] is not None,
"guided_regex" in data and data["guided_regex"] is not None,
"guided_choice" in data and data["guided_choice"] is not None
])
if guide_count > 1:
raise ValueError(
"You can only use one kind of guided decoding "
"('guided_json', 'guided_regex' or 'guided_choice').")
return data
class CompletionRequest(BaseModel): class CompletionRequest(BaseModel):
...@@ -92,6 +162,7 @@ class CompletionRequest(BaseModel): ...@@ -92,6 +162,7 @@ class CompletionRequest(BaseModel):
logprobs: Optional[int] = None logprobs: Optional[int] = None
echo: Optional[bool] = False echo: Optional[bool] = False
stop: Optional[Union[str, List[str]]] = Field(default_factory=list) stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
seed: Optional[int] = None
presence_penalty: Optional[float] = 0.0 presence_penalty: Optional[float] = 0.0
frequency_penalty: Optional[float] = 0.0 frequency_penalty: Optional[float] = 0.0
best_of: Optional[int] = None best_of: Optional[int] = None
...@@ -101,11 +172,74 @@ class CompletionRequest(BaseModel): ...@@ -101,11 +172,74 @@ class CompletionRequest(BaseModel):
top_k: Optional[int] = -1 top_k: Optional[int] = -1
ignore_eos: Optional[bool] = False ignore_eos: Optional[bool] = False
use_beam_search: Optional[bool] = False use_beam_search: Optional[bool] = False
early_stopping: Optional[bool] = False
stop_token_ids: Optional[List[int]] = Field(default_factory=list) stop_token_ids: Optional[List[int]] = Field(default_factory=list)
skip_special_tokens: Optional[bool] = True skip_special_tokens: Optional[bool] = True
spaces_between_special_tokens: Optional[bool] = True spaces_between_special_tokens: Optional[bool] = True
repetition_penalty: Optional[float] = 1.0 repetition_penalty: Optional[float] = 1.0
min_p: Optional[float] = 0.0 min_p: Optional[float] = 0.0
include_stop_str_in_output: Optional[bool] = False
length_penalty: Optional[float] = 1.0
guided_json: Optional[Union[str, dict, BaseModel]] = None
guided_regex: Optional[str] = None
guided_choice: Optional[List[str]] = None
def to_sampling_params(self):
echo_without_generation = self.echo and self.max_tokens == 0
logits_processors = None
if self.logit_bias:
def logit_bias_logits_processor(
token_ids: List[int],
logits: torch.Tensor) -> torch.Tensor:
for token_id, bias in self.logit_bias.items():
# Clamp the bias between -100 and 100 per OpenAI API spec
bias = min(100, max(-100, bias))
logits[int(token_id)] += bias
return logits
logits_processors = [logit_bias_logits_processor]
return SamplingParams(
n=self.n,
best_of=self.best_of,
presence_penalty=self.presence_penalty,
frequency_penalty=self.frequency_penalty,
repetition_penalty=self.repetition_penalty,
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
min_p=self.min_p,
seed=self.seed,
stop=self.stop,
stop_token_ids=self.stop_token_ids,
ignore_eos=self.ignore_eos,
max_tokens=self.max_tokens if not echo_without_generation else 1,
logprobs=self.logprobs,
use_beam_search=self.use_beam_search,
early_stopping=self.early_stopping,
prompt_logprobs=self.logprobs if self.echo else None,
skip_special_tokens=self.skip_special_tokens,
spaces_between_special_tokens=(self.spaces_between_special_tokens),
include_stop_str_in_output=self.include_stop_str_in_output,
length_penalty=self.length_penalty,
logits_processors=logits_processors,
)
@model_validator(mode="before")
@classmethod
def check_guided_decoding_count(cls, data):
guide_count = sum([
"guided_json" in data and data["guided_json"] is not None,
"guided_regex" in data and data["guided_regex"] is not None,
"guided_choice" in data and data["guided_choice"] is not None
])
if guide_count > 1:
raise ValueError(
"You can only use one kind of guided decoding "
"('guided_json', 'guided_regex' or 'guided_choice').")
return data
class LogProbs(BaseModel): class LogProbs(BaseModel):
...@@ -144,7 +278,7 @@ class CompletionStreamResponse(BaseModel): ...@@ -144,7 +278,7 @@ class CompletionStreamResponse(BaseModel):
created: int = Field(default_factory=lambda: int(time.time())) created: int = Field(default_factory=lambda: int(time.time()))
model: str model: str
choices: List[CompletionResponseStreamChoice] choices: List[CompletionResponseStreamChoice]
usage: Optional[UsageInfo] usage: Optional[UsageInfo] = Field(default=None)
class ChatMessage(BaseModel): class ChatMessage(BaseModel):
...@@ -155,6 +289,7 @@ class ChatMessage(BaseModel): ...@@ -155,6 +289,7 @@ class ChatMessage(BaseModel):
class ChatCompletionResponseChoice(BaseModel): class ChatCompletionResponseChoice(BaseModel):
index: int index: int
message: ChatMessage message: ChatMessage
logprobs: Optional[LogProbs] = None
finish_reason: Optional[Literal["stop", "length"]] = None finish_reason: Optional[Literal["stop", "length"]] = None
...@@ -175,6 +310,7 @@ class DeltaMessage(BaseModel): ...@@ -175,6 +310,7 @@ class DeltaMessage(BaseModel):
class ChatCompletionResponseStreamChoice(BaseModel): class ChatCompletionResponseStreamChoice(BaseModel):
index: int index: int
delta: DeltaMessage delta: DeltaMessage
logprobs: Optional[LogProbs] = None
finish_reason: Optional[Literal["stop", "length"]] = None finish_reason: Optional[Literal["stop", "length"]] = None
...@@ -184,5 +320,4 @@ class ChatCompletionStreamResponse(BaseModel): ...@@ -184,5 +320,4 @@ class ChatCompletionStreamResponse(BaseModel):
created: int = Field(default_factory=lambda: int(time.time())) created: int = Field(default_factory=lambda: int(time.time()))
model: str model: str
choices: List[ChatCompletionResponseStreamChoice] choices: List[ChatCompletionResponseStreamChoice]
usage: Optional[UsageInfo] = Field( usage: Optional[UsageInfo] = Field(default=None)
default=None, description="data about request and response")
import time
import codecs
from fastapi import Request
from typing import AsyncGenerator, AsyncIterator, Optional, List, Union
from vllm.logger import init_logger
from vllm.utils import random_uuid
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (
ChatCompletionRequest, ChatCompletionResponse,
ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse, ChatMessage, DeltaMessage, ErrorResponse,
UsageInfo)
from vllm.outputs import RequestOutput
from vllm.entrypoints.openai.serving_engine import OpenAIServing, LoRA
from vllm.model_executor.guided_decoding import get_guided_decoding_logits_processor
logger = init_logger(__name__)
class OpenAIServingChat(OpenAIServing):
def __init__(self,
engine: AsyncLLMEngine,
served_model: str,
response_role: str,
lora_modules: Optional[List[LoRA]] = None,
chat_template=None):
super().__init__(engine=engine,
served_model=served_model,
lora_modules=lora_modules)
self.response_role = response_role
self._load_chat_template(chat_template)
async def create_chat_completion(
self, request: ChatCompletionRequest, raw_request: Request
) -> Union[ErrorResponse, AsyncGenerator[str, None],
ChatCompletionResponse]:
"""Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/chat/create
for the API specification. This API mimics the OpenAI ChatCompletion API.
NOTE: Currently we do not support the following feature:
- function_call (Users should implement this by themselves)
"""
error_check_ret = await self._check_model(request)
if error_check_ret is not None:
return error_check_ret
try:
prompt = self.tokenizer.apply_chat_template(
conversation=request.messages,
tokenize=False,
add_generation_prompt=request.add_generation_prompt)
except Exception as e:
logger.error(
f"Error in applying chat template from request: {str(e)}")
return self.create_error_response(str(e))
request_id = f"cmpl-{random_uuid()}"
try:
token_ids = self._validate_prompt_and_tokenize(request,
prompt=prompt)
sampling_params = request.to_sampling_params()
lora_request = self._maybe_get_lora(request)
guided_decode_logits_processor = (
await get_guided_decoding_logits_processor(
request, self.engine.get_tokenizer()))
if guided_decode_logits_processor:
if sampling_params.logits_processors is None:
sampling_params.logits_processors = []
sampling_params.logits_processors.append(
guided_decode_logits_processor)
except ValueError as e:
return self.create_error_response(str(e))
result_generator = self.engine.generate(prompt, sampling_params,
request_id, token_ids,
lora_request)
# Streaming response
if request.stream:
return self.chat_completion_stream_generator(
request, result_generator, request_id)
else:
return await self.chat_completion_full_generator(
request, raw_request, result_generator, request_id)
def get_chat_request_role(self, request: ChatCompletionRequest) -> str:
if request.add_generation_prompt:
return self.response_role
else:
return request.messages[-1]["role"]
async def chat_completion_stream_generator(
self, request: ChatCompletionRequest,
result_generator: AsyncIterator[RequestOutput], request_id: str
) -> Union[ErrorResponse, AsyncGenerator[str, None]]:
model_name = request.model
created_time = int(time.monotonic())
chunk_object_type = "chat.completion.chunk"
# Send first response for each request.n (index) with the role
role = self.get_chat_request_role(request)
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(role=role),
logprobs=None,
finish_reason=None)
chunk = ChatCompletionStreamResponse(id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.model_dump_json(exclude_unset=True)
yield f"data: {data}\n\n"
# Send response to echo the input portion of the last message
if request.echo:
last_msg_content = ""
if request.messages and isinstance(
request.messages, list) and request.messages[-1].get(
"content") and request.messages[-1].get(
"role") == role:
last_msg_content = request.messages[-1]["content"]
if last_msg_content:
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=last_msg_content),
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
logprobs=None,
model=model_name)
data = chunk.model_dump_json(exclude_unset=True)
yield f"data: {data}\n\n"
# Send response for each token for each request.n (index)
previous_texts = [""] * request.n
previous_num_tokens = [0] * request.n
finish_reason_sent = [False] * request.n
async for res in result_generator:
res: RequestOutput
for output in res.outputs:
i = output.index
if finish_reason_sent[i]:
continue
delta_token_ids = output.token_ids[previous_num_tokens[i]:]
top_logprobs = output.logprobs[
previous_num_tokens[i]:] if output.logprobs else None
if request.logprobs:
logprobs = self._create_logprobs(
token_ids=delta_token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
initial_text_offset=len(previous_texts[i]),
)
else:
logprobs = None
delta_text = output.text[len(previous_texts[i]):]
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
if output.finish_reason is None:
# Send token-by-token response for each request.n
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
logprobs=logprobs,
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.model_dump_json(exclude_unset=True)
yield f"data: {data}\n\n"
else:
# Send the finish response for each request.n only once
prompt_tokens = len(res.prompt_token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=previous_num_tokens[i],
total_tokens=prompt_tokens + previous_num_tokens[i],
)
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
logprobs=logprobs,
finish_reason=output.finish_reason)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
if final_usage is not None:
chunk.usage = final_usage
data = chunk.model_dump_json(exclude_unset=True,
exclude_none=True)
yield f"data: {data}\n\n"
finish_reason_sent[i] = True
# Send the final done message after all response.n are finished
yield "data: [DONE]\n\n"
async def chat_completion_full_generator(
self, request: ChatCompletionRequest, raw_request: Request,
result_generator: AsyncIterator[RequestOutput],
request_id: str) -> Union[ErrorResponse, ChatCompletionResponse]:
model_name = request.model
created_time = int(time.monotonic())
final_res: RequestOutput = None
async for res in result_generator:
if await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await self.engine.abort(request_id)
return self.create_error_response("Client disconnected")
final_res = res
assert final_res is not None
choices = []
role = self.get_chat_request_role(request)
for output in final_res.outputs:
token_ids = output.token_ids
top_logprobs = output.logprobs
if request.logprobs:
logprobs = self._create_logprobs(
token_ids=token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
)
else:
logprobs = None
choice_data = ChatCompletionResponseChoice(
index=output.index,
message=ChatMessage(role=role, content=output.text),
logprobs=logprobs,
finish_reason=output.finish_reason,
)
choices.append(choice_data)
if request.echo:
last_msg_content = ""
if request.messages and isinstance(
request.messages, list) and request.messages[-1].get(
"content") and request.messages[-1].get(
"role") == role:
last_msg_content = request.messages[-1]["content"]
for choice in choices:
full_message = last_msg_content + choice.message.content
choice.message.content = full_message
num_prompt_tokens = len(final_res.prompt_token_ids)
num_generated_tokens = sum(
len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
response = ChatCompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
return response
def _load_chat_template(self, chat_template):
if chat_template is not None:
try:
with open(chat_template, "r") as f:
self.tokenizer.chat_template = f.read()
except OSError:
# If opening a file fails, set chat template to be args to
# ensure we decode so our escape are interpreted correctly
self.tokenizer.chat_template = codecs.decode(
chat_template, "unicode_escape")
logger.info(
f"Using supplied chat template:\n{self.tokenizer.chat_template}"
)
elif self.tokenizer.chat_template is not None:
logger.info(
f"Using default chat template:\n{self.tokenizer.chat_template}"
)
else:
logger.warning(
"No chat template provided. Chat API will not work.")
import asyncio
import time
from fastapi import Request
from typing import AsyncGenerator, AsyncIterator, Callable, List, Optional, Dict, Tuple
from vllm.logger import init_logger
from vllm.utils import random_uuid
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (
CompletionRequest,
CompletionResponse,
CompletionResponseChoice,
CompletionResponseStreamChoice,
CompletionStreamResponse,
LogProbs,
UsageInfo,
)
from vllm.outputs import RequestOutput
from vllm.entrypoints.openai.serving_engine import OpenAIServing, LoRA
from vllm.model_executor.guided_decoding import get_guided_decoding_logits_processor
logger = init_logger(__name__)
TypeTokenIDs = List[int]
TypeTopLogProbs = List[Optional[Dict[int, float]]]
TypeCreateLogProbsFn = Callable[
[TypeTokenIDs, TypeTopLogProbs, Optional[int], int], LogProbs]
async def completion_stream_generator(
request: CompletionRequest,
raw_request: Request,
on_abort,
result_generator: AsyncIterator[Tuple[int, RequestOutput]],
create_logprobs_fn: TypeCreateLogProbsFn,
request_id: str,
created_time: int,
model_name: str,
num_prompts: int,
) -> AsyncGenerator[str, None]:
previous_texts = [""] * request.n * num_prompts
previous_num_tokens = [0] * request.n * num_prompts
has_echoed = [False] * request.n * num_prompts
async for prompt_idx, res in result_generator:
# Abort the request if the client disconnects.
if await raw_request.is_disconnected():
await on_abort(f"{request_id}-{prompt_idx}")
raise StopAsyncIteration()
for output in res.outputs:
i = output.index + prompt_idx * request.n
# TODO(simon): optimize the performance by avoiding full text O(n^2) sending.
if request.echo and request.max_tokens == 0:
# only return the prompt
delta_text = res.prompt
delta_token_ids = res.prompt_token_ids
top_logprobs = res.prompt_logprobs
has_echoed[i] = True
elif request.echo and request.max_tokens > 0 and not has_echoed[i]:
# echo the prompt and first token
delta_text = res.prompt + output.text
delta_token_ids = res.prompt_token_ids + output.token_ids
top_logprobs = res.prompt_logprobs + (output.logprobs or [])
has_echoed[i] = True
else:
# return just the delta
delta_text = output.text[len(previous_texts[i]):]
delta_token_ids = output.token_ids[previous_num_tokens[i]:]
top_logprobs = output.logprobs[
previous_num_tokens[i]:] if output.logprobs else None
if request.logprobs is not None:
assert top_logprobs is not None, "top_logprobs must be provided when logprobs is requested"
logprobs = create_logprobs_fn(
token_ids=delta_token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
initial_text_offset=len(previous_texts[i]),
)
else:
logprobs = None
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
finish_reason = output.finish_reason
response_json = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[
CompletionResponseStreamChoice(
index=i,
text=delta_text,
logprobs=logprobs,
finish_reason=finish_reason,
)
]).model_dump_json()
yield f"data: {response_json}\n\n"
if output.finish_reason is not None: # return final usage
logprobs = LogProbs() if request.logprobs is not None else None
prompt_tokens = len(res.prompt_token_ids)
completion_tokens = len(output.token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
response_json = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[
CompletionResponseStreamChoice(
index=i,
text="",
logprobs=logprobs,
finish_reason=output.finish_reason,
)
],
usage=final_usage,
).model_dump_json()
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
def parse_prompt_format(prompt) -> Tuple[bool, list]:
# get the prompt, openai supports the following
# "a string, array of strings, array of tokens, or array of token arrays."
prompt_is_tokens = False
prompts = [prompt] # case 1: a string
if isinstance(prompt, list):
if len(prompt) == 0:
raise ValueError("please provide at least one prompt")
elif isinstance(prompt[0], str):
prompt_is_tokens = False
prompts = prompt # case 2: array of strings
elif isinstance(prompt[0], int):
prompt_is_tokens = True
prompts = [prompt] # case 3: array of tokens
elif isinstance(prompt[0], list) and isinstance(prompt[0][0], int):
prompt_is_tokens = True
prompts = prompt # case 4: array of token arrays
else:
raise ValueError(
"prompt must be a string, array of strings, array of tokens, or array of token arrays"
)
return prompt_is_tokens, prompts
def request_output_to_completion_response(
final_res_batch: List[RequestOutput],
request: CompletionRequest,
create_logprobs_fn: TypeCreateLogProbsFn,
request_id: str,
created_time: int,
model_name: str,
) -> CompletionResponse:
choices = []
num_prompt_tokens = 0
num_generated_tokens = 0
for final_res in final_res_batch:
assert final_res is not None
prompt_token_ids = final_res.prompt_token_ids
prompt_logprobs = final_res.prompt_logprobs
prompt_text = final_res.prompt
for output in final_res.outputs:
if request.echo and request.max_tokens == 0:
token_ids = prompt_token_ids
top_logprobs = prompt_logprobs
output_text = prompt_text
elif request.echo and request.max_tokens > 0:
token_ids = prompt_token_ids + output.token_ids
top_logprobs = prompt_logprobs + output.logprobs
output_text = prompt_text + output.text
else:
token_ids = output.token_ids
top_logprobs = output.logprobs
output_text = output.text
if request.logprobs is not None:
logprobs = create_logprobs_fn(
token_ids=token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
)
else:
logprobs = None
choice_data = CompletionResponseChoice(
index=len(choices),
text=output_text,
logprobs=logprobs,
finish_reason=output.finish_reason,
)
choices.append(choice_data)
num_prompt_tokens += len(prompt_token_ids)
num_generated_tokens += sum(
len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
return CompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
def merge_async_iterators(*iterators):
"""Merge multiple asynchronous iterators into a single iterator.
This method handle the case where some iterators finish before others.
When it yields, it yields a tuple (i, item) where i is the index of the
iterator that yields the item.
"""
queue = asyncio.Queue()
finished = [False] * len(iterators)
async def producer(i, iterator):
async for item in iterator:
await queue.put((i, item))
finished[i] = True
_tasks = [
asyncio.create_task(producer(i, iterator))
for i, iterator in enumerate(iterators)
]
async def consumer():
while not all(finished) or not queue.empty():
item = await queue.get()
yield item
await asyncio.gather(*_tasks)
return consumer()
class OpenAIServingCompletion(OpenAIServing):
def __init__(self,
engine: AsyncLLMEngine,
served_model: str,
lora_modules: Optional[List[LoRA]] = None):
super().__init__(engine=engine,
served_model=served_model,
lora_modules=lora_modules)
async def create_completion(self, request: CompletionRequest,
raw_request: Request):
"""Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/completions/create
for the API specification. This API mimics the OpenAI Completion API.
NOTE: Currently we do not support the following feature:
- suffix (the language models we currently support do not support
suffix)
"""
error_check_ret = await self._check_model(request)
if error_check_ret is not None:
return error_check_ret
# Return error for unsupported features.
if request.suffix is not None:
return self.create_error_response(
"suffix is not currently supported")
model_name = request.model
request_id = f"cmpl-{random_uuid()}"
created_time = int(time.monotonic())
# Schedule the request and get the result generator.
generators = []
try:
sampling_params = request.to_sampling_params()
lora_request = self._maybe_get_lora(request)
guided_decode_logit_processor = (
await get_guided_decoding_logits_processor(
request, self.engine.get_tokenizer()))
if guided_decode_logit_processor is not None:
if sampling_params.logits_processors is None:
sampling_params.logits_processors = []
sampling_params.logits_processors.append(
guided_decode_logit_processor)
prompt_is_tokens, prompts = parse_prompt_format(request.prompt)
for i, prompt in enumerate(prompts):
if prompt_is_tokens:
input_ids = self._validate_prompt_and_tokenize(
request, prompt_ids=prompt)
else:
input_ids = self._validate_prompt_and_tokenize(
request, prompt=prompt)
generators.append(
self.engine.generate(prompt,
sampling_params,
f"{request_id}-{i}",
prompt_token_ids=input_ids,
lora_request=lora_request))
except ValueError as e:
return self.create_error_response(str(e))
result_generator: AsyncIterator[Tuple[
int, RequestOutput]] = merge_async_iterators(*generators)
# Similar to the OpenAI API, when n != best_of, we do not stream the
# results. In addition, we do not stream the results when use beam search.
stream = (request.stream
and (request.best_of is None or request.n == request.best_of)
and not request.use_beam_search)
# Streaming response
if stream:
return completion_stream_generator(request,
raw_request,
self.engine.abort,
result_generator,
self._create_logprobs,
request_id,
created_time,
model_name,
num_prompts=len(prompts))
# Non-streaming response
final_res_batch: RequestOutput = [None] * len(prompts)
async for i, res in result_generator:
if await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await self.engine.abort(f"{request_id}-{i}")
return self.create_error_response("Client disconnected")
final_res_batch[i] = res
response = request_output_to_completion_response(
final_res_batch, request, self._create_logprobs, request_id,
created_time, model_name)
# When user requests streaming but we don't stream, we still need to
# return a streaming response with a single event.
if request.stream:
response_json = response.model_dump_json()
async def fake_stream_generator() -> AsyncGenerator[str, None]:
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
return fake_stream_generator()
return response
import asyncio
from dataclasses import dataclass
from http import HTTPStatus
from typing import Dict, List, Optional, Union
from vllm.logger import init_logger
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (CompletionRequest,
ChatCompletionRequest,
ErrorResponse, LogProbs,
ModelCard, ModelList,
ModelPermission)
from vllm.lora.request import LoRARequest
logger = init_logger(__name__)
@dataclass
class LoRA:
name: str
local_path: str
class OpenAIServing:
def __init__(self,
engine: AsyncLLMEngine,
served_model: str,
lora_modules=Optional[List[LoRA]]):
self.engine = engine
self.served_model = served_model
if lora_modules is None:
self.lora_requests = []
else:
self.lora_requests = [
LoRARequest(
lora_name=lora.name,
lora_int_id=i,
lora_local_path=lora.local_path,
) for i, lora in enumerate(lora_modules, start=1)
]
self.max_model_len = 0
self.tokenizer = None
try:
event_loop = asyncio.get_running_loop()
except RuntimeError:
event_loop = None
if event_loop is not None and event_loop.is_running(
): # If the current is instanced by Ray Serve, there is already a running event loop
event_loop.create_task(self._post_init())
else: # When using single vLLM without engine_use_ray
asyncio.run(self._post_init())
async def _post_init(self):
engine_model_config = await self.engine.get_model_config()
self.max_model_len = engine_model_config.max_model_len
# A separate tokenizer to map token IDs to strings.
self.tokenizer = get_tokenizer(
engine_model_config.tokenizer,
tokenizer_mode=engine_model_config.tokenizer_mode,
trust_remote_code=engine_model_config.trust_remote_code)
async def show_available_models(self) -> ModelList:
"""Show available models. Right now we only have one model."""
model_cards = [
ModelCard(id=self.served_model,
root=self.served_model,
permission=[ModelPermission()])
]
lora_cards = [
ModelCard(id=lora.lora_name,
root=self.served_model,
permission=[ModelPermission()])
for lora in self.lora_requests
]
model_cards.extend(lora_cards)
return ModelList(data=model_cards)
def _create_logprobs(
self,
token_ids: List[int],
top_logprobs: Optional[List[Optional[Dict[int, float]]]] = None,
num_output_top_logprobs: Optional[int] = None,
initial_text_offset: int = 0,
) -> LogProbs:
"""Create OpenAI-style logprobs."""
logprobs = LogProbs()
last_token_len = 0
if num_output_top_logprobs:
logprobs.top_logprobs = []
for i, token_id in enumerate(token_ids):
step_top_logprobs = top_logprobs[i]
if step_top_logprobs is not None:
token_logprob = step_top_logprobs[token_id]
else:
token_logprob = None
token = self.tokenizer.convert_ids_to_tokens(token_id)
logprobs.tokens.append(token)
logprobs.token_logprobs.append(token_logprob)
if len(logprobs.text_offset) == 0:
logprobs.text_offset.append(initial_text_offset)
else:
logprobs.text_offset.append(logprobs.text_offset[-1] +
last_token_len)
last_token_len = len(token)
if num_output_top_logprobs:
logprobs.top_logprobs.append({
self.tokenizer.convert_ids_to_tokens(i): p
for i, p in step_top_logprobs.items()
} if step_top_logprobs else None)
return logprobs
def create_error_response(
self,
message: str,
err_type: str = "BadRequestError",
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> ErrorResponse:
return ErrorResponse(message=message,
type=err_type,
code=status_code.value)
async def _check_model(self, request) -> Optional[ErrorResponse]:
if request.model == self.served_model:
return
if request.model in [lora.lora_name for lora in self.lora_requests]:
return
return self.create_error_response(
message=f"The model `{request.model}` does not exist.",
err_type="NotFoundError",
status_code=HTTPStatus.NOT_FOUND)
def _maybe_get_lora(self, request) -> Optional[LoRARequest]:
if request.model == self.served_model:
return
for lora in self.lora_requests:
if request.model == lora.lora_name:
return lora
# if _check_model has been called earlier, this will be unreachable
raise ValueError("The model `{request.model}` does not exist.")
def _validate_prompt_and_tokenize(
self,
request: Union[ChatCompletionRequest, CompletionRequest],
prompt: Optional[str] = None,
prompt_ids: Optional[List[int]] = None) -> List[int]:
if not (prompt or prompt_ids):
raise ValueError("Either prompt or prompt_ids should be provided.")
if (prompt and prompt_ids):
raise ValueError(
"Only one of prompt or prompt_ids should be provided.")
input_ids = prompt_ids if prompt_ids is not None else self.tokenizer(
prompt).input_ids
token_num = len(input_ids)
if request.max_tokens is None:
request.max_tokens = self.max_model_len - token_num
if token_num + request.max_tokens > self.max_model_len:
raise ValueError(
f"This model's maximum context length is {self.max_model_len} tokens. "
f"However, you requested {request.max_tokens + token_num} tokens "
f"({token_num} in the messages, "
f"{request.max_tokens} in the completion). "
f"Please reduce the length of the messages or completion.", )
else:
return input_ids
...@@ -3,6 +3,9 @@ ...@@ -3,6 +3,9 @@
"""Logging configuration for vLLM.""" """Logging configuration for vLLM."""
import logging import logging
import sys import sys
import os
VLLM_CONFIGURE_LOGGING = int(os.getenv("VLLM_CONFIGURE_LOGGING", "1"))
_FORMAT = "%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s" _FORMAT = "%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s"
_DATE_FORMAT = "%m-%d %H:%M:%S" _DATE_FORMAT = "%m-%d %H:%M:%S"
...@@ -44,13 +47,15 @@ def _setup_logger(): ...@@ -44,13 +47,15 @@ def _setup_logger():
# The logger is initialized when the module is imported. # The logger is initialized when the module is imported.
# This is thread-safe as the module is only imported once, # This is thread-safe as the module is only imported once,
# guaranteed by the Python GIL. # guaranteed by the Python GIL.
_setup_logger() if VLLM_CONFIGURE_LOGGING:
_setup_logger()
def init_logger(name: str): def init_logger(name: str):
# Use the same settings as above for root logger # Use the same settings as above for root logger
logger = logging.getLogger(name) logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG) logger.setLevel(os.getenv("LOG_LEVEL", "DEBUG"))
logger.addHandler(_default_handler) if VLLM_CONFIGURE_LOGGING:
logger.propagate = False logger.addHandler(_default_handler)
logger.propagate = False
return logger return logger
# pylint: disable=unused-argument
import math
from dataclasses import dataclass
from typing import TYPE_CHECKING, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PretrainedConfig
from vllm.config import LoRAConfig
from vllm.lora.punica import add_lora, add_lora_slice, bgmv
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.parallel_utils.communication_op import (
tensor_model_parallel_all_gather,
tensor_model_parallel_all_reduce,
tensor_model_parallel_gather,
)
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
RowParallelLinear,
QKVParallelLinear,
MergedColumnParallelLinear)
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding, ParallelLMHead
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.utils import split_tensor_along_last_dim
if TYPE_CHECKING:
pass
def _apply_lora(
x: torch.Tensor,
lora_a_stacked: torch.Tensor,
lora_b_stacked: torch.Tensor,
indices: torch.Tensor,
output: torch.Tensor,
):
"""Applies lora to each input.
This method applies all loras to each input. It uses the
indices vector to determine which lora yields the
correct output. An index of -1 means no lora should be
applied. This method adds the final lora results to the
output.
Input shapes:
x: (batch_size, hidden_dim)
lora_a_stacked: (num_loras, lora_rank, hidden_dim)
lora_b_stacked: (num_loras, output_dim, lora_rank)
indices: (batch_size)
output: (batch_size, output_dim)
"""
org_output = output
x = x.view(-1, x.shape[-1])
output = output.view(-1, output.shape[-1])
indices = indices.view(-1)
add_lora(output, x, lora_a_stacked, lora_b_stacked, indices, 0, 1.0)
return output.view_as(org_output)
def _apply_lora_packed_nslice(
x: torch.Tensor,
lora_a_stacked: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
lora_b_stacked: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
indices: torch.Tensor,
output: torch.Tensor,
output_slices: Tuple[int, ...],
):
"""Applies lora to each input.
This method applies all loras to each input. It uses the
indices vector to determine which lora yields the
correct output. An index of -1 means no lora should be
applied. This method adds the final lora results to the
output.
This method is used for layers that are composed of multiple sublayers
(slices) packed together.
Input shapes:
x: (batch_size, hidden_dim)
lora_a_stacked: 3 element tuple of (num_loras, lora_rank, hidden_dim)
lora_b_stacked: 3 element tuple of (num_loras, output_dim, lora_rank)
indices: (batch_size)
output: (batch_size, q_slice_size + 2*kv_slice_size)
output_slices: n-1 element tuple of (slice_size...), where n is number of slices
"""
org_output = output
x = x.view(-1, x.shape[-1])
output = output.view(-1, output.shape[-1])
indices = indices.view(-1)
offset_left = 0
for slice_idx in range(len(output_slices)):
add_lora_slice(output, x, lora_a_stacked[slice_idx],
lora_b_stacked[slice_idx], indices, 0, 1.0, offset_left,
output_slices[slice_idx])
offset_left += output_slices[slice_idx]
return output.view_as(org_output)
@dataclass
class LoRAMapping:
# Per every token in input_ids:
index_mapping: Tuple[int, ...]
# Per sampled token:
prompt_mapping: Tuple[int, ...]
def __post_init__(self):
self.index_mapping = tuple(self.index_mapping)
self.prompt_mapping = tuple(self.prompt_mapping)
class BaseLayerWithLoRA(nn.Module):
def create_lora_weights(self, max_loras: int, lora_config: LoRAConfig,
model_config: PretrainedConfig) -> None:
"""Initializes lora matrices."""
...
def reset_lora(self, index: int):
"""Resets the lora weights at index back to 0."""
...
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
):
"""Overwrites lora tensors at index."""
...
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
indices_len: List[int],
):
"""Sets the mapping indices."""
...
class VocabParallelEmbeddingWithLoRA(BaseLayerWithLoRA):
def __init__(self, base_layer: VocabParallelEmbedding) -> None:
super().__init__()
self.base_layer = base_layer
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
lora_vocab_start_idx = self.base_layer.org_vocab_size
weights_idx = None
if self.base_layer.vocab_end_index > lora_vocab_start_idx:
# We can start adding lora weights
weights_idx = max(
lora_vocab_start_idx - self.base_layer.vocab_start_index, 0)
self.embeddings_slice = (self.base_layer.vocab_start_index -
self.base_layer.org_vocab_size +
weights_idx,
self.base_layer.vocab_end_index -
self.base_layer.org_vocab_size)
self.embeddings_weights = self.base_layer.weight.data[weights_idx:]
self.embeddings_weights.fill_(0)
else:
self.embeddings_slice = None
self.embeddings_weights = None
self.embeddings_tensors = torch.zeros(
(
max_loras,
lora_config.lora_extra_vocab_size,
self.base_layer.embedding_dim,
),
dtype=self.base_layer.weight.dtype,
device=self.base_layer.weight.device,
)
self.lora_a_stacked = torch.zeros(
(
max_loras,
self.base_layer.org_vocab_size +
lora_config.lora_extra_vocab_size,
lora_config.max_lora_rank,
),
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
)
self.lora_b_stacked = torch.zeros(
(
max_loras,
1,
self.base_layer.embedding_dim,
lora_config.max_lora_rank,
),
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
)
self.lora_a_stacked_2d = self.lora_a_stacked.view(
self.lora_a_stacked.shape[0] * self.lora_a_stacked.shape[1],
self.lora_a_stacked.shape[2],
)
self.indices: Optional[torch.Tensor] = None
self.indices_len: Optional[List[int]] = None
self.embeddings_indices = None
def reset_lora(self, index: int):
self.lora_a_stacked[index] = 0
self.lora_b_stacked[index] = 0
self.embeddings_tensors[index] = 0
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
):
self.reset_lora(index)
self.lora_a_stacked[index, :lora_a.shape[0], :lora_a.shape[1]].copy_(
lora_a, non_blocking=True)
self.lora_b_stacked[index,
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
lora_b.T, non_blocking=True)
if embeddings_tensor is not None:
self.embeddings_tensors[
index, :embeddings_tensor.shape[0], :embeddings_tensor.
shape[1]].copy_(embeddings_tensor, non_blocking=True)
if self.embeddings_slice is not None:
# TODO(yard1): Optimize this copy, we don't need to copy
# everything, just the modified part
embeddings = self.embeddings_tensors.view(
self.embeddings_tensors.shape[0] *
self.embeddings_tensors.shape[1],
self.embeddings_tensors.shape[2]
)[self.embeddings_slice[0]:self.embeddings_slice[1]]
self.embeddings_weights[:embeddings.shape[0]].copy_(embeddings)
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
indices_len: List[int],
):
self.indices = base_indices
self.embeddings_indices = embeddings_indices
self.indices_len = indices_len
def forward(self, x: torch.Tensor) -> torch.Tensor:
added_tokens_mask = x > self.base_layer.org_vocab_size - 1
indices = self.embeddings_indices[1][:self.indices_len[3]].view_as(x)
full_lora_a_embeddings = F.embedding(
x + indices,
self.lora_a_stacked_2d,
)
indices = self.embeddings_indices[0][:self.indices_len[3]].view_as(x)
full_output = self.base_layer.forward(
x.add_(indices * added_tokens_mask))
full_output_org = full_output
if full_output.ndim == 3:
full_output = full_output.view(
full_output.shape[0] * full_output.shape[1], -1)
if full_lora_a_embeddings.ndim == 3:
full_lora_a_embeddings = full_lora_a_embeddings.view(
full_lora_a_embeddings.shape[0] *
full_lora_a_embeddings.shape[1], -1)
bgmv(full_output, full_lora_a_embeddings, self.lora_b_stacked,
self.indices[:self.indices_len[0]], 0, 1.0)
return full_output.view_as(full_output_org)
class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA):
def __init__(self, base_layer: ColumnParallelLinear) -> None:
super().__init__()
self.base_layer = base_layer
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
self.lora_a_stacked = torch.zeros(
max_loras,
1,
lora_config.max_lora_rank,
self.base_layer.weight.shape[1],
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
)
self.lora_b_stacked = torch.zeros(
max_loras,
1,
self.base_layer.weight.shape[0],
lora_config.max_lora_rank,
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
)
self.indices: Optional[torch.Tensor] = None
self.indices_len: Optional[List[int]] = None
self.output_dim = self.lora_b_stacked.shape[1]
def reset_lora(self, index: int):
self.lora_a_stacked[index] = 0
self.lora_b_stacked[index] = 0
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
):
self.reset_lora(index)
self.lora_a_stacked[index,
0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
lora_a.T, non_blocking=True)
self.lora_b_stacked[index,
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
lora_b.T, non_blocking=True)
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
indices_len: List[int],
):
self.indices = base_indices
self.indices_len = indices_len
def apply_weights(self, x: torch.Tensor,
bias: Optional[torch.Tensor]) -> torch.Tensor:
output = self.base_layer.linear_method.apply_weights(
self.base_layer.linear_weights, x, bias)
_apply_lora(
x,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[0]],
output,
)
return output
def forward(self, input_):
"""Forward of ColumnParallelLinear
Args:
input_: Tensor whose last dimension is `input_size`.
Returns:
- output
- bias
"""
bias = (self.base_layer.bias
if not self.base_layer.skip_bias_add else None)
# Matrix multiply.
output_parallel = self.apply_weights(input_, bias)
if self.base_layer.gather_output:
# All-gather across the partitions.
output = tensor_model_parallel_all_gather(output_parallel)
else:
output = output_parallel
output_bias = (self.base_layer.bias
if self.base_layer.skip_bias_add else None)
return output, output_bias
@property
def linear_weights(self):
return self.base_layer.linear_weights
class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
"""ColumnParallelLinear layer that is composed of 2 sublayers (slices)
packed together (eg. gate_proj + up_proj -> gate_up_proj).
This means we have 2 LoRAs, each applied to one half of the layer.
Both slices must have the same size.
"""
def __init__(self, base_layer: MergedColumnParallelLinear) -> None:
super().__init__(base_layer)
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
n_slices = 2
if not (len(self.base_layer.output_sizes) == n_slices
and self.base_layer.output_sizes[0]
== self.base_layer.output_sizes[1]):
raise ValueError(
"LoRAColumnParallelLinear2Slice requires 2 slices with "
"the same size.")
self.tp_size = get_tensor_model_parallel_world_size()
self.lora_a_stacked = tuple(
torch.zeros(
max_loras,
1,
lora_config.max_lora_rank,
self.base_layer.weight.shape[1],
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
) for _ in range(n_slices))
self.lora_b_stacked = tuple(
torch.zeros(
max_loras,
1,
self.base_layer.weight.shape[0] // 2,
lora_config.max_lora_rank,
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
) for _ in range(n_slices))
self.indices: Optional[torch.Tensor] = None
self.output_dim = self.lora_b_stacked[0].shape[2]
def reset_lora(self, index: int):
self.lora_a_stacked[0][index] = 0
self.lora_a_stacked[1][index] = 0
self.lora_b_stacked[0][index] = 0
self.lora_b_stacked[1][index] = 0
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
):
self.reset_lora(index)
if self.tp_size > 1:
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
shard_size = self.output_dim
start_idx = tensor_model_parallel_rank * shard_size
end_idx = (tensor_model_parallel_rank + 1) * shard_size
lora_b = lora_b[0][:,
start_idx:end_idx], lora_b[1][:,
start_idx:end_idx]
if lora_a[0] is not None:
self.lora_a_stacked[0][
index, 0, :lora_a[0].shape[1], :lora_a[0].shape[0]].copy_(
lora_a[0].T, non_blocking=True)
self.lora_b_stacked[0][
index, 0, :lora_b[0].shape[1], :lora_b[0].shape[0]].copy_(
lora_b[0].T, non_blocking=True)
if lora_a[1] is not None:
self.lora_a_stacked[1][
index, 0, :lora_a[1].shape[1], :lora_a[1].shape[0]].copy_(
lora_a[1].T, non_blocking=True)
self.lora_b_stacked[1][
index, 0, :lora_b[1].shape[1], :lora_b[1].shape[0]].copy_(
lora_b[1].T, non_blocking=True)
def apply_weights(self, x: torch.Tensor,
bias: Optional[torch.Tensor]) -> torch.Tensor:
output = self.base_layer.linear_method.apply_weights(
self.base_layer.linear_weights, x, bias)
_apply_lora_packed_nslice(
x,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[0]],
output,
(self.output_dim, self.output_dim),
)
return output
class QKVParallelLinearWithLora(ColumnParallelLinearWithLoRA):
"""ColumnParallelLinear layer that is composed of 3 sublayers (slices)
packed together in qkv proj fashion
(q_proj + k_proj + v_proj -> qkv_proj).
This means we have 3 LoRAs, each applied to one slice of the layer.
Q slice may have different shape than K and V slices (which both have
the same shape).
"""
def __init__(self, base_layer: QKVParallelLinear) -> None:
super().__init__(base_layer)
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
self.tp_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
self.q_proj_shard_size = (self.base_layer.num_heads *
self.base_layer.head_size)
self.kv_proj_shard_size = (self.base_layer.num_kv_heads *
self.base_layer.head_size)
self.q_shard_id = tp_rank
self.kv_shard_id = tp_rank // self.base_layer.num_kv_head_replicas
# q, k, v
self.lora_a_stacked = (
torch.zeros(
max_loras,
1,
lora_config.max_lora_rank,
self.base_layer.weight.shape[1],
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
),
torch.zeros(
max_loras,
1,
lora_config.max_lora_rank,
self.base_layer.weight.shape[1],
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
),
torch.zeros(
max_loras,
1,
lora_config.max_lora_rank,
self.base_layer.weight.shape[1],
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
),
)
self.lora_b_stacked = (
torch.zeros(
max_loras,
1,
self.q_proj_shard_size,
lora_config.max_lora_rank,
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
),
torch.zeros(
max_loras,
1,
self.kv_proj_shard_size,
lora_config.max_lora_rank,
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
),
torch.zeros(
max_loras,
1,
self.kv_proj_shard_size,
lora_config.max_lora_rank,
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
),
)
self.output_slices = (self.q_proj_shard_size, self.kv_proj_shard_size,
self.kv_proj_shard_size)
self.packed_indices: Optional[torch.Tensor] = None
self.standard_indices: Optional[torch.Tensor] = None
self.indices_len: Optional[List[int]] = None
def reset_lora(self, index: int):
self.lora_a_stacked[0][index] = 0
self.lora_b_stacked[0][index] = 0
self.lora_a_stacked[1][index] = 0
self.lora_b_stacked[1][index] = 0
self.lora_a_stacked[2][index] = 0
self.lora_b_stacked[2][index] = 0
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
):
self.reset_lora(index)
if self.tp_size > 1:
if lora_b[0] is not None:
lora_b_q = lora_b[0][:, self.q_proj_shard_size *
self.q_shard_id:self.q_proj_shard_size *
(self.q_shard_id + 1)]
self.lora_b_stacked[0][
index, 0, :lora_b_q.shape[1], :lora_b_q.shape[0]].copy_(
lora_b_q.T, non_blocking=True)
if lora_b[1] is not None:
lora_b_k = lora_b[1][:, self.kv_proj_shard_size *
self.kv_shard_id:self.kv_proj_shard_size *
(self.kv_shard_id + 1)]
self.lora_b_stacked[1][
index, 0, :lora_b_k.shape[1], :lora_b_k.shape[0]].copy_(
lora_b_k.T, non_blocking=True)
if lora_b[2] is not None:
lora_b_v = lora_b[2][:, self.kv_proj_shard_size *
self.kv_shard_id:self.kv_proj_shard_size *
(self.kv_shard_id + 1)]
self.lora_b_stacked[2][
index, 0, :lora_b_v.shape[1], :lora_b_v.shape[0]].copy_(
lora_b_v.T, non_blocking=True)
else:
if lora_b[0] is not None:
self.lora_b_stacked[0][
index, 0, :lora_b[0].shape[1], :lora_b[0].shape[0]].copy_(
lora_b[0].T, non_blocking=True)
if lora_b[1] is not None:
self.lora_b_stacked[1][
index, 0, :lora_b[1].shape[1], :lora_b[1].shape[0]].copy_(
lora_b[1].T, non_blocking=True)
if lora_b[2] is not None:
self.lora_b_stacked[2][
index, 0, :lora_b[2].shape[1], :lora_b[2].shape[0]].copy_(
lora_b[2].T, non_blocking=True)
if lora_a[0] is not None:
self.lora_a_stacked[0][
index, 0, :lora_a[0].shape[1], :lora_a[0].shape[0]].copy_(
lora_a[0].T, non_blocking=True)
if lora_a[1] is not None:
self.lora_a_stacked[1][
index, 0, :lora_a[1].shape[1], :lora_a[1].shape[0]].copy_(
lora_a[1].T, non_blocking=True)
if lora_a[2] is not None:
self.lora_a_stacked[2][
index, 0, :lora_a[2].shape[1], :lora_a[2].shape[0]].copy_(
lora_a[2].T, non_blocking=True)
def apply_weights(self, x: torch.Tensor,
bias: Optional[torch.Tensor]) -> torch.Tensor:
output = self.base_layer.linear_method.apply_weights(
self.base_layer.linear_weights, x, bias)
_apply_lora_packed_nslice(
x,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[0]],
output,
self.output_slices,
)
return output
class RowParallelLinearWithLoRA(BaseLayerWithLoRA):
def __init__(self, base_layer: RowParallelLinear) -> None:
super().__init__()
self.base_layer = base_layer
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
self.lora_a_stacked = torch.zeros(
(
max_loras,
1,
lora_config.max_lora_rank,
self.base_layer.weight.shape[1],
),
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
)
self.lora_b_stacked = torch.zeros(
(
max_loras,
1,
self.base_layer.weight.shape[0],
lora_config.max_lora_rank,
),
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
)
self.indices: Optional[torch.Tensor] = None
self.indices_len: Optional[List[int]] = None
def reset_lora(self, index: int):
self.lora_a_stacked[index] = 0
self.lora_b_stacked[index] = 0
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
):
self.reset_lora(index)
if self.base_layer.tp_size > 1:
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
shard_size = self.base_layer.weight.shape[1]
start_idx = tensor_model_parallel_rank * shard_size
end_idx = (tensor_model_parallel_rank + 1) * shard_size
lora_a = lora_a[start_idx:end_idx, :]
self.lora_a_stacked[index,
0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
lora_a.T, non_blocking=True)
self.lora_b_stacked[index,
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
lora_b.T, non_blocking=True)
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
indices_len: List[int],
):
self.indices = base_indices
self.indices_len = indices_len
def apply_weights(self, x: torch.Tensor) -> torch.Tensor:
output = self.base_layer.linear_method.apply_weights(
self.base_layer.linear_weights, x)
_apply_lora(
x,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[0]],
output,
)
return output
def forward(self, input_):
"""Forward of RowParallelLinear
Args:
input_: tensor whose last dimension is `input_size`. If
`input_is_parallel` is set, then the last dimension
is `input_size // tp_size`.
Returns:
- output
- bias
"""
# Set up backprop all-reduce.
if self.base_layer.input_is_parallel:
input_parallel = input_
else:
# TODO: simplify code below
tp_rank = get_tensor_model_parallel_rank()
splitted_input = split_tensor_along_last_dim(
input_, num_partitions=self.base_layer.tp_size)
input_parallel = splitted_input[tp_rank].contiguous()
# Matrix multiply.
output_parallel = self.apply_weights(input_parallel)
if self.base_layer.reduce_results and self.base_layer.tp_size > 1:
output_ = tensor_model_parallel_all_reduce(output_parallel)
else:
output_ = output_parallel
if not self.base_layer.skip_bias_add:
output = (output_ + self.base_layer.bias
if self.base_layer.bias is not None else output_)
output_bias = None
else:
output = output_
output_bias = self.base_layer.bias
return output, output_bias
@property
def weight(self):
return self.base_layer.weight
class SamplerWithLoRA(BaseLayerWithLoRA):
def __init__(
self,
base_layer: Sampler,
hidden_size: int,
dtype: torch.dtype,
device: torch.device,
) -> None:
super().__init__()
self.base_layer = base_layer
self.hidden_size = hidden_size
self.dtype = dtype
self.device = device
@property
def logits_as_hidden_states(self):
return self.base_layer.logits_as_hidden_states
@property
def vocab_size(self):
return self.base_layer.vocab_size
@property
def org_vocab_size(self):
return self.base_layer.org_vocab_size
@property
def include_gpu_probs_tensor(self):
return self.base_layer.include_gpu_probs_tensor
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> None:
# Keep this in sync with csrc/punica/bgmv/bgmv_config.h
if 32000 < self.base_layer.vocab_size > 33024:
raise ValueError(
"When using LoRA, vocab size must be 32000 >= vocab_size <= 33024"
)
self.lora_a_stacked = torch.zeros(
(
max_loras,
1,
lora_config.max_lora_rank,
self.hidden_size,
),
dtype=lora_config.lora_dtype,
device=self.device,
)
self.lora_b_stacked = torch.zeros(
(
max_loras,
1,
# Pad for kernel compatibility
math.ceil(self.base_layer.vocab_size /
lora_config.lora_vocab_padding_size) *
lora_config.lora_vocab_padding_size,
lora_config.max_lora_rank,
),
dtype=lora_config.lora_dtype,
device=self.device,
)
self.embeddings_tensors = torch.full(
(max_loras, lora_config.lora_extra_vocab_size, self.hidden_size),
fill_value=float("-inf"),
dtype=self.dtype,
device=self.device,
)
self.indices = None
self.indices_padded = None
self.indices_len = None
def reset_lora(self, index: int):
self.lora_a_stacked[index] = 0
self.lora_b_stacked[index] = 0
self.embeddings_tensors[index] = float("-inf")
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
):
self.reset_lora(index)
self.lora_a_stacked[index,
0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
lora_a.T, non_blocking=True)
self.lora_b_stacked[index,
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
lora_b.T, non_blocking=True)
if embeddings_tensor is not None:
self.embeddings_tensors[
index, :embeddings_tensor.shape[0], :embeddings_tensor.
shape[1], ] = embeddings_tensor
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
indices_len: List[int],
):
self.indices = sampler_indices
self.indices_padded = sampler_indices_padded
self.indices_len = indices_len
def _get_logits(
self,
hidden_states: torch.Tensor,
embedding: torch.Tensor,
embedding_bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
# Get the logits for the next tokens.
logits = torch.matmul(hidden_states, embedding.t())
if embedding_bias is not None:
logits += embedding_bias
logits = tensor_model_parallel_gather(logits)
if logits is None:
return None
lora_logits = torch.empty(
self.embeddings_tensors.shape[0] + 1,
self.embeddings_tensors.shape[1],
hidden_states.shape[0],
dtype=self.embeddings_tensors.dtype,
device=self.embeddings_tensors.device,
)
torch.matmul(self.embeddings_tensors,
hidden_states.T,
out=lora_logits[:-1])
lora_logits[-1] = float("-inf")
lora_logits = lora_logits.mT
lora_logits = (lora_logits.reshape(
lora_logits.shape[0] * lora_logits.shape[1],
lora_logits.shape[2],
).index_select(0,
self.indices_padded[:self.indices_len[2]]).nan_to_num_(
nan=float("-inf"),
posinf=float("inf"),
neginf=float("-inf")))
logits[:,
self.base_layer.org_vocab_size:self.base_layer.org_vocab_size +
lora_logits.shape[1]] = lora_logits
_apply_lora(
hidden_states,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[1]],
logits,
)
# Remove paddings in vocab (if any).
logits = logits[:, :self.base_layer.vocab_size]
return logits
def forward(self, *args, **kwargs):
return type(self.base_layer).forward(self, *args, **kwargs)
def from_layer(
layer: nn.Module,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> BaseLayerWithLoRA:
supported_layer_types = {
VocabParallelEmbedding: VocabParallelEmbeddingWithLoRA,
ColumnParallelLinear: ColumnParallelLinearWithLoRA,
QKVParallelLinear: QKVParallelLinearWithLora,
MergedColumnParallelLinear: MergedColumnParallelLinearWithLoRA,
RowParallelLinear: RowParallelLinearWithLoRA,
}
for src_layer_type, lora_layer_type in supported_layer_types.items():
if type(layer) is src_layer_type: # pylint: disable=unidiomatic-typecheck
ret = lora_layer_type(layer)
ret.create_lora_weights(max_loras, lora_config, model_config)
return ret
return layer
def from_layer_sampler(
layer: Sampler,
lm_head: ParallelLMHead,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> SamplerWithLoRA:
ret = SamplerWithLoRA(layer, lm_head.embedding_dim, lm_head.weight.dtype,
lm_head.weight.device)
ret.create_lora_weights(max_loras, lora_config, model_config)
return ret
from typing import List, Optional
import torch
from vllm.utils import in_wsl
class LoRALayerWeights:
"""LoRA weights for a layer composed of two low rank matrixes."""
def __init__(
self,
module_name: str,
rank: int,
lora_alpha: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor] = None,
scaling: Optional[float] = None,
) -> None:
self.module_name = module_name
self.rank = rank
self.lora_alpha = lora_alpha
self.lora_a = lora_a
self.lora_b = lora_b
self.embeddings_tensor = embeddings_tensor
if scaling is None:
self.scaling = self.lora_alpha / self.rank
else:
self.scaling = scaling
def optimize(self) -> "LoRALayerWeights":
"""Optimize the LoRA by merging the scaling into lora_b."""
if self.scaling == 1:
return
self.lora_b *= self.scaling
self.scaling = 1
return self
@property
def input_dim(self) -> int:
return self.lora_a.shape[0]
@property
def output_dim(self) -> int:
return self.lora_b.shape[1]
@property
def is_packed(self) -> bool:
return False
@property
def extra_vocab_size(self) -> int:
return self.embeddings_tensor.shape[
0] if self.embeddings_tensor is not None else 0
@classmethod
def create_dummy_lora_weights(
cls,
module_name: str,
input_dim: int,
output_dim: int,
rank: int,
dtype: torch.dtype,
device: torch.device,
embeddings_tensor_dim: Optional[int] = None) -> "LoRALayerWeights":
pin_memory = str(device) == "cpu" and not in_wsl()
lora_a = torch.zeros([input_dim, rank],
dtype=dtype,
device=device,
pin_memory=pin_memory)
lora_b = torch.zeros([rank, output_dim],
dtype=dtype,
device=device,
pin_memory=pin_memory)
embeddings_tensor = torch.rand(
10,
embeddings_tensor_dim,
dtype=dtype,
device=device,
pin_memory=pin_memory) if embeddings_tensor_dim else None
return cls(
module_name,
rank=rank,
lora_alpha=1,
lora_a=lora_a,
lora_b=lora_b,
embeddings_tensor=embeddings_tensor,
)
class PackedLoRALayerWeights(LoRALayerWeights):
"""LoRA used for packed layers (eg. qkv_proj)."""
def __init__(
self,
module_name: str,
rank: int,
lora_alphas: List[int],
lora_a: List[torch.Tensor],
lora_b: List[torch.Tensor],
scaling: Optional[List[float]] = None,
) -> None:
super().__init__(
module_name=module_name,
rank=rank,
lora_alpha=0,
lora_a=lora_a,
lora_b=lora_b,
scaling=scaling,
embeddings_tensor=None,
)
self.lora_alphas = lora_alphas
if scaling is None:
self.scaling = [
lora_alpha / self.rank for lora_alpha in self.lora_alphas
]
@classmethod
def pack(cls, loras: List["LoRALayerWeights"]) -> "PackedLoRALayerWeights":
"""Pack a list of LoRAs into a single LoRA.
If LoRA is None, it signifies that the submodule does not have a LoRA.
"""
first_lora = next(lora for lora in loras if lora is not None)
for lora in loras:
if lora is None:
continue
lora.optimize()
rank = first_lora.rank
module_name = first_lora.module_name
obj = cls(
module_name,
rank,
[lora.lora_alpha if lora is not None else None for lora in loras],
[lora.lora_a if lora is not None else None for lora in loras],
[lora.lora_b if lora is not None else None for lora in loras],
scaling=[1 if lora is not None else None for lora in loras])
return obj
def optimize(self) -> "PackedLoRALayerWeights":
"""Optimize the LoRA by merging the scaling into lora_b."""
for i in range(len(self.lora_b)):
if self.scaling[i] == 1 or self.lora_b[i] is None:
continue
self.lora_b[i] *= self.scaling[i]
self.scaling[i] = 1
return self
@property
def input_dim(self) -> int:
raise NotImplementedError()
@property
def output_dim(self) -> int:
raise NotImplementedError()
@property
def is_packed(self) -> bool:
return True
import copy
import json
import logging
import math
import os
import re
from typing import (Any, Callable, Dict, Hashable, List, Optional, Tuple, Type)
import safetensors.torch
import torch
from torch import nn
from vllm.config import LoRAConfig
from vllm.utils import LRUCache, in_wsl
from vllm.lora.layers import BaseLayerWithLoRA, LoRAMapping, from_layer, from_layer_sampler
from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights
from vllm.lora.utils import parse_fine_tuned_lora_name, replace_submodule
logger = logging.getLogger(__name__)
_GLOBAL_LORA_ID = 0
def convert_mapping(
mapping: LoRAMapping, lora_index_to_id: List[Optional[int]],
max_loras: int, vocab_size: int, extra_vocab_size: int
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, List[int]]:
"""Converts LoRAMapping to index tensors.
Args:
mapping: LoRAMapping mapping rows in a batch to LoRA ids.
lora_index_to_id: List mapping LoRA ids to LoRA indices.
max_loras: Maximum number of LoRAs.
vocab_size: Model vocab size.
extra_vocab_size: Extra vocab size each LoRA can have.
Returns:
A tuple of tensors:
base_indices: Tensor of shape [batch_size] mapping batch rows to
LoRA indices.
sampler_indices: Tensor of shape [batch_size] mapping requests to
LoRA indices for sampler. For generation, this will be the
same as base_indicies. For prefill, this will map requests
to LoRA indices.
sampler_indices_padded: Tensor of shape [batch_size] mapping
requests to LoRA indices for sampler with padding.
Same as sampler_indicies, but -1 is replaced with
max_loras.
embeddings_indices: Tensor of shape [2, batch_size] mapping
requests to embedding indices. First row is for embeddings
added by the LoRAs, second row is for the LoRA.lora_a
embeddings.
indices_len: List of lengths of the above tensors.
"""
indices = list(mapping.index_mapping).copy()
embedding_indices = indices.copy()
lora_indices = indices.copy()
prompt_mapping = [
lora_index_to_id.index(x) if x > 0 else -1
for x in mapping.prompt_mapping
]
lora_idx = None
for i in range(len(indices)):
# TODO index can be slow. optimize
lora_idx = (lora_index_to_id.index(indices[i])
if indices[i] > 0 else -1)
embedding_indices[i] = lora_idx if indices[i] > 0 else 0
indices[i] = i
lora_indices[i] = lora_idx
indices = torch.tensor([indices, lora_indices, embedding_indices],
dtype=torch.long,
device="cuda")
prompt_mapping = torch.tensor(prompt_mapping,
device="cuda",
dtype=torch.long)
embeddings_indices = torch.stack([
indices[2] * extra_vocab_size,
indices[2] * (vocab_size + extra_vocab_size)
])
embeddings_indices[embeddings_indices == -1] = max_loras - 1
base_indices = indices[1]
sampler_indices = prompt_mapping
sampler_indices_padded = sampler_indices.clone()
sampler_indices_padded[sampler_indices_padded == -1] = max_loras - 1
sampler_indices_padded = (
torch.arange(
0, len(sampler_indices_padded), device="cuda", dtype=torch.long) +
(sampler_indices_padded * len(sampler_indices_padded)))
indices_len = (base_indices.shape[-1], sampler_indices.shape[-1],
sampler_indices_padded.shape[-1],
embeddings_indices.shape[-1])
return (base_indices, sampler_indices, sampler_indices_padded,
embeddings_indices, indices_len)
def get_lora_id():
global _GLOBAL_LORA_ID
_GLOBAL_LORA_ID += 1
return _GLOBAL_LORA_ID
class LoRAModel:
"""A LoRA fine-tuned model."""
def __init__(
self,
lora_model_id: int,
rank: int,
loras: Dict[str, LoRALayerWeights],
) -> None:
self.id = lora_model_id
assert (lora_model_id >
0), f"a valid lora id should be greater than 0, got {self.id}"
self.rank = rank
self.loras: Dict[str, LoRALayerWeights] = loras
@property
def extra_vocab_size(self) -> int:
return max(lora.extra_vocab_size
for lora in self.loras.values()) if self.loras else 0
def get_lora(self, module_name: str) -> Optional[LoRALayerWeights]:
"""Get LoRA for a given module by name"""
return self.loras.get(module_name, None)
# (yard1): TODO see if we can derive target_embedding_padding automatically
@classmethod
def from_lora_tensors(
cls,
lora_model_id: int,
rank: int,
lora_alpha: int,
tensors: Dict[str, torch.Tensor],
device: str = "cuda",
dtype: Optional[torch.dtype] = None,
embeddings: Optional[Dict[str, torch.Tensor]] = None,
target_embedding_padding: Optional[int] = None,
embedding_modules: Optional[Dict[str, str]] = None,
embedding_padding_modules: Optional[List[str]] = None,
) -> "LoRAModel":
"""Create a LoRAModel from a dictionary of tensors."""
pin_memory = str(device) == "cpu" and not in_wsl()
loras: Dict[str, LoRALayerWeights] = {}
for tensor_name, tensor in tensors.items():
module_name, is_lora_a = parse_fine_tuned_lora_name(tensor_name)
if module_name not in loras:
lora_embeddings_tensor = None
if embeddings:
embeddings_module = next(
(k for k in embedding_modules if k in module_name),
None)
if embeddings_module:
lora_embeddings_tensor = embeddings[
embedding_modules[embeddings_module]].to(
device=device, dtype=dtype)
if pin_memory:
lora_embeddings_tensor = (
lora_embeddings_tensor.pin_memory())
loras[module_name] = LoRALayerWeights(module_name, rank,
lora_alpha, None, None,
lora_embeddings_tensor)
if is_lora_a:
loras[module_name].lora_a = tensor.to(device=device,
dtype=dtype).t()
if pin_memory:
loras[module_name].lora_a = loras[
module_name].lora_a.pin_memory()
else:
loras[module_name].lora_b = tensor.to(device=device,
dtype=dtype).t()
if any(name in module_name
for name in embedding_padding_modules
) and target_embedding_padding is not None:
lora_b = loras[module_name].lora_b
assert target_embedding_padding >= lora_b.shape[1]
addition = target_embedding_padding - lora_b.shape[1]
loras[module_name].lora_b = torch.nn.functional.pad(
lora_b, (0, addition))
if pin_memory:
loras[module_name].lora_b = loras[
module_name].lora_b.pin_memory()
for lora in loras.values():
lora.optimize()
return cls(lora_model_id, rank, loras)
@classmethod
def from_local_checkpoint(
cls,
lora_dir: str,
lora_model_id: Optional[int] = None,
device: str = "cuda",
dtype: Optional[torch.dtype] = None,
target_embedding_padding: Optional[int] = None,
embedding_modules: Optional[Dict[str, str]] = None,
embedding_padding_modules: Optional[List[str]] = None,
) -> "LoRAModel":
"""Create a LoRAModel from a local checkpoint."""
lora_config_path = os.path.join(lora_dir, "adapter_config.json")
lora_tensor_path = os.path.join(lora_dir, "adapter_model.safetensors")
lora_bin_file_path = os.path.join(lora_dir, "adapter_model.bin")
new_embeddings_tensor_path = os.path.join(
lora_dir, "new_embeddings.safetensors")
new_embeddings_bin_file_path = os.path.join(lora_dir,
"new_embeddings.bin")
if os.path.isfile(lora_tensor_path):
tensors = safetensors.torch.load_file(lora_tensor_path)
elif os.path.isfile(lora_bin_file_path):
tensors = torch.load(lora_bin_file_path)
else:
raise ValueError(f"{lora_dir} doesn't contain tensors")
embeddings = None
if os.path.isfile(new_embeddings_tensor_path):
embeddings = safetensors.torch.load_file(
new_embeddings_tensor_path)
elif os.path.isfile(new_embeddings_bin_file_path):
embeddings = torch.load(new_embeddings_bin_file_path)
with open(lora_config_path) as f:
config = json.load(f)
rank = config["r"]
lora_alpha = config["lora_alpha"]
return cls.from_lora_tensors(
lora_model_id=get_lora_id()
if lora_model_id is None else lora_model_id,
rank=rank,
lora_alpha=lora_alpha,
tensors=tensors,
device=device,
dtype=dtype,
embeddings=embeddings,
target_embedding_padding=target_embedding_padding,
embedding_modules=embedding_modules,
embedding_padding_modules=embedding_padding_modules,
)
class LoRAModelManager:
"""A manager that manages multiple LoRA-fine-tuned models."""
def __init__(
self,
model: nn.Module,
max_num_seqs: int,
max_num_batched_tokens: int,
vocab_size: int,
lora_config: LoRAConfig,
):
"""Create a LoRAModelManager and adapter for a given model.
Args:
model: the model to be adapted.
max_num_seqs: the maximum number of sequences model can run in a
single batch.
max_num_batched_tokens: the maximum number of tokens model can run
in a single batch.
vocab_size: the vocab size of the model.
lora_config: the LoRA configuration.
"""
self.lora_config = lora_config
self.max_num_seqs = max_num_seqs
assert self.capacity >= self.lora_slots
self.max_num_batched_tokens = math.ceil(max_num_batched_tokens / 8) * 8
self.lora_index_to_id: List[Optional[int]] = [None] * self.lora_slots
self.vocab_size = vocab_size
self.base_indices = torch.empty(self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.sampler_indices = torch.empty(self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.sampler_indices_padded = torch.empty(self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.embeddings_indices = torch.empty(2,
self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.offsets = []
# 4 is the number of indicies tensors defined above
# base_indices, sampler_indices, sampler_indices_padded,
# embeddings_indices
self.indices_len = [None] * 4
self.model: nn.Module = model
if hasattr(self.model, "supported_lora_modules"):
self.supported_lora_modules = copy.deepcopy(
self.model.supported_lora_modules)
self.packed_modules_mapping = copy.deepcopy(
self.model.packed_modules_mapping)
self.packed_modules: Dict[str, List[str]] = {}
self.modules: Dict[str, "BaseLayerWithLoRA"] = {}
self._registered_loras: Dict[int, LoRAModel] = {}
# Dict instead of a Set for compatibility with LRUCache.
self._active_loras: Dict[int, None] = {}
self._last_mapping = None
self._create_lora_modules()
self.model.lora_manager = self
@property
def capacity(self) -> int:
return self.lora_config.max_cpu_loras
@property
def lora_slots(self) -> int:
return self.lora_config.max_loras
def __len__(self) -> int:
return len(self._registered_loras)
def activate_lora(
self,
lora_id: int,
) -> bool:
"""Move LoRA into a GPU buffer to be used in the forward pass."""
if lora_id in self._active_loras:
return False
first_free_slot = next(
((i, lora_id) for i, lora_id in enumerate(self.lora_index_to_id)
if lora_id is None), None)
if first_free_slot is None:
raise ValueError("No free lora slots")
index, _ = first_free_slot
self._active_loras[lora_id] = None
lora_model = self._registered_loras[lora_id]
logger.debug(
f"Activating LoRA. int id: {lora_model.id}, slot index: {index}")
self.lora_index_to_id[index] = lora_model.id
for module_name, module in self.modules.items():
module_lora = lora_model.get_lora(module_name)
if module_lora:
module_lora.optimize()
module.set_lora(index, module_lora.lora_a, module_lora.lora_b,
module_lora.embeddings_tensor)
else:
module.reset_lora(index)
return True
def _deactivate_lora(self, lora_id: int):
try:
index = self.lora_index_to_id.index(lora_id)
self.lora_index_to_id[index] = None
except ValueError:
pass
def deactivate_lora(self, lora_id: int) -> bool:
"""Remove a LoRA from a GPU buffer."""
if lora_id in self._active_loras:
self._deactivate_lora(lora_id)
self._active_loras.pop(lora_id)
return True
return False
def _add_lora(self, lora: LoRAModel) -> bool:
self._create_merged_loras_inplace(lora)
self._registered_loras[lora.id] = lora
def add_lora(self, lora: LoRAModel) -> bool:
"""Add a LoRAModel to the manager CPU cache."""
if lora.id not in self._registered_loras:
if len(self._registered_loras) >= self.capacity:
raise RuntimeError("No free LoRA slots.")
self._add_lora(lora)
return True
return False
def remove_lora(self, lora_id: int) -> bool:
"""Remove a LoRAModel from the manager CPU cache."""
# TODO: should we check active lora?
self.deactivate_lora(lora_id)
return bool(self._registered_loras.pop(lora_id, None))
# TODO see if this can be vectorized
def _set_lora_mapping(self, mapping: LoRAMapping) -> None:
(base_indices, sampler_indices, sampler_indices_padded,
embeddings_indices,
indices_len) = convert_mapping(mapping, self.lora_index_to_id,
self.lora_slots + 1, self.vocab_size,
self.lora_config.lora_extra_vocab_size)
self.base_indices[:base_indices.shape[0]].copy_(base_indices)
self.sampler_indices[:sampler_indices.shape[0]].copy_(sampler_indices)
self.sampler_indices_padded[:sampler_indices_padded.shape[0]].copy_(
sampler_indices_padded)
self.embeddings_indices[:embeddings_indices.
shape[0], :embeddings_indices.shape[1]].copy_(
embeddings_indices)
# Maintain the reference
self.indices_len[:] = indices_len
def set_lora_mapping(self, lora_mapping: LoRAMapping) -> None:
if self._last_mapping != lora_mapping:
self._set_lora_mapping(lora_mapping)
self._last_mapping = lora_mapping
def list_loras(self) -> Dict[int, LoRAModel]:
"""List all registered LoRAModels."""
return dict(self._registered_loras)
def get_lora(self, lora_id: int) -> Optional[LoRAModel]:
return self._registered_loras.get(lora_id, None)
def remove_all_loras(self) -> bool:
"""Remove all LoRAModels from the manager."""
self._registered_loras.clear()
self.lora_index_to_id = [None] * self.lora_slots
self._active_loras.clear()
def _create_lora_modules(self):
for module_name, module in self.model.named_modules():
if not self._match_target_modules(module_name):
continue
new_module = replace_submodule(
self.model, module_name,
from_layer(module, self.lora_slots, self.lora_config,
self.model.config))
# (yard1): TODO make this more robust
if "lm_head" in module_name:
sampler_module = self.model.get_submodule("sampler")
new_module = replace_submodule(
self.model, "sampler",
from_layer_sampler(sampler_module, module, self.lora_slots,
self.lora_config, self.model.config))
self.register_module(module_name, new_module)
self._register_packed_modules(module_name)
new_module.set_mapping(self.base_indices, self.sampler_indices,
self.sampler_indices_padded,
self.embeddings_indices, self.indices_len)
def register_module(self, module_name: str, module: "BaseLayerWithLoRA"):
assert isinstance(module, BaseLayerWithLoRA)
self.modules[module_name] = module
def create_dummy_lora(
self,
lora_id: int,
rank: int,
embedding_modules: Optional[Dict[str, str]] = None) -> LoRAModel:
"""Create zero-initialized LoRAModel for warmup."""
model = LoRAModel(lora_id, rank, {})
for module_name, module in self.model.named_modules():
if not self._match_target_modules(module_name) or not isinstance(
module, BaseLayerWithLoRA):
continue
parts = module_name.split(".")
if module_name not in self.packed_modules:
if parts[-1] in embedding_modules:
input_dim = (module.base_layer.org_vocab_size +
self.lora_config.lora_extra_vocab_size if
hasattr(module.base_layer, "org_vocab_size")
else module.base_layer.weight.shape[1])
output_dim = module.base_layer.embedding_dim if hasattr(
module.base_layer,
"embedding_dim") else module.base_layer.weight.shape[0]
embeddings_tensor_dim = (module.base_layer.embedding_dim if
hasattr(module.base_layer,
"embedding_dim") else
module.base_layer.weight.shape[1])
lora = LoRALayerWeights.create_dummy_lora_weights(
module_name,
input_dim,
output_dim,
rank,
module.lora_a_stacked.dtype,
"cpu",
embeddings_tensor_dim=embeddings_tensor_dim)
else:
lora = LoRALayerWeights.create_dummy_lora_weights(
module_name,
module.lora_a_stacked.shape[-1],
module.lora_b_stacked.shape[-2],
rank,
module.lora_a_stacked.dtype,
"cpu",
)
lora.optimize()
else:
parts = module_name.split(".")
replacements = self.packed_modules_mapping[parts[-1]]
subloras = []
for i, r in enumerate(replacements):
lora = LoRALayerWeights.create_dummy_lora_weights(
module_name + "." + r,
module.lora_a_stacked[i].shape[-1],
module.lora_b_stacked[i].shape[-2],
rank,
module.lora_a_stacked[i].dtype,
"cpu",
)
lora.optimize()
subloras.append(lora)
lora = PackedLoRALayerWeights.pack(subloras)
model.loras[module_name] = lora
return model
def _match_target_modules(self, module_name: str):
return any(
re.match(
r".*\.{target_module}$".format(target_module=target_module),
module_name) or target_module == module_name
for target_module in self.supported_lora_modules)
def _register_packed_modules(self, module_full_name: str) -> None:
parts = module_full_name.split(".")
module_name = parts[-1]
replacements = self.packed_modules_mapping.get(module_name)
if not replacements:
return
prefix = ".".join(parts[:-1])
self.packed_modules[module_full_name] = [
prefix + "." + r if prefix else r for r in replacements
]
def _create_merged_loras_inplace(self, lora_model: LoRAModel) -> None:
for module_name, new_module_names in self.packed_modules.items():
replacement_loras = []
has_replacement = False
for r in new_module_names:
lora = lora_model.get_lora(r)
replacement_loras.append(lora)
if lora:
has_replacement = True
if not has_replacement:
continue
for i in range(len(replacement_loras)):
if replacement_loras[i]:
continue
replacement_loras[i] = None
lora_model.loras[module_name] = PackedLoRALayerWeights.pack(
replacement_loras)
class LoRALRUCache(LRUCache):
def __init__(self, capacity: int, deactivate_lora_fn: Callable[[Hashable],
None]):
super().__init__(capacity)
self.deactivate_lora_fn = deactivate_lora_fn
def _on_remove(self, key: Hashable, value: Any):
logger.debug(f"Removing LoRA. int id: {key}")
self.deactivate_lora_fn(key)
return super()._on_remove(key, value)
class LRUCacheLoRAModelManager(LoRAModelManager):
"""A model manager that manages multiple LoRAs with LRU cache."""
def __init__(
self,
model: nn.Module,
max_num_seqs: int,
max_num_batched_tokens: int,
vocab_size: int,
lora_config: LoRAConfig,
):
super().__init__(model, max_num_seqs, max_num_batched_tokens,
vocab_size, lora_config)
self._registered_loras: LoRALRUCache = LoRALRUCache(
self.capacity, self.deactivate_lora)
self._active_loras: LoRALRUCache = LoRALRUCache(
self.lora_slots, self._deactivate_lora)
def list_loras(self) -> Dict[int, LoRAModel]:
"""List all registered LoRAModels."""
return dict(self._registered_loras.cache)
def add_lora(self, lora: LoRAModel) -> bool:
"""Add a LoRAModel to the manager."""
if lora.id not in self._registered_loras:
self._add_lora(lora)
was_added = True
else:
# We always touch to update the LRU cache order
self._registered_loras.touch(lora.id)
was_added = False
return was_added
def activate_lora(
self,
lora_id: int,
) -> bool:
if lora_id not in self._active_loras and len(
self._active_loras) >= self.lora_slots:
self._active_loras.remove_oldest()
result = super().activate_lora(lora_id)
# We always touch to update the LRU cache order
self._active_loras.touch(lora_id)
return result
def remove_oldest_lora(self) -> bool:
if len(self._registered_loras) > 0:
self._registered_loras.remove_oldest()
return True
return False
def create_lora_manager(
model: nn.Module,
max_num_seqs: int,
max_num_batched_tokens: int,
vocab_size: int,
lora_config: LoRAConfig,
lora_manager_cls: Type[LoRAModelManager] = LoRAModelManager,
**kwargs) -> LoRAModelManager:
"""Create a LoRA adapter for a given model."""
if not hasattr(model, "supported_lora_modules"):
raise ValueError(f"Model {type(model)} is not supported for LoRA.")
lora_manager = lora_manager_cls(
model=model,
max_num_seqs=max_num_seqs,
max_num_batched_tokens=max_num_batched_tokens,
vocab_size=vocab_size,
lora_config=lora_config,
**kwargs)
return lora_manager
# Based on code from https://github.com/punica-ai/punica
from typing import Optional
import torch
def _raise_import_error(e):
if torch.cuda.get_device_capability() < (8, 0):
raise ImportError(
"punica LoRA kernels require compute capability >= 8.0") from e
else:
raise ImportError(
"punica LoRA kernels could not be imported. If you built vLLM "
"from source, make sure VLLM_INSTALL_PUNICA_KERNELS=1 env var "
"was set.") from e
def bgmv(
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
indicies: torch.LongTensor,
layer_idx: int,
scale: float,
):
"""
Semantics:
y[i] += (
x[i].unsqueeze(0)
@ w_t_all[indices[i], layer_idx, :, :].transpose(-1, -2)
* scale
).squeeze(0)
Args:
y: Shape: `[B, H2]`. Output vectors. Will be changed in-place.
x: Shape: `[B, H1]`. Input vectors.
w_t_all: Shape: `[None, L, H2, H1]`. All of the transposed weight
matrices.
indicies: Shape: `[B]`. Indices of the weight matrices.
layer_idx: Layer index of the weight matrices.
scale: Scaling factor.
"""
try:
import vllm._punica_C as punica_kernels
except ImportError as e:
_raise_import_error(e)
punica_kernels.dispatch_bgmv(y, x, w_t_all, indicies, layer_idx, scale)
def add_lora(y: torch.Tensor,
x: torch.Tensor,
wa_t_all: torch.Tensor,
wb_t_all: torch.Tensor,
indicies: torch.LongTensor,
layer_idx: int,
scale: float,
*,
buffer: Optional[torch.Tensor] = None):
"""
Semantics:
y[i] += (
x[i].unsqueeze(0)
@ wa_t_all[indices[i], layer_idx, :, :].transpose(-1, -2)
@ wb_t_all[indices[i], layer_idx, :, :].transpose(-1, -2)
* scale
).squeeze(0)
Args:
y: Shape: `[B, H2]`. Output vectors. Will be changed in-place.
x: Shape: `[B, H1]`. Input vectors.
wa_t_all: Shape: `[None, L, R, H1]`. All of the transposed
LoRA A matrices.
wb_t_all: Shape: `[None, L, H2, R]`. All of the transposed
LoRA B matrices.
indicies: Shape: `[B]`. Indices of the LoRA weights.
layer_idx: Layer index of LoRA weights.
scale: Scaling factor.
buffer: Optional. Shape: `[B, R]`. Temporary buffer.
"""
try:
import vllm._punica_C as punica_kernels
except ImportError as e:
_raise_import_error(e)
r = wb_t_all.size(-1)
if buffer is None:
# We set the buffer to be float32 by default to avoid
# numerical inaccuracies that would otherwise happen
# due to downcasting.
buffer = torch.zeros((x.size(0), r),
dtype=torch.float32,
device=x.device)
punica_kernels.dispatch_bgmv(buffer, x, wa_t_all, indicies, layer_idx, 1.0)
punica_kernels.dispatch_bgmv(y, buffer, wb_t_all, indicies, layer_idx,
scale)
def add_lora_slice(y: torch.Tensor,
x: torch.Tensor,
wa_t_all: torch.Tensor,
wb_t_all: torch.Tensor,
indicies: torch.LongTensor,
layer_idx: int,
scale: float,
y_offset: int,
y_slice_size: int,
*,
buffer: Optional[torch.Tensor] = None):
"""
Same as `add_lora` but you can operate on slices of y.
Pass whole y, define y_offset and y_slice_size.
Semantics:
y[i] += (
x[i].unsqueeze(0)
@ wa_t_all[indices[i], layer_idx, :, :].transpose(-1, -2)
@ wb_t_all[indices[i], layer_idx, :, :].transpose(-1, -2)
* scale
).squeeze(0)
Args:
y: Shape: `[B, H2]`. Output vectors. Will be changed in-place.
x: Shape: `[B, H1]`. Input vectors.
wa_t_all: Shape: `[None, L, R, H1]`. All of the transposed
LoRA A matrices.
wb_t_all: Shape: `[None, L, H2, R]`. All of the transposed
LoRA B matrices.
indicies: Shape: `[B]`. Indices of the LoRA weights.
layer_idx: Layer index of LoRA weights.
scale: Scaling factor.
y_offset: Offset to apply to the starting column of y.
y_slice_size: Size of the y column slice.
"""
try:
import vllm._punica_C as punica_kernels
except ImportError as e:
_raise_import_error(e)
r = wb_t_all.size(-1)
if buffer is None:
# We set the buffer to be float32 by default to avoid
# numerical inaccuracies that would otherwise happen
# due to downcasting.
buffer = torch.zeros((x.size(0), r),
dtype=torch.float32,
device=x.device)
punica_kernels.dispatch_bgmv_low_level(
buffer,
x,
wa_t_all,
indicies,
layer_idx,
1.0,
x.size(1),
buffer.size(1),
0,
)
punica_kernels.dispatch_bgmv_low_level(
y,
buffer,
wb_t_all,
indicies,
layer_idx,
scale,
buffer.size(1),
y_slice_size,
y_offset,
)
from dataclasses import dataclass
@dataclass
class LoRARequest:
"""
Request for a LoRA adapter.
Note that this class should be be used internally. For online
serving, it is recommended to not allow users to use this class but
instead provide another layer of abstraction to prevent users from
accessing unauthorized LoRA adapters.
lora_int_id must be globally unique for a given adapter.
This is currently not enforced in vLLM.
"""
lora_name: str
lora_int_id: int
lora_local_path: str
def __post_init__(self):
if self.lora_int_id < 1:
raise ValueError(
f"lora_int_id must be > 0, got {self.lora_int_id}")
def __eq__(self, value: object) -> bool:
return isinstance(
value, LoRARequest) and self.lora_int_id == value.lora_int_id
def __hash__(self) -> int:
return self.lora_int_id
import logging
from typing import Tuple
from torch import nn
logger = logging.getLogger(__name__)
def replace_submodule(model: nn.Module, module_name: str,
new_module: nn.Module) -> nn.Module:
"""Replace a submodule in a model with a new module."""
parent = model.get_submodule(".".join(module_name.split(".")[:-1]))
target_name = module_name.split(".")[-1]
setattr(parent, target_name, new_module)
return new_module
def parse_fine_tuned_lora_name(name: str) -> Tuple[str, bool]:
"""Parse the name of lora weights.
args:
name: the name of the fine-tuned LoRA, e.g.
base_model.model.dense1.weight
return:
Tuple(module_name, is_lora_a):
module_name: the name of the module, e.g. model.dense1,
is_lora_a whether the tensor is lora_a or lora_b.
"""
parts = name.split(".")
assert parts[0] == "base_model"
assert parts[1] == "model"
if parts[-1] == "weight":
assert parts[-2] == "lora_A" or parts[-2] == "lora_B"
return ".".join(parts[2:-2]), parts[-2] == "lora_A"
if parts[-1] == "lora_embedding_A" or parts[-1] == "lora_embedding_B":
return ".".join(parts[2:-1]), parts[-1] == "lora_embedding_A"
raise ValueError(f"{name} is unsupported format")
import logging
from abc import ABC, abstractmethod, abstractproperty
from typing import Any, Dict, List, Optional, Set, Type
import torch
from vllm.lora.models import (LoRAModel, LoRAModelManager,
LRUCacheLoRAModelManager, create_lora_manager)
from vllm.lora.request import LoRARequest
from vllm.lora.layers import LoRAMapping
from vllm.config import LoRAConfig
logger = logging.getLogger(__name__)
class AbstractWorkerLoRAManager(ABC):
"""Abstract class for managing LoRA models on the worker side."""
def __init__(self, max_num_seqs: int, max_num_batched_tokens: int,
vocab_size: int, lora_config: LoRAConfig,
device: torch.device):
self.max_num_seqs = max_num_seqs
self.max_num_batched_tokens = max_num_batched_tokens
self.vocab_size = vocab_size
self.device = device
self.lora_config = lora_config
@abstractproperty
def is_enabled(self) -> bool:
...
@abstractmethod
def create_lora_manager(
self,
model: torch.nn.Module,
) -> Any:
...
@abstractmethod
def set_active_loras(self, lora_requests: List[LoRARequest],
lora_mapping: LoRAMapping) -> None:
...
@abstractmethod
def add_lora(self, lora_request: LoRARequest) -> bool:
...
@abstractmethod
def add_dummy_lora(self, lora_request: LoRARequest, rank: int) -> bool:
...
@abstractmethod
def remove_lora(self, lora_id: int) -> bool:
...
@abstractmethod
def remove_all_loras(self) -> bool:
...
@abstractmethod
def list_loras(self) -> Set[int]:
...
class WorkerLoRAManager(AbstractWorkerLoRAManager):
"""WorkerLoRAManager that manages LoRA models on the worker side.
Every request, the requested LoRAs will be loaded (unless they are already
loaded), and every other LoRA will be unloaded."""
_lora_manager_cls: Type[LoRAModelManager] = LoRAModelManager
def __init__(
self,
max_num_seqs: int,
max_num_batched_tokens: int,
vocab_size: int,
lora_config: LoRAConfig,
device: torch.device,
embedding_modules: Dict[str, str],
embedding_padding_modules: List[str],
lora_model_cls: Type[LoRAModel] = LoRAModel,
):
self._lora_manager: Optional[LoRAModelManager] = None
self._lora_model_cls = lora_model_cls
self.embedding_modules = embedding_modules
self.embedding_padding_modules = embedding_padding_modules
super().__init__(max_num_seqs, max_num_batched_tokens, vocab_size,
lora_config, device)
@property
def is_enabled(self) -> bool:
return True
def create_lora_manager(
self,
model: torch.nn.Module,
) -> Any:
lora_manager = create_lora_manager(
model,
max_num_seqs=self.max_num_seqs,
max_num_batched_tokens=self.max_num_batched_tokens,
vocab_size=self.vocab_size,
lora_config=self.lora_config,
lora_manager_cls=self._lora_manager_cls,
)
self._lora_manager: LoRAModelManager = lora_manager
return lora_manager.model
def set_active_loras(self, lora_requests: List[LoRARequest],
lora_mapping: LoRAMapping) -> None:
self._apply_loras(lora_requests)
self._lora_manager.set_lora_mapping(lora_mapping)
def _apply_loras(self, lora_requests: List[LoRARequest]) -> None:
loras_that_exist = self.list_loras()
loras_map = {
lora_request.lora_int_id: lora_request
for lora_request in lora_requests if lora_request
}
if len(loras_map) > self._lora_manager.lora_slots:
raise RuntimeError(
f"Number of requested LoRAs ({len(loras_map)}) is greater "
"than the number of GPU LoRA slots "
f"({self._lora_manager.lora_slots}).")
new_loras = set(loras_map)
loras_to_add = new_loras - loras_that_exist
loras_to_remove = loras_that_exist - new_loras
for lora_id in loras_to_remove:
self.remove_lora(lora_id)
for lora_id in loras_to_add:
self.add_lora(loras_map[lora_id])
def _load_lora(self, lora_request: LoRARequest) -> LoRAModel:
try:
lora = self._lora_model_cls.from_local_checkpoint(
lora_request.lora_local_path,
lora_model_id=lora_request.lora_int_id,
device="cpu",
dtype=self.lora_config.lora_dtype,
target_embedding_padding=self.vocab_size +
self.lora_config.lora_extra_vocab_size,
embedding_modules=self.embedding_modules,
embedding_padding_modules=self.embedding_padding_modules,
)
except Exception as e:
raise RuntimeError(
f"Loading lora {lora_request.lora_local_path} failed") from e
if lora.rank > self.lora_config.max_lora_rank:
raise ValueError(
f"LoRA rank {lora.rank} is greater than max_lora_rank "
f"{self.lora_config.max_lora_rank}.")
if lora.extra_vocab_size > self.lora_config.lora_extra_vocab_size:
raise ValueError(
f"LoRA added vocab size {lora.extra_vocab_size} is greater than "
f"lora_extra_vocab_size {self.lora_config.lora_extra_vocab_size}."
)
return lora
def add_dummy_lora(self, lora_request: LoRARequest, rank: int) -> bool:
if lora_request.lora_int_id in self.list_loras():
return False
return self._lora_manager.add_lora(
self._lora_manager.create_dummy_lora(lora_request.lora_int_id,
rank, self.embedding_modules))
def add_lora(self, lora_request: LoRARequest) -> bool:
if lora_request.lora_int_id in self.list_loras():
return False
lora = self._load_lora(lora_request)
loaded = self._lora_manager.add_lora(lora)
self._lora_manager.activate_lora(lora.id)
return loaded
def remove_lora(self, lora_id: int) -> bool:
return self._lora_manager.remove_lora(lora_id)
def remove_all_loras(self) -> bool:
self._lora_manager.remove_all_loras()
def list_loras(self) -> Set[int]:
return set(self._lora_manager.list_loras())
class LRUCacheWorkerLoRAManager(WorkerLoRAManager):
"""WorkerLoRAManager that manages LoRA models on the worker side.
Uses an LRU Cache. Every request, the requested LoRAs will be loaded
(unless they are already loaded) and least recently used LoRAs will
be unloaded if the cache is above capacity."""
_lora_manager_cls: Type[
LRUCacheLoRAModelManager] = LRUCacheLoRAModelManager
def create_lora_manager(
self,
model: torch.nn.Module,
) -> Any:
lora_manager = create_lora_manager(
model,
lora_manager_cls=self._lora_manager_cls,
max_num_seqs=self.max_num_seqs,
vocab_size=self.vocab_size,
lora_config=self.lora_config,
max_num_batched_tokens=self.max_num_batched_tokens,
)
self._lora_manager: LRUCacheLoRAModelManager = lora_manager
return lora_manager.model
def _apply_loras(self, lora_requests: List[LoRARequest]) -> None:
loras_map = {
lora_request.lora_int_id: lora_request
for lora_request in lora_requests if lora_request
}
if len(loras_map) > self._lora_manager.lora_slots:
raise RuntimeError(
f"Number of requested LoRAs ({len(loras_map)}) is greater "
"than the number of GPU LoRA slots "
f"({self._lora_manager.lora_slots}).")
for lora in loras_map.values():
self.add_lora(lora)
def add_lora(self, lora_request: LoRARequest) -> bool:
if lora_request.lora_int_id not in self.list_loras():
# Remove before we load the new lora to save memory
if len(self._lora_manager) + 1 > self._lora_manager.capacity:
self._lora_manager.remove_oldest_lora()
lora = self._load_lora(lora_request)
loaded = self._lora_manager.add_lora(lora)
else:
# If the lora is already loaded, just touch it to
# update its position in the caches
loaded = self._lora_manager.get_lora(lora_request.lora_int_id)
self._lora_manager.activate_lora(lora_request.lora_int_id)
return loaded
from vllm.model_executor.input_metadata import InputMetadata from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.model_loader import get_model
from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.utils import set_random_seed from vllm.model_executor.utils import set_random_seed, get_model
__all__ = [ __all__ = [
"InputMetadata", "InputMetadata",
......
import asyncio
import concurrent.futures
from copy import copy
from enum import Enum
from functools import lru_cache
from json import dumps as json_dumps
from re import escape as regex_escape
from typing import Union, Tuple
from pydantic import BaseModel
from vllm.entrypoints.openai.protocol import CompletionRequest, ChatCompletionRequest
from vllm.model_executor.guided_logits_processors import JSONLogitsProcessor, RegexLogitsProcessor
class GuidedDecodingMode(Enum):
JSON = "json"
REGEX = "regex"
CHOICE = "choice"
global_thread_pool = None # used for generating logits processor fsm
async def get_guided_decoding_logits_processor(
request: Union[CompletionRequest, ChatCompletionRequest],
tokenizer) -> Union[JSONLogitsProcessor, RegexLogitsProcessor]:
"""
Given an OpenAI-compatible request, check for guided decoding parameters
and get the necessary logits processor for the given guide.
We cache logit processors by (guide, tokenizer), and on cache hit
we make a shallow copy to reuse the same underlying FSM.
"""
global global_thread_pool
guide, mode = _get_guide_and_mode(request)
if not guide:
return None
if global_thread_pool is None:
global_thread_pool = concurrent.futures.ThreadPoolExecutor(
max_workers=2)
loop = asyncio.get_running_loop()
result = await loop.run_in_executor(global_thread_pool,
_get_cached_logits_processor, guide,
tokenizer, mode)
logits_processor = copy(result)
# reset logits processor's internal state
logits_processor.init_state()
return logits_processor
def _get_guide_and_mode(
request: Union[CompletionRequest, ChatCompletionRequest]
) -> Tuple[str, GuidedDecodingMode]:
if request.guided_json:
if not isinstance(request.guided_json, (str, dict, BaseModel)):
raise TypeError("JSON schema must be str, dict, or BaseModel")
json = request.guided_json
if isinstance(json, dict):
# turn dict into hashable string
json = json_dumps(json, sort_keys=True)
elif isinstance(json, BaseModel):
# use pydantic signature so that different model classes
# with the same fields will get hashed the same
json = str(json.__signature__)
return json, GuidedDecodingMode.JSON
elif request.guided_regex:
if not isinstance(request.guided_regex, str):
raise TypeError("Regex must be string")
return request.guided_regex, GuidedDecodingMode.REGEX
elif request.guided_choice:
if not isinstance(request.guided_choice, list):
raise TypeError("Choices must be a list")
# choice just uses regex
choices = [
regex_escape(str(choice)) for choice in request.guided_choice
]
choices_regex = "(" + "|".join(choices) + ")"
return choices_regex, GuidedDecodingMode.CHOICE
else:
return None, None
@lru_cache(maxsize=32)
def _get_cached_logits_processor(guide: str, tokenizer,
mode: GuidedDecodingMode):
if mode == GuidedDecodingMode.JSON:
return JSONLogitsProcessor(guide, tokenizer)
elif mode == GuidedDecodingMode.REGEX or mode == GuidedDecodingMode.CHOICE:
return RegexLogitsProcessor(guide, tokenizer)
else:
raise ValueError(f"Unknown guided decoding mode {mode}")
# Copyright 2024- the Outlines developers
# This file is adapted from
# https://github.com/outlines-dev/outlines/blob/main/outlines/serve/vllm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import math
from collections import defaultdict
from typing import Union, DefaultDict, Dict, List, Optional
import torch
from pydantic import BaseModel
from outlines.fsm.fsm import RegexFSM
from outlines.fsm.json_schema import build_regex_from_schema
class RegexLogitsProcessor:
def __init__(self, regex_string: str, tokenizer):
"""Compile the FSM that drives the regex-structured generation.
Parameters
----------
regex_string
A string that represents a regular expression
tokenizer
The model's tokenizer
"""
tokenizer = self.adapt_tokenizer(tokenizer)
fsm = RegexFSM(regex_string, tokenizer)
self.fsm = fsm
def init_state(self):
"""Initialize the FSM states."""
self.fsm_state: DefaultDict[int, int] = defaultdict(int)
def __call__(self, input_ids: List[int],
scores: torch.Tensor) -> torch.Tensor:
"""Use the FSM to bias the logits before sampling the next token."""
seq_id = hash(tuple(input_ids))
if len(input_ids) == 0:
self.init_state()
else:
last_token = input_ids[-1]
last_seq_id = hash(tuple(input_ids[:-1]))
self.fsm_state[seq_id] = self.fsm.next_state(
self.fsm_state[last_seq_id], last_token)
allowed_tokens = self.fsm.allowed_token_ids(self.fsm_state[seq_id])
mask = torch.full((scores.shape[-1], ),
-math.inf,
device=scores.device)
mask[allowed_tokens] = 0
scores.add_(mask)
return scores
def adapt_tokenizer(self, tokenizer):
"""Adapt vLLM's tokenizer to use to compile the FSM.
The API of Outlines tokenizers is slightly different to that of
`transformers`. In addition we need to handle the missing spaces to
Llama's tokenizer to be able to compile FSMs for this model.
"""
tokenizer.vocabulary = tokenizer.get_vocab()
tokenizer.special_tokens = set(tokenizer.all_special_tokens)
def convert_token_to_string(token: str) -> str:
from transformers.file_utils import SPIECE_UNDERLINE
string = tokenizer.convert_tokens_to_string([token])
# A hack to handle missing spaces to HF's Llama tokenizers
if token.startswith(SPIECE_UNDERLINE) or token == "<0x20>":
return " " + string
return string
tokenizer.convert_token_to_string = convert_token_to_string
return tokenizer
class JSONLogitsProcessor(RegexLogitsProcessor):
def __init__(self,
schema: Union[str, Dict, BaseModel],
tokenizer,
whitespace_pattern: Optional[str] = None):
"""Compile the FSM that drives the JSON-guided generation.
Parameters
----------
schema
A JSON schema that encodes the structure we want the model to generate
tokenizer
The model's tokenizer
whitespace_pattern
Pattern to use for JSON syntactic whitespace (doesn't impact string literals)
Example: allow only a single space or newline with `whitespace_pattern=r"[\n ]?"`
"""
if isinstance(schema, type(BaseModel)):
schema_str = json.dumps(schema.model_json_schema())
elif isinstance(schema, Dict):
schema_str = json.dumps(schema)
elif isinstance(schema, str):
schema_str = schema
else:
raise ValueError(
f"Cannot parse schema {schema}. The schema must be either " +
"a Pydantic object, a dictionary or a string that contains the JSON "
+ "Schema specification")
regex_string = build_regex_from_schema(schema_str, whitespace_pattern)
super().__init__(regex_string, tokenizer)
...@@ -12,23 +12,32 @@ class InputMetadata: ...@@ -12,23 +12,32 @@ class InputMetadata:
max_context_len: The maximum context length. max_context_len: The maximum context length.
context_lens: the length of attention context for each sequence. context_lens: the length of attention context for each sequence.
block_tables: The block tables. (Seq id -> list of physical block) block_tables: The block tables. (Seq id -> list of physical block)
kv_cache_dtype: Data type to store kv cache.
""" """
def __init__( def __init__(
self, self,
is_prompt: bool, is_prompt: bool,
slot_mapping: torch.Tensor, slot_mapping: torch.Tensor,
prompt_lens: Optional[torch.Tensor],
max_seq_len: Optional[int],
start_loc: Optional[torch.Tensor],
max_context_len: Optional[int], max_context_len: Optional[int],
context_lens: Optional[torch.Tensor], context_lens: Optional[torch.Tensor],
block_tables: Optional[torch.Tensor], block_tables: Optional[torch.Tensor],
use_cuda_graph: bool, use_cuda_graph: bool,
kv_cache_dtype: str,
) -> None: ) -> None:
self.is_prompt = is_prompt self.is_prompt = is_prompt
self.prompt_lens = prompt_lens
self.max_seq_len = max_seq_len
self.start_loc = start_loc
self.max_context_len = max_context_len self.max_context_len = max_context_len
self.slot_mapping = slot_mapping self.slot_mapping = slot_mapping
self.context_lens = context_lens self.context_lens = context_lens
self.block_tables = block_tables self.block_tables = block_tables
self.use_cuda_graph = use_cuda_graph self.use_cuda_graph = use_cuda_graph
self.kv_cache_dtype = kv_cache_dtype
# Set during the execution of the first attention op. # Set during the execution of the first attention op.
# FIXME(woosuk): This is a hack. # FIXME(woosuk): This is a hack.
...@@ -41,4 +50,5 @@ class InputMetadata: ...@@ -41,4 +50,5 @@ class InputMetadata:
f"slot_mapping={self.slot_mapping}, " f"slot_mapping={self.slot_mapping}, "
f"context_lens={self.context_lens}, " f"context_lens={self.context_lens}, "
f"block_tables={self.block_tables}, " f"block_tables={self.block_tables}, "
f"use_cuda_graph={self.use_cuda_graph})") f"use_cuda_graph={self.use_cuda_graph}, "
f"kv_cache_dtype={self.kv_cache_dtype})")
...@@ -37,6 +37,29 @@ class SiluAndMul(nn.Module): ...@@ -37,6 +37,29 @@ class SiluAndMul(nn.Module):
return out return out
class GeluAndMul(nn.Module):
"""An activation function for GeGLU.
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
Shapes:
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
return: (batch_size, seq_len, d) or (num_tokens, d)
"""
def _forward(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
d = x.shape[-1] // 2
return F.gelu(x[..., :d]) * x[..., d:]
def forward(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
ops.gelu_and_mul(out, x)
return out
class NewGELU(nn.Module): class NewGELU(nn.Module):
def _forward(self, x: torch.Tensor) -> torch.Tensor: def _forward(self, x: torch.Tensor) -> torch.Tensor:
...@@ -89,9 +112,7 @@ class ScaledActivation(nn.Module): ...@@ -89,9 +112,7 @@ class ScaledActivation(nn.Module):
if params_dtype is None: if params_dtype is None:
params_dtype = torch.get_default_dtype() params_dtype = torch.get_default_dtype()
self.scales = nn.Parameter( self.scales = nn.Parameter(
torch.empty(intermediate_size_per_partition, torch.empty(intermediate_size_per_partition, dtype=params_dtype))
dtype=params_dtype,
device="cuda"))
set_weight_attrs(self.scales, {"weight_loader": self.weight_loader}) set_weight_attrs(self.scales, {"weight_loader": self.weight_loader})
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, x: torch.Tensor) -> torch.Tensor:
......
"""Multi-head attention.""" """Multi-head attention."""
from typing import List, Optional from typing import List, Optional
import importlib
import torch import torch
import torch.nn as nn import torch.nn as nn
from xformers import ops as xops from xformers import ops as xops
...@@ -10,6 +11,8 @@ from xformers.ops.fmha.attn_bias import (BlockDiagonalCausalMask, ...@@ -10,6 +11,8 @@ from xformers.ops.fmha.attn_bias import (BlockDiagonalCausalMask,
from vllm._C import ops from vllm._C import ops
from vllm._C import cache_ops from vllm._C import cache_ops
from vllm.model_executor.input_metadata import InputMetadata from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.triton_kernel.prefix_prefill import (
context_attention_fwd)
from vllm.utils import is_hip from vllm.utils import is_hip
_SUPPORTED_HEAD_SIZES = [64, 80, 96, 112, 128, 256] _SUPPORTED_HEAD_SIZES = [64, 80, 96, 112, 128, 256]
...@@ -56,6 +59,40 @@ class PagedAttention(nn.Module): ...@@ -56,6 +59,40 @@ class PagedAttention(nn.Module):
raise ValueError(f"head_size ({self.head_size}) is not supported. " raise ValueError(f"head_size ({self.head_size}) is not supported. "
f"Supported head sizes: {_SUPPORTED_HEAD_SIZES}.") f"Supported head sizes: {_SUPPORTED_HEAD_SIZES}.")
self.use_ref_attention = self.check_use_ref_attention()
def check_use_ref_attention(self) -> bool:
if not is_hip():
return False
# For ROCm, check whether flash attention is installed or not.
# if not, use_ref_attention needs to be True
return importlib.util.find_spec("flash_attn") is None
def ref_masked_attention(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
) -> torch.Tensor:
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
seq_len, _, _ = query.shape
attn_mask = torch.triu(torch.ones(seq_len,
seq_len,
dtype=query.dtype,
device=query.device),
diagonal=1)
attn_mask = attn_mask * torch.finfo(query.dtype).min
attn_weights = self.scale * torch.einsum("qhd,khd->hqk", query,
key).float()
attn_weights = attn_weights + attn_mask.float()
attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
out = torch.einsum("hqk,khd->qhd", attn_weights, value)
return out
def forward( def forward(
self, self,
query: torch.Tensor, query: torch.Tensor,
...@@ -96,64 +133,97 @@ class PagedAttention(nn.Module): ...@@ -96,64 +133,97 @@ class PagedAttention(nn.Module):
key_cache, key_cache,
value_cache, value_cache,
input_metadata.slot_mapping.flatten(), input_metadata.slot_mapping.flatten(),
input_metadata.kv_cache_dtype,
) )
if input_metadata.is_prompt: if input_metadata.is_prompt:
# Prompt run. # normal attention
if self.num_kv_heads != self.num_heads: if (key_cache is None or value_cache is None
# As of Nov 2023, xformers only supports MHA. For MQA/GQA, or input_metadata.block_tables.numel() == 0):
# project the key and value tensors to the desired number of if self.num_kv_heads != self.num_heads:
# heads. # As of Nov 2023, xformers only supports MHA. For MQA/GQA,
# TODO(woosuk): Use MQA/GQA kernels for higher performance. # project the key and value tensors to the desired number of
query = query.view(query.shape[0], self.num_kv_heads, # heads.
self.num_queries_per_kv, query.shape[-1]) # TODO(woosuk): Use MQA/GQA kernels for higher performance.
key = key[:, :, query = query.view(query.shape[0], self.num_kv_heads,
None, :].expand(key.shape[0], self.num_kv_heads, self.num_queries_per_kv,
self.num_queries_per_kv, query.shape[-1])
key.shape[-1]) key = key[:, :,
value = value[:, :, None, :].expand(value.shape[0], None, :].expand(key.shape[0], self.num_kv_heads,
self.num_kv_heads, self.num_queries_per_kv,
self.num_queries_per_kv, key.shape[-1])
value.shape[-1]) value = value[:, :,
None, :].expand(value.shape[0],
self.num_kv_heads,
self.num_queries_per_kv,
value.shape[-1])
# Set attention bias if not provided. This typically happens at
# the very attention layer of every iteration.
# FIXME(woosuk): This is a hack.
if input_metadata.attn_bias is None:
if self.alibi_slopes is None:
attn_bias = BlockDiagonalCausalMask.from_seqlens(
[seq_len] * batch_size)
if self.sliding_window is not None:
attn_bias = attn_bias.make_local_attention(
self.sliding_window)
input_metadata.attn_bias = attn_bias
else:
input_metadata.attn_bias = _make_alibi_bias(
self.alibi_slopes, self.num_kv_heads, batch_size,
seq_len, query.dtype)
if self.use_ref_attention:
output = self.ref_masked_attention(
query,
key,
value,
)
# Using view got RuntimeError: view size is not compatible with input tensor's size and stride
# (at least one dimension spans across two contiguous subspaces). Use reshape instead
return output.reshape(batch_size, seq_len, hidden_size)
# Set attention bias if not provided. This typically happens at the # TODO(woosuk): Too many view operations. Let's try to reduce
# very attention layer of every iteration. # them in the future for code readability.
# FIXME(woosuk): This is a hack.
if input_metadata.attn_bias is None:
if self.alibi_slopes is None: if self.alibi_slopes is None:
attn_bias = BlockDiagonalCausalMask.from_seqlens( query = query.unsqueeze(0)
[seq_len] * batch_size) key = key.unsqueeze(0)
if self.sliding_window is not None: value = value.unsqueeze(0)
attn_bias = attn_bias.make_local_attention(
self.sliding_window)
input_metadata.attn_bias = attn_bias
else: else:
input_metadata.attn_bias = _make_alibi_bias( query = query.unflatten(0, (batch_size, seq_len))
self.alibi_slopes, self.num_kv_heads, batch_size, key = key.unflatten(0, (batch_size, seq_len))
seq_len, query.dtype) value = value.unflatten(0, (batch_size, seq_len))
# TODO(woosuk): Too many view operations. Let's try to reduce them out = xops.memory_efficient_attention_forward(
# in the future for code readability. query,
if self.alibi_slopes is None: key,
query = query.unsqueeze(0) value,
key = key.unsqueeze(0) attn_bias=input_metadata.attn_bias,
value = value.unsqueeze(0) p=0.0,
scale=self.scale,
op=xops.fmha.MemoryEfficientAttentionFlashAttentionOp[0] if
(is_hip()) else None,
)
output = out.view_as(query)
else: else:
query = query.unflatten(0, (batch_size, seq_len)) # prefix-enabled attention
key = key.unflatten(0, (batch_size, seq_len)) output = torch.empty_like(query)
value = value.unflatten(0, (batch_size, seq_len)) context_attention_fwd(
query,
key,
value,
output,
key_cache,
value_cache,
input_metadata.block_tables, # [BS, max_block_per_request]
input_metadata.start_loc,
input_metadata.prompt_lens,
input_metadata.context_lens,
input_metadata.max_seq_len,
getattr(self, "alibi_slopes", None),
)
out = xops.memory_efficient_attention_forward(
query,
key,
value,
attn_bias=input_metadata.attn_bias,
p=0.0,
scale=self.scale,
op=xops.fmha.MemoryEfficientAttentionFlashAttentionOp[0] if
(is_hip()) else None,
)
output = out.view_as(query)
else: else:
# Decoding run. # Decoding run.
output = _paged_attention( output = _paged_attention(
...@@ -177,7 +247,7 @@ def _make_alibi_bias( ...@@ -177,7 +247,7 @@ def _make_alibi_bias(
seq_len: int, seq_len: int,
dtype: torch.dtype, dtype: torch.dtype,
) -> LowerTriangularMaskWithTensorBias: ) -> LowerTriangularMaskWithTensorBias:
bias = torch.arange(seq_len, dtype=dtype, device="cuda") bias = torch.arange(seq_len, dtype=dtype)
# NOTE(zhuohan): HF uses # NOTE(zhuohan): HF uses
# `bias = bias[None, :].repeat(prompt_len, 1)` # `bias = bias[None, :].repeat(prompt_len, 1)`
# here. We find that both biases give the same results, but # here. We find that both biases give the same results, but
...@@ -243,6 +313,7 @@ def _paged_attention( ...@@ -243,6 +313,7 @@ def _paged_attention(
block_size, block_size,
input_metadata.max_context_len, input_metadata.max_context_len,
alibi_slopes, alibi_slopes,
input_metadata.kv_cache_dtype,
) )
else: else:
# Run PagedAttention V2. # Run PagedAttention V2.
...@@ -273,5 +344,6 @@ def _paged_attention( ...@@ -273,5 +344,6 @@ def _paged_attention(
block_size, block_size,
input_metadata.max_context_len, input_metadata.max_context_len,
alibi_slopes, alibi_slopes,
input_metadata.kv_cache_dtype,
) )
return output return output
from vllm.model_executor.layers.fused_moe.fused_moe import fused_moe
__all__ = [
"fused_moe",
]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment