Unverified Commit 5ffc0d13 authored by Simon Mo's avatar Simon Mo Committed by GitHub
Browse files

Migrate linter from `pylint` to `ruff` (#1665)

parent 112627e8
...@@ -131,11 +131,9 @@ def prepare_hf_model_weights( ...@@ -131,11 +131,9 @@ def prepare_hf_model_weights(
) -> Tuple[str, List[str], bool]: ) -> Tuple[str, List[str], bool]:
# Download model weights from huggingface. # Download model weights from huggingface.
is_local = os.path.isdir(model_name_or_path) is_local = os.path.isdir(model_name_or_path)
if use_safetensors: # Some quantized models use .pt files for storing the weights.
allow_patterns = ["*.safetensors"] allow_patterns = ["*.safetensors"
else: ] if use_safetensors else ["*.bin", "*.pt"]
# Some quantized models use .pt files for storing the weights.
allow_patterns = ["*.bin", "*.pt"]
if not is_local: if not is_local:
# Use file lock to prevent multiple processes from # Use file lock to prevent multiple processes from
# downloading the same model weights at the same time. # downloading the same model weights at the same time.
...@@ -242,7 +240,7 @@ def hf_model_weights_iterator( ...@@ -242,7 +240,7 @@ def hf_model_weights_iterator(
elif use_safetensors: elif use_safetensors:
for st_file in hf_weights_files: for st_file in hf_weights_files:
with safe_open(st_file, framework="pt") as f: with safe_open(st_file, framework="pt") as f:
for name in f.keys(): for name in f:
param = f.get_tensor(name) param = f.get_tensor(name)
yield name, param yield name, param
else: else:
......
...@@ -2,7 +2,7 @@ from typing import Optional ...@@ -2,7 +2,7 @@ from typing import Optional
from transformers import AutoConfig, PretrainedConfig from transformers import AutoConfig, PretrainedConfig
from vllm.transformers_utils.configs import * # pylint: disable=wildcard-import from vllm.transformers_utils.configs import *
_CONFIG_REGISTRY = { _CONFIG_REGISTRY = {
"aquila": AquilaConfig, "aquila": AquilaConfig,
......
...@@ -62,7 +62,6 @@ class MPTConfig(PretrainedConfig): ...@@ -62,7 +62,6 @@ class MPTConfig(PretrainedConfig):
fc_type: str = 'torch', fc_type: str = 'torch',
verbose: Optional[int] = None, verbose: Optional[int] = None,
**kwargs: Any): **kwargs: Any):
# pylint: disable=line-too-long
"""The MPT configuration class. """The MPT configuration class.
Args: Args:
d_model (int): The size of the embedding dimension of the model. d_model (int): The size of the embedding dimension of the model.
...@@ -139,10 +138,10 @@ class MPTConfig(PretrainedConfig): ...@@ -139,10 +138,10 @@ class MPTConfig(PretrainedConfig):
self.init_config = init_config self.init_config = init_config
self.fc_type = fc_type self.fc_type = fc_type
if verbose is not None: if verbose is not None:
warnings.warn( warnings.warn(DeprecationWarning(
DeprecationWarning( 'verbose argument for MPTConfig is now ignored and will be removed. Use python_log_level instead.'
'verbose argument for MPTConfig is now ignored and will be removed. Use python_log_level instead.' ),
)) stacklevel=2)
if 'name' in kwargs: if 'name' in kwargs:
del kwargs['name'] del kwargs['name']
if 'loss_fn' in kwargs: if 'loss_fn' in kwargs:
...@@ -150,8 +149,8 @@ class MPTConfig(PretrainedConfig): ...@@ -150,8 +149,8 @@ class MPTConfig(PretrainedConfig):
if self.attn_config.get('alibi', False): if self.attn_config.get('alibi', False):
self.learned_pos_emb = False self.learned_pos_emb = False
warnings.warn( warnings.warn(
f'alibi is turned on, setting `learned_pos_emb` to {self.learned_pos_emb}`' f'alibi is turned on, setting `learned_pos_emb` to {self.learned_pos_emb}`',
) stacklevel=2)
super().__init__(**kwargs) super().__init__(**kwargs)
self._validate_config() self._validate_config()
...@@ -211,7 +210,8 @@ class MPTConfig(PretrainedConfig): ...@@ -211,7 +210,8 @@ class MPTConfig(PretrainedConfig):
) )
if not self.learned_pos_emb and (not self.attn_config['alibi']): if not self.learned_pos_emb and (not self.attn_config['alibi']):
warnings.warn( warnings.warn(
'Positional information not being provided to the model.') 'Positional information not being provided to the model.',
stacklevel=2)
if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp': if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
try: try:
# pylint: disable=import-outside-toplevel # pylint: disable=import-outside-toplevel
......
...@@ -30,7 +30,7 @@ class Counter: ...@@ -30,7 +30,7 @@ class Counter:
def get_max_shared_memory_bytes(gpu: int = 0) -> int: def get_max_shared_memory_bytes(gpu: int = 0) -> int:
"""Returns the maximum shared memory per thread block in bytes.""" """Returns the maximum shared memory per thread block in bytes."""
# https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html # https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html
cudaDevAttrMaxSharedMemoryPerBlockOptin = 97 # pylint: disable=invalid-name cudaDevAttrMaxSharedMemoryPerBlockOptin = 97
max_shared_mem = cuda_utils.get_device_attribute( max_shared_mem = cuda_utils.get_device_attribute(
cudaDevAttrMaxSharedMemoryPerBlockOptin, gpu) cudaDevAttrMaxSharedMemoryPerBlockOptin, gpu)
return int(max_shared_mem) return int(max_shared_mem)
......
...@@ -350,10 +350,7 @@ class Worker: ...@@ -350,10 +350,7 @@ class Worker:
self.cache_engine.copy(blocks_to_copy) self.cache_engine.copy(blocks_to_copy)
issued_cache_op = True issued_cache_op = True
if issued_cache_op: cache_events = self.cache_events if issued_cache_op else None
cache_events = self.cache_events
else:
cache_events = None
# If there is no input, we don't need to execute the model. # If there is no input, we don't need to execute the model.
if not seq_group_metadata_list: if not seq_group_metadata_list:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment