Commit 51679bbd authored by zhuwenwen's avatar zhuwenwen
Browse files

resolve merge confilcts

parents 4095d0db 1af090b5
......@@ -5,3 +5,6 @@
int get_device_attribute(
int attribute,
int device_id);
int get_max_shared_memory_per_block_device_attribute(
int device_id);
#ifdef USE_ROCM
#include <hip/hip_runtime.h>
#include <hip/hip_runtime_api.h>
#endif
int get_device_attribute(
int attribute,
......@@ -15,3 +16,20 @@ int get_device_attribute(
cudaDeviceGetAttribute(&value, static_cast<cudaDeviceAttr>(attribute), device);
return value;
}
int get_max_shared_memory_per_block_device_attribute(
int device_id)
{
int attribute;
// https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html
// cudaDevAttrMaxSharedMemoryPerBlockOptin = 97 if not is_hip() else 74
#ifdef USE_ROCM
attribute = hipDeviceAttributeMaxSharedMemoryPerBlock;
#else
attribute = cudaDevAttrMaxSharedMemoryPerBlockOptin;
#endif
return get_device_attribute(attribute, device_id);
}
#include <ATen/cuda/Exceptions.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include <torch/extension.h>
#include "custom_all_reduce.cuh"
// fake pointer type
using fptr_t = uint64_t;
static_assert(sizeof(void *) == sizeof(fptr_t));
fptr_t init_custom_ar(torch::Tensor &meta, torch::Tensor &rank_data,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets, int rank,
bool full_nvlink) {
int world_size = offsets.size();
if (world_size > 8)
throw std::invalid_argument("world size > 8 is not supported");
if (world_size % 2 != 0)
throw std::invalid_argument("Odd num gpus is not supported for now");
if (world_size != handles.size())
throw std::invalid_argument(
"handles length should equal to offsets length");
if (rank < 0 || rank >= world_size)
throw std::invalid_argument("invalid rank passed in");
cudaIpcMemHandle_t ipc_handles[8];
for (int i = 0; i < world_size; i++) {
std::memcpy(&ipc_handles[i], handles[i].data(), sizeof(cudaIpcMemHandle_t));
}
return (fptr_t) new vllm::CustomAllreduce(
reinterpret_cast<vllm::Metadata *>(meta.data_ptr()), rank_data.data_ptr(),
rank_data.numel(), ipc_handles, offsets, rank, full_nvlink);
}
/**
* Make sure tensor t's data lies completely within ((char)t.data_ptr()) +
* t.numel() * t.element_size(). This is slightly weaker than t.is_contiguous()
* because it allows transpose of contiguous slice (i.e. slicing the first
* dimension). Currently, we require this because stride information is not
* passed into the kernels and we treat input tensors as flat.
*
* Examples
* A = torch.zeros(3, 3, 3)
* 1. A: OK
* 2. A[1:]: OK
* 3. A.permute(2, 0, 1): OK
* 4. A[1:].permute(2, 0, 1): OK
* 5. A[None].expand(2, -1, -1, -1): Not OK
* 6. A[:, 1:, 1:]: Not OK
*/
bool _is_weak_contiguous(torch::Tensor &t) {
return t.is_contiguous() ||
(t.storage().nbytes() - t.storage_offset() * t.element_size() ==
t.numel() * t.element_size());
}
bool should_custom_ar(torch::Tensor &inp, int max_size, int world_size,
bool full_nvlink) {
auto inp_size = inp.numel() * inp.element_size();
// custom allreduce requires input byte size to be multiples of 16
if (inp_size % 16 != 0) return false;
if (!_is_weak_contiguous(inp)) return false;
if (world_size == 2 || full_nvlink) return inp_size <= max_size;
// 4 PCIE GPUs use 2 stage allreduce, and is only faster than NCCL when size
// <= 512k
return world_size <= 4 && inp_size <= 512 * 1024;
}
void _all_reduce(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out,
cudaStream_t stream) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
TORCH_CHECK(_is_weak_contiguous(out));
switch (out.scalar_type()) {
case at::ScalarType::Float: {
fa->allreduce<float>(stream, reinterpret_cast<float *>(inp.data_ptr()),
reinterpret_cast<float *>(out.data_ptr()),
out.numel());
break;
}
case at::ScalarType::Half: {
fa->allreduce<half>(stream, reinterpret_cast<half *>(inp.data_ptr()),
reinterpret_cast<half *>(out.data_ptr()),
out.numel());
break;
}
#if (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__))
case at::ScalarType::BFloat16: {
fa->allreduce<nv_bfloat16>(
stream, reinterpret_cast<nv_bfloat16 *>(inp.data_ptr()),
reinterpret_cast<nv_bfloat16 *>(out.data_ptr()), out.numel());
break;
}
#endif
default:
throw std::runtime_error(
"custom allreduce only supports float32, float16 and bfloat16");
}
}
void all_reduce_reg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(inp));
auto stream = c10::cuda::getCurrentCUDAStream().stream();
TORCH_CHECK_EQ(inp.scalar_type(), out.scalar_type());
TORCH_CHECK_EQ(inp.numel(), out.numel());
_all_reduce(_fa, inp, out, stream);
}
void all_reduce_unreg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &reg_buffer,
torch::Tensor &out) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(inp));
auto stream = c10::cuda::getCurrentCUDAStream().stream();
auto input_size = inp.numel() * inp.element_size();
TORCH_CHECK_EQ(inp.scalar_type(), out.scalar_type());
TORCH_CHECK_EQ(inp.numel(), out.numel());
TORCH_CHECK(input_size <= reg_buffer.numel() * reg_buffer.element_size(),
"registered buffer is too small to contain the input");
AT_CUDA_CHECK(cudaMemcpyAsync(reg_buffer.data_ptr(), inp.data_ptr(),
input_size, cudaMemcpyDeviceToDevice, stream));
_all_reduce(_fa, reg_buffer, out, stream);
}
void dispose(fptr_t _fa) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
delete fa;
}
int meta_size() { return sizeof(vllm::Metadata); }
void register_buffer(fptr_t _fa, torch::Tensor &t,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
fa->register_buffer(handles, offsets, t.data_ptr());
}
std::pair<std::vector<uint8_t>, std::vector<int64_t>> get_graph_buffer_ipc_meta(
fptr_t _fa) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
return fa->get_graph_buffer_ipc_meta();
}
void register_graph_buffers(fptr_t _fa, const std::vector<std::string> &handles,
const std::vector<std::vector<int64_t>> &offsets) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
fa->register_graph_buffers(handles, offsets);
}
#pragma once
#include <cuda.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <iostream>
#include <limits>
#include <map>
#include <unordered_map>
#include <vector>
#define CUDACHECK(cmd) \
do { \
cudaError_t e = cmd; \
if (e != cudaSuccess) { \
printf("Failed: Cuda error %s:%d '%s'\n", __FILE__, __LINE__, \
cudaGetErrorString(e)); \
exit(EXIT_FAILURE); \
} \
} while (0)
namespace vllm {
struct Signal {
alignas(64) union {
uint64_t flag;
unsigned char data[8];
} start;
alignas(64) union {
uint64_t flag;
unsigned char data[8];
} end;
};
struct Metadata {
alignas(128) Signal sg;
alignas(128) int counter;
};
static_assert(offsetof(Metadata, counter) == 128);
static_assert(sizeof(Metadata) == 256);
struct __align__(16) RankData { const void *__restrict__ ptrs[8]; };
struct RankSignals {
volatile Signal *signals[8];
};
// like std::array, but aligned
template <typename T, int sz>
struct __align__(alignof(T) * sz) array_t {
T data[sz];
using type = T;
static constexpr int size = sz;
};
// use packed type to maximize memory efficiency
// goal: generate ld.128 and st.128 instructions
template <typename T>
struct packed_t {
// the (P)acked type for load/store
using P = array_t<T, 16 / sizeof(T)>;
// the (A)ccumulator type for reduction
using A = array_t<float, 16 / sizeof(T)>;
};
#define DINLINE __device__ __forceinline__
// scalar cast functions
DINLINE float upcast_s(half val) { return __half2float(val); }
template <typename T>
DINLINE T downcast_s(float val);
template <>
DINLINE half downcast_s(float val) {
return __float2half(val);
}
// scalar add functions
// for some reason when compiling with Pytorch, the + operator for half and
// bfloat is disabled so we call the intrinsics directly
DINLINE half &assign_add(half &a, half b) {
a = __hadd(a, b);
return a;
}
DINLINE float &assign_add(float &a, float b) { return a += b; }
#if (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__))
DINLINE float upcast_s(nv_bfloat16 val) { return __bfloat162float(val); }
template <>
DINLINE nv_bfloat16 downcast_s(float val) {
return __float2bfloat16(val);
}
DINLINE nv_bfloat16 &assign_add(nv_bfloat16 &a, nv_bfloat16 b) {
a = __hadd(a, b);
return a;
}
#endif
template <typename T, int N>
DINLINE array_t<T, N> &packed_assign_add(array_t<T, N> &a, array_t<T, N> b) {
#pragma unroll
for (int i = 0; i < N; i++) {
assign_add(a.data[i], b.data[i]);
}
return a;
}
template <typename T, int N>
DINLINE array_t<float, N> upcast(array_t<T, N> val) {
if constexpr (std::is_same<T, float>::value) {
return val;
} else {
array_t<float, N> out;
#pragma unroll
for (int i = 0; i < N; i++) {
out.data[i] = upcast_s(val.data[i]);
}
return out;
}
}
template <typename O>
DINLINE O downcast(array_t<float, O::size> val) {
if constexpr (std::is_same<typename O::type, float>::value) {
return val;
} else {
O out;
#pragma unroll
for (int i = 0; i < O::size; i++) {
out.data[i] = downcast_s<typename O::type>(val.data[i]);
}
return out;
}
}
// compute flag at compile time
__host__ __device__ constexpr uint64_t compute_flag(int ngpus) {
auto m = std::numeric_limits<uint64_t>::max();
return m >> ((8 - ngpus) * 8);
}
template <int ngpus>
DINLINE void start_sync(const RankSignals &sg, volatile Metadata *meta,
int rank) {
constexpr auto FLAG = compute_flag(ngpus);
if (blockIdx.x == 0) {
if (threadIdx.x < ngpus)
// simultaneously write to the corresponding byte to all other ranks.
// Latency = 1 p2p write
sg.signals[threadIdx.x]->start.data[rank] = 255;
else if (threadIdx.x == 32)
// reset
meta->sg.end.flag = 0;
}
if (threadIdx.x == 0) {
while (meta->sg.start.flag != FLAG)
;
}
__syncthreads();
}
template <int ngpus, bool final_sync = false>
DINLINE void end_sync(const RankSignals &sg, volatile Metadata *meta,
int rank) {
constexpr auto FLAG = compute_flag(ngpus);
__syncthreads();
__shared__ int num;
if (threadIdx.x == 0) num = atomicAdd((int *)&meta->counter, 1);
__syncthreads();
// Only the last completing block can perform the end synchronization
// This can ensures when the final busy wait ends, all ranks must have
// finished reading each other's buffer.
if (num == gridDim.x - 1) {
if (threadIdx.x == 32) {
// reset in a different warp
meta->counter = 0;
meta->sg.start.flag = 0;
} else if (threadIdx.x < ngpus) {
// simultaneously write to the corresponding byte to all other ranks.
// Latency = 1 p2p write
sg.signals[threadIdx.x]->end.data[rank] = 255;
}
// if this is the final sync, only one block needs it
// because kernel exit can serve as sync
if constexpr (final_sync) {
if (threadIdx.x == 0) {
while (meta->sg.end.flag != FLAG)
;
}
}
}
if constexpr (!final_sync) {
if (threadIdx.x == 0) {
while (meta->sg.end.flag != FLAG)
;
}
__syncthreads();
}
}
template <typename P, int ngpus, typename A>
DINLINE P packed_reduce(const P *ptrs[], int idx) {
A tmp = upcast(ptrs[0][idx]);
#pragma unroll
for (int i = 1; i < ngpus; i++) {
packed_assign_add(tmp, upcast(ptrs[i][idx]));
}
return downcast<P>(tmp);
}
template <typename T, int ngpus>
__global__ void __launch_bounds__(512, 1)
cross_device_reduce_1stage(RankData *_dp, RankSignals sg,
volatile Metadata *meta, T *__restrict__ result,
int rank, int size) {
using P = typename packed_t<T>::P;
using A = typename packed_t<T>::A;
// note: we don't reorder the address so the accumulation order is the same
// for all ranks, ensuring bitwise identical results
auto dp = *_dp;
start_sync<ngpus>(sg, meta, rank);
// do the actual reduction
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
((P *)result)[idx] =
packed_reduce<P, ngpus, A>((const P **)&dp.ptrs[0], idx);
}
end_sync<ngpus, true>(sg, meta, rank);
}
template <typename P>
DINLINE P *get_tmp_buf(volatile Signal *sg) {
return (P *)(((Metadata *)sg) + 1);
}
template <typename T, int ngpus>
__global__ void __launch_bounds__(512, 1)
cross_device_reduce_2stage(RankData *_dp, RankSignals sg,
volatile Metadata *meta, T *__restrict__ result,
int rank, int size) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = gridDim.x * blockDim.x;
using P = typename packed_t<T>::P;
using A = typename packed_t<T>::A;
int part = size / ngpus;
int start = rank * part;
int end = rank == ngpus - 1 ? size : start + part;
const P *ptrs[ngpus];
P *tmps[ngpus];
#pragma unroll
for (int i = 0; i < ngpus; i++) {
int target = (rank + i) % ngpus;
ptrs[i] = (const P *)_dp->ptrs[target];
tmps[i] = get_tmp_buf<P>(sg.signals[target]);
}
auto tmp_out = tmps[0];
start_sync<ngpus>(sg, meta, rank);
// stage 1: reduce scatter
for (int idx = start + tid; idx < end; idx += stride) {
tmp_out[idx - start] = packed_reduce<P, ngpus, A>(ptrs, idx);
}
// Maybe TODO: replace this with per-block release-acquire
// can save about 1-2us (not a lot though)
end_sync<ngpus>(sg, meta, rank);
// stage 2: allgather
for (int idx = tid; idx < part; idx += stride) {
#pragma unroll
for (int i = 0; i < ngpus; i++) {
int dst_idx = ((rank + i) % ngpus) * part + idx;
((P *)result)[dst_idx] = tmps[i][idx];
}
}
// process the last larger partition
int remaining = size - part * ngpus;
if (tid < remaining) {
int dst_idx = tid + part * ngpus;
((P *)result)[dst_idx] = get_tmp_buf<P>(sg.signals[ngpus - 1])[part + tid];
}
// faster than this
// for (int idx = tid; idx < size; idx += stride) {
// int target_rank = idx / part;
// if (target_rank == ngpus) target_rank -= 1;
// ((P *)result)[idx] = tmps[target_rank][idx - target_rank * part];
// }
}
template <typename T, int ngpus>
__global__ void __launch_bounds__(512, 1)
cross_device_reduce_half_butterfly(RankData *_dp, RankSignals sg,
volatile Metadata *meta,
T *__restrict__ result, int rank,
int size) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = gridDim.x * blockDim.x;
using P = typename packed_t<T>::P;
using A = typename packed_t<T>::A;
auto tmp_out = get_tmp_buf<P>(sg.signals[rank]);
constexpr int hg = ngpus / 2;
// Actually not quite half butterfly.
// This is an all-to-all within each group containing half of the ranks
// followed by cross-group add. Equivalent to half butterfly when there
// are 4 GPUs, a common case for PCIe cards like T4 and A10.
const P *ptrs[hg];
{
int start = rank - rank % hg;
#pragma unroll
for (int i = 0; i < hg; i++) {
ptrs[i] = (const P *)_dp->ptrs[i + start];
}
}
start_sync<ngpus>(sg, meta, rank);
for (int idx = tid; idx < size; idx += stride) {
tmp_out[idx] = packed_reduce<P, hg, A>(ptrs, idx);
}
end_sync<ngpus>(sg, meta, rank);
auto src = get_tmp_buf<P>(sg.signals[(ngpus - 1) - rank % ngpus]);
// do the cross group reduction
for (int idx = tid; idx < size; idx += stride) {
auto tmp = tmp_out[idx];
packed_assign_add(tmp, src[idx]);
((P *)result)[idx] = tmp;
}
}
using IPC_KEY = std::array<uint8_t, sizeof(cudaIpcMemHandle_t)>;
static_assert(sizeof(IPC_KEY) == sizeof(cudaIpcMemHandle_t));
static_assert(alignof(IPC_KEY) == alignof(cudaIpcMemHandle_t));
class CustomAllreduce {
public:
int rank_;
int world_size_;
bool full_nvlink_;
// below are device pointers
RankSignals sg_;
std::unordered_map<void *, RankData *> buffers_;
Metadata *meta_;
// stores the registered device pointers from all ranks
RankData *d_rank_data_base_, *d_rank_data_end_;
std::vector<void *> graph_unreg_buffers_;
// a map from IPC handles to opened IPC pointers
std::map<IPC_KEY, char *> ipc_handles_;
/**
* meta is a pointer to device metadata and temporary buffer for allreduce.
*
* There's a total of sizeof(Metadata) of prefix before the actual data,
* so meta + 1 points to actual temporary buffer.
*
* note: this class does not own any device memory. Any required buffers
* are passed in from the constructor
*/
CustomAllreduce(Metadata *meta, void *rank_data, size_t rank_data_sz,
const cudaIpcMemHandle_t *handles,
const std::vector<int64_t> &offsets, int rank,
bool full_nvlink = true)
: rank_(rank),
world_size_(offsets.size()),
full_nvlink_(full_nvlink),
meta_(meta),
d_rank_data_base_(reinterpret_cast<RankData *>(rank_data)),
d_rank_data_end_(d_rank_data_base_ + rank_data_sz / sizeof(RankData)) {
for (int i = 0; i < world_size_; i++) {
Metadata *rank_meta;
if (i != rank_) {
char *handle = open_ipc_handle(&handles[i]);
handle += offsets[i];
rank_meta = (Metadata *)handle;
} else {
rank_meta = meta_;
}
sg_.signals[i] = &rank_meta->sg;
}
}
char *open_ipc_handle(const void *ipc_handle) {
auto [it, new_handle] =
ipc_handles_.insert({*((IPC_KEY *)ipc_handle), nullptr});
if (new_handle) {
char *ipc_ptr;
CUDACHECK(cudaIpcOpenMemHandle((void **)&ipc_ptr,
*((const cudaIpcMemHandle_t *)ipc_handle),
cudaIpcMemLazyEnablePeerAccess));
it->second = ipc_ptr;
}
return it->second;
}
std::pair<std::vector<uint8_t>, std::vector<int64_t>>
get_graph_buffer_ipc_meta() {
auto num_buffers = graph_unreg_buffers_.size();
auto handle_sz = sizeof(cudaIpcMemHandle_t);
std::vector<uint8_t> handles(handle_sz * num_buffers, 0);
std::vector<int64_t> offsets(num_buffers);
for (int i = 0; i < num_buffers; i++) {
auto ptr = graph_unreg_buffers_[i];
void *base_ptr;
// note: must share the base address of each allocation, or we get wrong
// address
if (cuPointerGetAttribute(&base_ptr,
CU_POINTER_ATTRIBUTE_RANGE_START_ADDR,
(CUdeviceptr)ptr) != CUDA_SUCCESS)
throw std::runtime_error("failed to get pointer attr");
CUDACHECK(cudaIpcGetMemHandle(
(cudaIpcMemHandle_t *)&handles[i * handle_sz], base_ptr));
offsets[i] = ((char *)ptr) - ((char *)base_ptr);
}
return std::make_pair(handles, offsets);
}
void check_rank_data_capacity(size_t num = 1) {
if (d_rank_data_base_ + num > d_rank_data_end_)
throw std::runtime_error(
"Rank data buffer is overflowed by " +
std::to_string(d_rank_data_base_ + num - d_rank_data_end_));
}
void register_buffer(const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets, void *self) {
check_rank_data_capacity();
RankData data;
for (int i = 0; i < world_size_; i++) {
if (i != rank_) {
char *handle = open_ipc_handle(handles[i].data());
handle += offsets[i];
data.ptrs[i] = handle;
} else {
data.ptrs[i] = self;
}
}
auto d_data = d_rank_data_base_++;
CUDACHECK(
cudaMemcpy(d_data, &data, sizeof(RankData), cudaMemcpyHostToDevice));
buffers_[self] = d_data;
}
// note: when registering graph buffers, we intentionally choose to not
// deduplicate the addresses. That means if the allocator reuses some
// addresses, they will be registered again. This is to account for the remote
// possibility of different allocation patterns between ranks. For example,
// rank 1 may get the same input address for the second allreduce, but rank 2
// got a different address. IPC handles have internal reference counting
// mechanism so overhead should be small.
void register_graph_buffers(
const std::vector<std::string> &handles,
const std::vector<std::vector<int64_t>> &offsets) {
auto num_buffers = graph_unreg_buffers_.size();
check_rank_data_capacity(num_buffers);
std::vector<RankData> rank_data(num_buffers);
for (int i = 0; i < num_buffers; i++) {
auto self_ptr = graph_unreg_buffers_[i];
auto &rd = rank_data[i];
for (int j = 0; j < world_size_; j++) {
if (j != rank_) {
char *handle =
open_ipc_handle(&handles[j][i * sizeof(cudaIpcMemHandle_t)]);
handle += offsets[j][i];
rd.ptrs[j] = handle;
} else {
rd.ptrs[j] = self_ptr;
}
}
}
CUDACHECK(cudaMemcpy(d_rank_data_base_, rank_data.data(),
sizeof(RankData) * num_buffers,
cudaMemcpyHostToDevice));
d_rank_data_base_ += num_buffers;
graph_unreg_buffers_.clear();
}
/**
* This is the result after careful grid search. Using 36 blocks give the best
* or close to the best runtime on the devices I tried: A100, A10, A30, T4,
* V100. You'll notice that NCCL kernels also only take a small amount of SMs.
* Not quite sure the underlying reason, but my guess is that too many SMs
* will cause contention on NVLink bus.
*/
template <typename T>
void allreduce(cudaStream_t stream, T *input, T *output, int size,
int threads = 512, int block_limit = 36) {
auto d = packed_t<T>::P::size;
if (size % d != 0)
throw std::runtime_error(
"custom allreduce currently requires input length to be multiple "
"of " +
std::to_string(d));
RankData *ptrs;
cudaStreamCaptureStatus status;
CUDACHECK(cudaStreamIsCapturing(stream, &status));
if (status == cudaStreamCaptureStatusActive) {
ptrs = d_rank_data_base_ + graph_unreg_buffers_.size();
graph_unreg_buffers_.push_back(input);
} else {
auto it = buffers_.find(input);
if (it == buffers_.end())
throw std::runtime_error(
"buffer address " +
std::to_string(reinterpret_cast<uint64_t>(input)) +
" is not registered!");
ptrs = it->second;
}
size /= d;
auto bytes = size * sizeof(typename packed_t<T>::P);
int blocks = std::min(block_limit, (size + threads - 1) / threads);
#define KL(ngpus, name) \
name<T, ngpus> \
<<<blocks, threads, 0, stream>>>(ptrs, sg_, meta_, output, rank_, size);
#define REDUCE_CASE(ngpus) \
case ngpus: { \
if (world_size_ == 2) { \
KL(ngpus, cross_device_reduce_1stage); \
} else if (full_nvlink_) { \
if ((world_size_ <= 4 && bytes < 512 * 1024) || \
(world_size_ <= 8 && bytes < 256 * 1024)) { \
KL(ngpus, cross_device_reduce_1stage); \
} else { \
KL(ngpus, cross_device_reduce_2stage); \
} \
} else { \
KL(ngpus, cross_device_reduce_half_butterfly); \
} \
break; \
}
switch (world_size_) {
REDUCE_CASE(2)
REDUCE_CASE(4)
REDUCE_CASE(6)
REDUCE_CASE(8)
default:
throw std::runtime_error(
"custom allreduce only supports num gpus in (2,4,6,8). Actual num "
"gpus = " +
std::to_string(world_size_));
}
#undef REDUCE_CASE
#undef KL
}
~CustomAllreduce() {
for (auto [_, ptr] : ipc_handles_) {
CUDACHECK(cudaIpcCloseMemHandle(ptr));
}
}
};
/**
* To inspect PTX/SASS, copy paste this header file to compiler explorer and add
a template instantiation:
* template void CustomAllreduce::allreduce<half>(cudaStream_t, half *, half *,
int, int, int);
*/
} // namespace vllm
/**
* This is a standalone test for custom allreduce.
* To compile, make sure you have MPI and NCCL installed in your system.
* export MPI_HOME=XXX
* nvcc -O2 -arch=native -std=c++17 custom_all_reduce_test.cu -o
* custom_all_reduce_test -lnccl -I${MPI_HOME}/include -lmpi
*
* Warning: this C++ test is not designed to be very readable and was used
* during the rapid prototyping process.
*
* To run:
* mpirun -np 8 ./custom_all_reduce_test
*/
#include <cuda.h>
#include <curand_kernel.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits>
#include <vector>
#include "cuda_profiler_api.h"
#include "custom_all_reduce.cuh"
#include "mpi.h"
#include "nccl.h"
#define MPICHECK(cmd) \
do { \
int e = cmd; \
if (e != MPI_SUCCESS) { \
printf("Failed: MPI error %s:%d '%d'\n", __FILE__, __LINE__, e); \
exit(EXIT_FAILURE); \
} \
} while (0)
#define NCCLCHECK(cmd) \
do { \
ncclResult_t r = cmd; \
if (r != ncclSuccess) { \
printf("Failed, NCCL error %s:%d '%s'\n", __FILE__, __LINE__, \
ncclGetErrorString(r)); \
exit(EXIT_FAILURE); \
} \
} while (0)
__global__ void dummy_kernel() {
for (int i = 0; i < 100; i++) __nanosleep(1000000); // 100ms
}
template <typename T>
__global__ void set_data(T *data, int size, int myRank) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
data[idx] = myRank * 0.11f;
}
}
template <typename T>
__global__ void convert_data(const T *data1, const T *data2, double *fdata1,
double *fdata2, int size) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
fdata1[idx] = data1[idx];
fdata2[idx] = data2[idx];
}
}
__global__ void init_rand(curandState_t *state, int size, int nRanks) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
for (int i = 0; i < nRanks; i++) {
curand_init(i + 1, idx, 0, &state[idx * nRanks + i]);
}
}
}
template <typename T>
__global__ void gen_data(curandState_t *state, T *data, double *ground_truth,
int myRank, int nRanks, int size) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
double sum = 0.0;
for (int i = 0; i < nRanks; i++) {
double val = curand_uniform_double(&state[idx * nRanks + i]) * 4;
T hval = val; // downcast first
sum += static_cast<double>(hval);
if (i == myRank) data[idx] = hval;
}
ground_truth[idx] = sum;
}
}
template <typename T>
void run(int myRank, int nRanks, ncclComm_t &comm, int threads, int block_limit,
int data_size) {
T *result;
cudaStream_t stream;
CUDACHECK(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
CUDACHECK(cudaMalloc(&result, data_size * sizeof(T)));
CUDACHECK(cudaMemset(result, 0, data_size * sizeof(T)));
cudaIpcMemHandle_t self_data_handle;
cudaIpcMemHandle_t data_handles[8];
vllm::Metadata *buffer;
T *self_data_copy;
/**
* Allocate IPC buffer
*
* The first section is a temporary buffer for storing intermediate allreduce
* results, if a particular algorithm requires it. The second section is for
* the input to the allreduce. The actual API takes the input pointer as an
* argument (that is, they can and usually should be allocated separately).
* But since the input pointers and the temporary buffer all require IPC
* registration, they are allocated and registered together in the test for
* convenience.
*/
CUDACHECK(
cudaMalloc(&buffer, 2 * data_size * sizeof(T) + sizeof(vllm::Metadata)));
CUDACHECK(cudaMemset(buffer, 0,
2 * data_size * sizeof(T) + sizeof(vllm::Metadata)));
CUDACHECK(cudaMalloc(&self_data_copy, data_size * sizeof(T)));
CUDACHECK(cudaIpcGetMemHandle(&self_data_handle, buffer));
MPICHECK(MPI_Allgather(&self_data_handle, sizeof(cudaIpcMemHandle_t),
MPI_BYTE, data_handles, sizeof(cudaIpcMemHandle_t),
MPI_BYTE, MPI_COMM_WORLD));
void *rank_data;
size_t rank_data_sz = 16 * 1024 * 1024;
CUDACHECK(cudaMalloc(&rank_data, rank_data_sz));
std::vector<int64_t> offsets(nRanks, 0);
vllm::CustomAllreduce fa(buffer, rank_data, rank_data_sz, data_handles,
offsets, myRank);
auto *self_data =
reinterpret_cast<T *>(reinterpret_cast<char *>(buffer) +
sizeof(vllm::Metadata) + data_size * sizeof(T));
// hack buffer registration
{
std::vector<std::string> handles;
handles.reserve(nRanks);
for (int i = 0; i < nRanks; i++) {
char *begin = (char *)&data_handles[i];
char *end = (char *)&data_handles[i + 1];
handles.emplace_back(begin, end);
}
std::vector<int64_t> offsets(
nRanks, sizeof(vllm::Metadata) + data_size * sizeof(T));
fa.register_buffer(handles, offsets, self_data);
}
double *ground_truth;
CUDACHECK(cudaMallocHost(&ground_truth, data_size * sizeof(double)));
curandState_t *states;
CUDACHECK(cudaMalloc(&states, sizeof(curandState_t) * nRanks * data_size));
init_rand<<<108, 1024, 0, stream>>>(states, data_size, nRanks);
gen_data<T><<<108, 1024, 0, stream>>>(states, self_data, ground_truth, myRank,
nRanks, data_size);
CUDACHECK(cudaMemcpyAsync(self_data_copy, self_data, data_size * sizeof(T),
cudaMemcpyDeviceToDevice, stream));
cudaEvent_t start, stop;
CUDACHECK(cudaEventCreate(&start));
CUDACHECK(cudaEventCreate(&stop));
ncclDataType_t ncclDtype;
if (std::is_same<T, half>::value) {
ncclDtype = ncclFloat16;
} else if (std::is_same<T, nv_bfloat16>::value) {
ncclDtype = ncclBfloat16;
} else {
ncclDtype = ncclFloat;
}
dummy_kernel<<<1, 1, 0, stream>>>();
constexpr int warmup_iters = 5;
constexpr int num_iters = 25;
// warmup
for (int i = 0; i < warmup_iters; i++) {
NCCLCHECK(ncclAllReduce(result, result, data_size, ncclDtype, ncclSum, comm,
stream));
}
CUDACHECK(cudaEventRecord(start, stream));
for (int i = 0; i < num_iters; i++) {
NCCLCHECK(ncclAllReduce(result, result, data_size, ncclDtype, ncclSum, comm,
stream));
}
CUDACHECK(cudaEventRecord(stop, stream));
CUDACHECK(cudaStreamSynchronize(stream));
float allreduce_ms = 0;
cudaEventElapsedTime(&allreduce_ms, start, stop);
// if (myRank == 1) dummy_kernel<<<1, 1, 0, stream>>>();
// set_data<T><<<16, 1024, 0, stream>>>(self_data, data_size, myRank);
dummy_kernel<<<1, 1, 0, stream>>>();
// warm up
for (int i = 0; i < warmup_iters; i++) {
fa.allreduce<T>(stream, self_data, result, data_size, threads, block_limit);
}
CUDACHECK(cudaEventRecord(start, stream));
for (int i = 0; i < num_iters; i++) {
fa.allreduce<T>(stream, self_data, result, data_size, threads, block_limit);
}
CUDACHECK(cudaEventRecord(stop, stream));
CUDACHECK(cudaStreamSynchronize(stream));
float duration_ms = 0;
cudaEventElapsedTime(&duration_ms, start, stop);
if (myRank == 0)
printf(
"Rank %d done, nGPUs:%d, sz (kb): %d, %d, %d, my time:%.2fus, nccl "
"time:%.2fus\n",
myRank, nRanks, data_size * sizeof(T) / 1024, threads, block_limit,
duration_ms * 1e3 / num_iters, allreduce_ms * 1e3 / num_iters);
// And wait for all the queued up work to complete
CUDACHECK(cudaStreamSynchronize(stream));
NCCLCHECK(ncclAllReduce(self_data_copy, self_data, data_size, ncclDtype,
ncclSum, comm, stream));
double *nccl_result, *my_result;
CUDACHECK(cudaMallocHost(&nccl_result, data_size * sizeof(double)));
CUDACHECK(cudaMallocHost(&my_result, data_size * sizeof(double)));
convert_data<T><<<108, 1024, 0, stream>>>(self_data, result, nccl_result,
my_result, data_size);
CUDACHECK(cudaStreamSynchronize(stream));
for (unsigned long j = 0; j < data_size; j++) {
auto diff = abs(nccl_result[j] - my_result[j]);
if (diff >= 1e-2) {
printf("Rank %d: Verification mismatch at %lld: %f != (my) %f, gt=%f\n",
myRank, j, nccl_result[j], my_result[j], ground_truth[j]);
break;
}
}
long double nccl_diffs = 0.0;
long double my_diffs = 0.0;
for (int j = 0; j < data_size; j++) {
nccl_diffs += abs(nccl_result[j] - ground_truth[j]);
my_diffs += abs(my_result[j] - ground_truth[j]);
}
if (myRank == 0)
std::cout << "average abs diffs: nccl: " << nccl_diffs / data_size
<< " me: " << my_diffs / data_size << std::endl;
CUDACHECK(cudaFree(result));
CUDACHECK(cudaFree(self_data_copy));
CUDACHECK(cudaFree(rank_data));
CUDACHECK(cudaFree(buffer));
CUDACHECK(cudaFree(states));
CUDACHECK(cudaFreeHost(ground_truth));
CUDACHECK(cudaFreeHost(nccl_result));
CUDACHECK(cudaFreeHost(my_result));
CUDACHECK(cudaStreamDestroy(stream));
}
int main(int argc, char **argv) {
int nRanks, myRank;
MPICHECK(MPI_Init(&argc, &argv));
MPICHECK(MPI_Comm_rank(MPI_COMM_WORLD, &myRank));
MPICHECK(MPI_Comm_size(MPI_COMM_WORLD, &nRanks));
CUDACHECK(cudaSetDevice(myRank));
ncclUniqueId id;
ncclComm_t comm;
if (myRank == 0) ncclGetUniqueId(&id);
MPICHECK(MPI_Bcast(static_cast<void *>(&id), sizeof(id), MPI_BYTE, 0,
MPI_COMM_WORLD));
NCCLCHECK(ncclCommInitRank(&comm, nRanks, id, myRank));
cudaProfilerStart();
// for (int threads : {256, 512}) {
// for (int block_limit = 16; block_limit < 112; block_limit += 4) {
// run<half>(myRank, nRanks, comm, threads, block_limit, 4096 * 1024);
// }
// }
for (int sz = 512; sz <= (32 << 20); sz *= 2) {
run<half>(myRank, nRanks, comm, 512, 36, sz + 8 * 50);
}
cudaProfilerStop();
return EXIT_SUCCESS;
}
......@@ -14,3 +14,24 @@
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
#define VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__)
#define VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(__VA_ARGS__))
#define VLLM_DISPATCH_CASE_INTEGRAL_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Short, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__)
#define VLLM_DISPATCH_INTEGRAL_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__))
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/ATen.h>
#include <THC/THCAtomics.cuh>
#include "cuda_compat.h"
#include "dispatch_utils.h"
const static size_t NUM_MAX_EXPERTS = 64;
#define CEILDIV(x,y) (((x) + (y) - 1) / (y))
namespace vllm {
template <typename scalar_t>
__global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
int32_t *sorted_token_ids,
int32_t *expert_ids,
int32_t *total_tokens_post_pad,
int32_t num_experts,
int32_t block_size,
size_t numel) {
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
__shared__ int32_t tokens_cnts[NUM_MAX_EXPERTS + 1][NUM_MAX_EXPERTS];
__shared__ int32_t cumsum[NUM_MAX_EXPERTS + 1];
for (int i = 0; i < num_experts; ++i) {
tokens_cnts[threadIdx.x + 1][i] = 0;
}
/**
* In the first step we compute token_cnts[thread_index + 1][expert_index],
* which counts how many tokens in the token shard of thread_index are assigned
* to expert expert_index.
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
++tokens_cnts[threadIdx.x + 1][topk_ids[i]];
}
__syncthreads();
// For each expert we accumulate the token counts from the different threads.
tokens_cnts[0][threadIdx.x] = 0;
for (int i = 1; i <= blockDim.x; ++i) {
tokens_cnts[i][threadIdx.x] += tokens_cnts[i-1][threadIdx.x];
}
__syncthreads();
// We accumulate the token counts of all experts in thread 0.
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
cumsum[i] = cumsum[i-1] + CEILDIV(tokens_cnts[blockDim.x][i - 1], block_size) * block_size;
}
*total_tokens_post_pad = cumsum[num_experts];
}
__syncthreads();
/**
* For each expert, each thread processes the tokens of the corresponding blocks
* and stores the corresponding expert_id for each block.
*/
for (int i = cumsum[threadIdx.x];i < cumsum[threadIdx.x + 1];i += block_size) {
expert_ids[i / block_size] = threadIdx.x;
}
/**
* Each thread processes a token shard, calculating the index of each token after
* sorting by expert number. Given the example topk_ids = [0,1,2,1,2,3,0,3,4] and
* block_size = 4, then the output would be [0, 6, *, *, 1, 3, *, *, 2, 4, *, *, 5, 7, *, *, 8, *, *, *],
* where * represents a padding value(preset in python).
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int32_t expert_id = topk_ids[i];
/** The cumsum[expert_id] stores the starting index of the tokens that the
* expert with expert_id needs to process, and tokens_cnts[threadIdx.x][expert_id]
* stores the indices of the tokens processed by the expert with expert_id within
* the current thread's token shard.
*/
int32_t rank_post_pad = tokens_cnts[threadIdx.x][expert_id] + cumsum[expert_id];
sorted_token_ids[rank_post_pad] = i;
++tokens_cnts[threadIdx.x][expert_id];
}
}
}
void moe_align_block_size(
torch::Tensor topk_ids,
int num_experts,
int block_size,
torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad) {
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
assert(num_experts <= NUM_MAX_EXPERTS);
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
vllm::moe_align_block_size_kernel<scalar_t><<<1, num_experts, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(),
num_experts,
block_size,
topk_ids.numel());
});
}
......@@ -13,7 +13,8 @@ void paged_attention_v1(
torch::Tensor& context_lens,
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes);
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype);
void paged_attention_v2(
torch::Tensor& out,
......@@ -29,7 +30,8 @@ void paged_attention_v2(
torch::Tensor& context_lens,
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes);
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype);
void rms_norm(
torch::Tensor& out,
......@@ -70,6 +72,14 @@ torch::Tensor awq_gemm(
torch::Tensor _scaling_factors,
torch::Tensor _zeros,
int split_k_iters);
torch::Tensor awq_dequantize(
torch::Tensor _kernel,
torch::Tensor _scaling_factors,
torch::Tensor _zeros,
int split_k_iters,
int thx,
int thy);
#endif
void squeezellm_gemm(
......@@ -89,3 +99,32 @@ torch::Tensor gptq_gemm(
void gptq_shuffle(
torch::Tensor q_weight,
torch::Tensor q_perm);
void moe_align_block_size(
torch::Tensor topk_ids,
int num_experts,
int block_size,
torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad);
#ifndef USE_ROCM
using fptr_t = uint64_t;
fptr_t init_custom_ar(torch::Tensor &meta, torch::Tensor &rank_data,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets, int rank,
bool full_nvlink);
bool should_custom_ar(torch::Tensor &inp, int max_size, int world_size,
bool full_nvlink);
void all_reduce_reg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out);
void all_reduce_unreg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &reg_buffer,
torch::Tensor &out);
void dispose(fptr_t _fa);
int meta_size();
void register_buffer(fptr_t _fa, torch::Tensor &t,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets);
std::pair<std::vector<uint8_t>, std::vector<int64_t>> get_graph_buffer_ipc_meta(fptr_t _fa);
void register_graph_buffers(fptr_t _fa, const std::vector<std::string> &handles,
const std::vector<std::vector<int64_t>> &offsets);
#endif
Contains code from https://github.com/punica-ai/punica
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
------------------------------------------------------------------------------------
This product bundles various third-party components under other open source licenses.
This section summarizes those components and their licenses. See licenses/
for text of these licenses.
Apache-2.0
* third_party/nvbench (with LLVM exception)
* third_party/flashinfer
BSD-3-Clause:
* third_party/cutlass
\ No newline at end of file
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_bfloat16, nv_bfloat16)
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_bfloat16, nv_half)
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_half, nv_bfloat16)
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_half, nv_half)
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, float, nv_bfloat16)
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, float, nv_half)
#pragma once
template <int feat_in, int feat_out, typename in_T, typename out_T,
typename W_T>
void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale);
// clang-format off
#define FOR_BGMV_WIDE(f, in_T, out_T, W_T, narrow) \
f(in_T, out_T, W_T, narrow, 128) \
f(in_T, out_T, W_T, narrow, 256) \
f(in_T, out_T, W_T, narrow, 512) \
f(in_T, out_T, W_T, narrow, 1024) \
f(in_T, out_T, W_T, narrow, 1280) \
f(in_T, out_T, W_T, narrow, 1728) \
f(in_T, out_T, W_T, narrow, 1792) \
f(in_T, out_T, W_T, narrow, 2048) \
f(in_T, out_T, W_T, narrow, 2560) \
f(in_T, out_T, W_T, narrow, 2752) \
f(in_T, out_T, W_T, narrow, 3072) \
f(in_T, out_T, W_T, narrow, 3456) \
f(in_T, out_T, W_T, narrow, 3584) \
f(in_T, out_T, W_T, narrow, 4096) \
f(in_T, out_T, W_T, narrow, 5120) \
f(in_T, out_T, W_T, narrow, 5504) \
f(in_T, out_T, W_T, narrow, 5632) \
f(in_T, out_T, W_T, narrow, 6912) \
f(in_T, out_T, W_T, narrow, 7168) \
f(in_T, out_T, W_T, narrow, 8192) \
f(in_T, out_T, W_T, narrow, 9216) \
f(in_T, out_T, W_T, narrow, 10240) \
f(in_T, out_T, W_T, narrow, 11008) \
f(in_T, out_T, W_T, narrow, 12288) \
f(in_T, out_T, W_T, narrow, 13824) \
f(in_T, out_T, W_T, narrow, 14336) \
f(in_T, out_T, W_T, narrow, 16384) \
f(in_T, out_T, W_T, narrow, 20480) \
f(in_T, out_T, W_T, narrow, 28672) \
f(in_T, out_T, W_T, narrow, 32000) \
f(in_T, out_T, W_T, narrow, 32256) \
f(in_T, out_T, W_T, narrow, 32512) \
f(in_T, out_T, W_T, narrow, 32768) \
f(in_T, out_T, W_T, narrow, 33024) \
f(in_T, out_T, W_T, narrow, 36864) \
f(in_T, out_T, W_T, narrow, 49152) \
// Keep above in sync with vllm/lora/layers::SamplerWithLoRA
// Keep this in sync with vllm/config::LoRAConfig
#define FOR_BGMV_WIDE_NARROW(f, in_T, out_T, W_T) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 8) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 16) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 32) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 64)
// clang-format on
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_bfloat16, nv_bfloat16)
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_bfloat16, nv_half)
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_half, nv_bfloat16)
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_half, nv_half)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment