Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
norm
vllm
Commits
436e523b
Unverified
Commit
436e523b
authored
May 03, 2023
by
Woosuk Kwon
Committed by
GitHub
May 03, 2023
Browse files
Refactor attention kernels (#53)
parent
27f1410d
Changes
13
Hide whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
1253 additions
and
1673 deletions
+1253
-1673
csrc/attention/attention_dtypes.cuh
csrc/attention/attention_dtypes.cuh
+5
-0
csrc/attention/attention_generic.cuh
csrc/attention/attention_generic.cuh
+47
-0
csrc/attention/attention_kernels.cu
csrc/attention/attention_kernels.cu
+451
-0
csrc/attention/attention_utils.cuh
csrc/attention/attention_utils.cuh
+38
-0
csrc/attention/dtype_float16.cuh
csrc/attention/dtype_float16.cuh
+426
-0
csrc/attention/dtype_float32.cuh
csrc/attention/dtype_float32.cuh
+250
-0
csrc/attention_utils.h
csrc/attention_utils.h
+0
-165
csrc/cuda_primitives.h
csrc/cuda_primitives.h
+0
-1340
csrc/layernorm_kernels.cu
csrc/layernorm_kernels.cu
+1
-1
csrc/reduction_utils.cuh
csrc/reduction_utils.cuh
+34
-0
csrc/reduction_utils.h
csrc/reduction_utils.h
+0
-76
setup.py
setup.py
+1
-1
tests/kernels/attention.py
tests/kernels/attention.py
+0
-90
No files found.
csrc/attention/attention_dtypes.cuh
0 → 100644
View file @
436e523b
#pragma once
#include "attention_generic.cuh"
#include "dtype_float16.cuh"
#include "dtype_float32.cuh"
csrc/attention/attention_generic.cuh
0 → 100644
View file @
436e523b
#pragma once
#include <stdint.h>
namespace
cacheflow
{
// A vector type to store Q, K, V elements.
template
<
typename
T
,
int
VEC_SIZE
>
struct
Vec
{};
// A vector type to store FP32 accumulators.
template
<
typename
T
>
struct
FloatVec
{};
// Template vector operations.
template
<
typename
Acc
,
typename
A
,
typename
B
>
inline
__device__
Acc
mul
(
A
a
,
B
b
);
template
<
typename
T
>
inline
__device__
float
sum
(
T
v
);
template
<
typename
T
>
inline
__device__
float
dot
(
T
a
,
T
b
)
{
return
sum
(
mul
<
T
,
T
,
T
>
(
a
,
b
));
}
template
<
typename
A
,
typename
T
>
inline
__device__
float
dot
(
T
a
,
T
b
)
{
return
sum
(
mul
<
A
,
T
,
T
>
(
a
,
b
));
}
template
<
typename
T
>
inline
__device__
void
zero
(
T
&
dst
)
{
constexpr
int
WORDS
=
sizeof
(
T
)
/
4
;
union
{
T
raw
;
uint32_t
words
[
WORDS
];
}
tmp
;
#pragma unroll
for
(
int
ii
=
0
;
ii
<
WORDS
;
++
ii
)
{
tmp
.
words
[
ii
]
=
0u
;
}
dst
=
tmp
.
raw
;
}
}
// namespace cacheflow
csrc/attention_kernels.cu
→
csrc/attention
/attention
_kernels.cu
View file @
436e523b
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include "attention_utils.h"
#include "cuda_primitives.h"
#include "reduction_utils.h"
#include "attention_dtypes.cuh"
#include "attention_utils.cuh"
#include <algorithm>
...
...
@@ -13,6 +12,42 @@
namespace
cacheflow
{
// Utility function for attention softmax.
template
<
int
NUM_WARPS
>
inline
__device__
float
block_sum
(
float
*
red_smem
,
float
sum
)
{
// Decompose the thread index into warp / lane.
int
warp
=
threadIdx
.
x
/
WARP_SIZE
;
int
lane
=
threadIdx
.
x
%
WARP_SIZE
;
// Compute the sum per warp.
#pragma unroll
for
(
int
mask
=
WARP_SIZE
/
2
;
mask
>=
1
;
mask
/=
2
)
{
sum
+=
__shfl_xor_sync
(
uint32_t
(
-
1
),
sum
,
mask
);
}
// Warp leaders store the data to shared memory.
if
(
lane
==
0
)
{
red_smem
[
warp
]
=
sum
;
}
// Make sure the data is in shared memory.
__syncthreads
();
// The warps compute the final sums.
if
(
lane
<
NUM_WARPS
)
{
sum
=
red_smem
[
lane
];
}
// Parallel reduction inside the warp.
#pragma unroll
for
(
int
mask
=
NUM_WARPS
/
2
;
mask
>=
1
;
mask
/=
2
)
{
sum
+=
__shfl_xor_sync
(
uint32_t
(
-
1
),
sum
,
mask
);
}
// Broadcast to other threads.
return
__shfl_sync
(
uint32_t
(
-
1
),
sum
,
0
);
}
// Grid: (num_heads, num_seqs).
template
<
typename
scalar_t
,
...
...
@@ -71,8 +106,8 @@ __global__ void single_query_cached_kv_attention_kernel(
// Memory planning.
extern
__shared__
char
shared_mem
[];
// NOTE(woosuk): We use FP32
logits and accumulation
.
float
*
logits
=
reinterpret_cast
<
float
*>
(
shared_mem
);
// NOTE(woosuk): We use FP32
for the softmax logits for better accuracy
.
float
*
logits
=
reinterpret_cast
<
float
*>
(
shared_mem
);
// Workspace for reduction.
__shared__
float
red_smem
[
2
*
NUM_WARPS
];
...
...
@@ -145,7 +180,7 @@ __global__ void single_query_cached_kv_attention_kernel(
qk_max
=
lane
<
NUM_WARPS
?
red_smem
[
lane
]
:
-
FLT_MAX
;
#pragma unroll
for
(
int
mask
=
NUM_WARPS
/
2
;
mask
>=
1
;
mask
/=
2
)
{
qk_max
=
fmaxf
(
qk_max
,
__shfl_xor_sync
(
uint32_t
(
-
1
),
qk_max
,
mask
));
qk_max
=
fmaxf
(
qk_max
,
__shfl_xor_sync
(
uint32_t
(
-
1
),
qk_max
,
mask
));
}
// Broadcast the max qk value to all threads.
qk_max
=
__shfl_sync
(
uint32_t
(
-
1
),
qk_max
,
0
);
...
...
@@ -169,12 +204,14 @@ __global__ void single_query_cached_kv_attention_kernel(
// Each thread will fetch 16 bytes from the value cache at a time.
constexpr
int
V_VEC_SIZE
=
MIN
(
16
/
sizeof
(
scalar_t
),
BLOCK_SIZE
);
using
V_vec
=
typename
Vec
<
scalar_t
,
V_VEC_SIZE
>::
Type
;
using
L_vec
=
typename
FloatVec
<
V_vec
>::
Type
;
using
L_vec
=
typename
Vec
<
scalar_t
,
V_VEC_SIZE
>::
Type
;
using
Float_L_vec
=
typename
FloatVec
<
L_vec
>::
Type
;
constexpr
int
NUM_V_VECS_PER_ROW
=
BLOCK_SIZE
/
V_VEC_SIZE
;
constexpr
int
NUM_ROWS_PER_ITER
=
WARP_SIZE
/
NUM_V_VECS_PER_ROW
;
constexpr
int
NUM_ROWS_PER_THREAD
=
(
HEAD_SIZE
+
NUM_ROWS_PER_ITER
-
1
)
/
NUM_ROWS_PER_ITER
;
// NOTE(woosuk): We use FP32 for the accumulator for better accuracy.
float
accs
[
NUM_ROWS_PER_THREAD
];
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_ROWS_PER_THREAD
;
i
++
)
{
...
...
@@ -185,7 +222,8 @@ __global__ void single_query_cached_kv_attention_kernel(
const
int
physical_block_number
=
block_table
[
block_idx
];
const
int
physical_block_offset
=
(
lane
%
NUM_V_VECS_PER_ROW
)
*
V_VEC_SIZE
;
const
int
token_idx
=
block_idx
*
BLOCK_SIZE
+
physical_block_offset
;
L_vec
logits_vec
=
*
reinterpret_cast
<
L_vec
*>
(
logits
+
token_idx
);
L_vec
logits_vec
;
from_float
(
logits_vec
,
*
reinterpret_cast
<
Float_L_vec
*>
(
logits
+
token_idx
));
const
scalar_t
*
v_ptr
=
v_cache
+
physical_block_number
*
num_heads
*
HEAD_SIZE
*
BLOCK_SIZE
+
head_idx
*
HEAD_SIZE
*
BLOCK_SIZE
;
...
...
@@ -195,7 +233,7 @@ __global__ void single_query_cached_kv_attention_kernel(
if
(
row_idx
<
HEAD_SIZE
)
{
const
int
offset
=
row_idx
*
BLOCK_SIZE
+
physical_block_offset
;
V_vec
v_vec
=
*
reinterpret_cast
<
const
V_vec
*>
(
v_ptr
+
offset
);
accs
[
i
]
+=
dot
(
logits_vec
,
cast_to_float
(
v_vec
)
)
;
accs
[
i
]
+=
dot
(
logits_vec
,
v_vec
);
}
}
}
...
...
@@ -254,7 +292,7 @@ __global__ void single_query_cached_kv_attention_kernel(
for
(
int
i
=
0
;
i
<
NUM_ROWS_PER_THREAD
;
i
++
)
{
const
int
row_idx
=
lane
/
NUM_V_VECS_PER_ROW
+
i
*
NUM_ROWS_PER_ITER
;
if
(
row_idx
<
HEAD_SIZE
&&
lane
%
NUM_V_VECS_PER_ROW
==
0
)
{
convert_
from_float
(
*
(
out_ptr
+
row_idx
),
accs
[
i
]);
from_float
(
*
(
out_ptr
+
row_idx
),
accs
[
i
]);
}
}
}
...
...
@@ -307,7 +345,7 @@ void single_query_cached_kv_attention_launcher(
constexpr
int
NUM_WARPS
=
NUM_THREADS
/
WARP_SIZE
;
int
padded_max_context_len
=
((
max_context_len
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
)
*
BLOCK_SIZE
;
int
logits_size
=
padded_max_context_len
*
sizeof
(
float
);
int
logits_size
=
padded_max_context_len
*
sizeof
(
T
);
int
outputs_size
=
(
NUM_WARPS
/
2
)
*
head_size
*
sizeof
(
float
);
int
shared_mem_size
=
std
::
max
(
logits_size
,
outputs_size
);
...
...
@@ -340,21 +378,55 @@ void single_query_cached_kv_attention_launcher(
LAUNCH_ATTENTION_KERNEL
(
T
,
256
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
default:
assert
(
fals
e
);
TORCH_CHECK
(
false
,
"Unsupported head size: "
,
head_siz
e
);
break
;
}
}
#define CALL_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
single_query_cached_kv_attention_launcher<T, BLOCK_SIZE>( \
out
,
\
query
,
\
key_cache
,
\
value_cache
,
\
scale
,
\
block_tables
,
\
context_lens
,
\
max_context_len
);
single_query_cached_kv_attention_launcher<T, BLOCK_SIZE>( \
out, \
query, \
key_cache, \
value_cache, \
scale, \
block_tables, \
context_lens, \
max_context_len);
#define CALL_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
switch (block_size) { \
case 1: \
CALL_KERNEL_LAUNCHER(T, 1); \
break; \
case 2: \
CALL_KERNEL_LAUNCHER(T, 2); \
break; \
case 4: \
CALL_KERNEL_LAUNCHER(T, 4); \
break; \
case 8: \
CALL_KERNEL_LAUNCHER(T, 8); \
break; \
case 16: \
CALL_KERNEL_LAUNCHER(T, 16); \
break; \
case 32: \
CALL_KERNEL_LAUNCHER(T, 32); \
break; \
case 64: \
CALL_KERNEL_LAUNCHER(T, 64); \
break; \
case 128: \
CALL_KERNEL_LAUNCHER(T, 128); \
break; \
case 256: \
CALL_KERNEL_LAUNCHER(T, 256); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
}
void
single_query_cached_kv_attention
(
torch
::
Tensor
&
out
,
// [num_seqs, num_heads, head_size]
...
...
@@ -366,531 +438,14 @@ void single_query_cached_kv_attention(
torch
::
Tensor
&
context_lens
,
// [num_seqs]
int
block_size
,
int
max_context_len
)
{
// TODO(woosuk): Support BF16.
if
(
query
.
element_size
()
==
2
)
{
// Half.
if
(
block_size
==
1
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
1
);
}
else
if
(
block_size
==
2
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
2
);
}
else
if
(
block_size
==
4
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
4
);
}
else
if
(
block_size
==
8
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
8
);
}
else
if
(
block_size
==
16
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
16
);
}
else
if
(
block_size
==
32
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
32
);
}
else
if
(
block_size
==
64
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
64
);
}
else
if
(
block_size
==
128
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
128
);
}
else
if
(
block_size
==
256
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
256
);
}
else
{
assert
(
false
);
}
// TODO(woosuk): Support FP32 and BF16.
if
(
query
.
dtype
()
==
at
::
ScalarType
::
Half
)
{
CALL_KERNEL_LAUNCHER_BLOCK_SIZE
(
uint16_t
);
}
else
{
// Float.
assert
(
false
);
TORCH_CHECK
(
false
,
"Unsupported data type: "
,
query
.
dtype
());
}
}
// namespace cacheflow {
// // Grid: (num_heads, num_query_tokens).
// template<
// typename scalar_t,
// int HEAD_SIZE,
// int BLOCK_SIZE,
// int NUM_THREADS>
// __device__ void multi_query_cached_kv_attention_kernel_unoptimized_(
// scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
// const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
// const int seq_start_idx,
// const int seq_len,
// const scalar_t* __restrict__ k_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
// const scalar_t* __restrict__ v_cache, // [num_blocks, num_heads, head_size, block_size]
// const float scale,
// const int* __restrict__ block_table, // [num_seqs, max_num_blocks_per_seq]
// const int context_len,
// const int max_num_blocks_per_seq,
// const int q_stride) {
// constexpr int THREAD_GROUP_SIZE = WARP_SIZE / BLOCK_SIZE;
// constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
// const int thread_idx = threadIdx.x;
// const int warp_idx = thread_idx / WARP_SIZE;
// const int lane = thread_idx % WARP_SIZE;
// const int head_idx = blockIdx.x;
// const int num_heads = gridDim.x;
// const int seq_idx = blockIdx.y;
// // A vector type to store a part of a key or a query.
// // The vector size is configured in such a way that the threads in a thread group
// // fetch or comput 16 bytes at a time.
// // For example, if the size of a thread group is 4 and the data type is half,
// // then the vector size is 16 / (4 * sizeof(half)) == 2.
// constexpr int VEC_SIZE = 16 / (THREAD_GROUP_SIZE * sizeof(scalar_t));
// using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
// using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
// constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
// constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;
// const int thread_group_idx = thread_idx / THREAD_GROUP_SIZE;
// const int thread_group_offset = thread_idx % THREAD_GROUP_SIZE;
// // Load the query to registers.
// // Each thread in a thread group has a different part of the query.
// // For example, if the the thread group size is 4, then the first thread in the group
// // has 0, 4, 8, ... th vectors of the query, and the second thread has 1, 5, 9, ...
// // th vectors of the query, and so on.
// // NOTE(woosuk): Because q is split from a qkv tensor, it may not be contiguous.
// const scalar_t* q_ptr = q + seq_idx * q_stride + head_idx * HEAD_SIZE;
// Q_vec q_vecs[NUM_VECS_PER_THREAD];
// #pragma unroll
// for (int i = 0; i < NUM_VECS_PER_THREAD; i++) {
// const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
// q_vecs[i] = *reinterpret_cast<const Q_vec*>(q_ptr + vec_idx * VEC_SIZE);
// }
// // Memory planning.
// extern __shared__ char shared_mem[];
// // NOTE(woosuk): We use FP32 logits and accumulation.
// float *logits = reinterpret_cast<float*>(shared_mem);
// // Workspace for reduction.
// __shared__ float red_smem[2 * NUM_WARPS];
// // x == THREAD_GROUP_SIZE * VEC_SIZE
// // Each thread group fetches x elements from the key at a time.
// constexpr int x = 16 / sizeof(scalar_t);
// float qk_max = -FLT_MAX;
// const int num_blocks = (context_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
// const int mask_boundary = context_len - seq_len + 1 + (seq_idx - seq_start_idx);
// // Iterate over the key blocks.
// // Each warp fetches a block of keys for each iteration.
// // Each thread group in a warp fetches a key from the block, and computes
// // dot product with the query.
// for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
// const int physical_block_number = block_table[block_idx];
// const int physical_block_offset = thread_group_idx % BLOCK_SIZE;
// const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
// // Load a key to registers.
// // Each thread in a thread group has a different part of the key.
// // For example, if the the thread group size is 4, then the first thread in the group
// // has 0, 4, 8, ... th vectors of the key, and the second thread has 1, 5, 9, ... th
// // vectors of the key, and so on.
// K_vec k_vecs[NUM_VECS_PER_THREAD];
// #pragma unroll
// for (int i = 0; i < NUM_VECS_PER_THREAD; i++) {
// const scalar_t* k_ptr = k_cache + physical_block_number * num_heads * HEAD_SIZE * BLOCK_SIZE
// + head_idx * HEAD_SIZE * BLOCK_SIZE
// + physical_block_offset * x;
// const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
// const int offset1 = (vec_idx * VEC_SIZE) / x;
// const int offset2 = (vec_idx * VEC_SIZE) % x;
// k_vecs[i] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
// }
// // Compute dot product.
// // This includes a reduction across the threads in the same thread group.
// const float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(q_vecs, k_vecs);
// const bool mask = token_idx >= mask_boundary;
// if (thread_group_offset == 0) {
// // Store the partial reductions to shared memory.
// // NOTE(woosuk): It is required to zero out the masked logits.
// logits[token_idx] = mask ? 0.f : qk;
// // Update the max value.
// qk_max = mask ? qk_max : fmaxf(qk_max, qk);
// }
// }
// // Perform reduction across the threads in the same warp to get the
// // max qk value for each "warp" (not across the thread block yet).
// // The 0-th thread of each thread group already has its max qk value.
// #pragma unroll
// for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
// qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
// }
// if (lane == 0) {
// red_smem[warp_idx] = qk_max;
// }
// __syncthreads();
// // TODO(woosuk): Refactor this part.
// // Get the max qk value for the sequence.
// qk_max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
// #pragma unroll
// for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
// qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
// }
// // Broadcast the max qk value to all threads.
// qk_max = __shfl_sync(uint32_t(-1), qk_max, 0);
// // Get the sum of the exp values.
// float exp_sum = 0.f;
// for (int i = thread_idx; i < mask_boundary; i += NUM_THREADS) {
// float val = __expf(logits[i] - qk_max);
// logits[i] = val;
// exp_sum += val;
// }
// exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], exp_sum);
// // Compute softmax.
// const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
// for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
// logits[i] *= inv_sum;
// }
// __syncthreads();
// // Each thread will fetch 16 bytes from the value cache at a time.
// constexpr int V_VEC_SIZE = 16 / sizeof(scalar_t);
// using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
// using L_vec = typename FloatVec<V_vec>::Type;
// constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
// constexpr int NUM_ROWS_PER_ITER = WARP_SIZE / NUM_V_VECS_PER_ROW;
// constexpr int NUM_ROWS_PER_THREAD = (HEAD_SIZE + NUM_ROWS_PER_ITER - 1) / NUM_ROWS_PER_ITER;
// float accs[NUM_ROWS_PER_THREAD];
// #pragma unroll
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
// accs[i] = 0.f;
// }
// for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
// const int physical_block_number = block_table[block_idx];
// const int physical_block_offset = (lane % NUM_V_VECS_PER_ROW) * V_VEC_SIZE;
// const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
// L_vec logits_vec = *reinterpret_cast<L_vec*>(logits + token_idx);
// const scalar_t* v_ptr = v_cache + physical_block_number * num_heads * HEAD_SIZE * BLOCK_SIZE
// + head_idx * HEAD_SIZE * BLOCK_SIZE;
// #pragma unroll
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
// const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
// if (row_idx < HEAD_SIZE) {
// const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
// V_vec v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
// accs[i] += dot(logits_vec, cast_to_float(v_vec));
// }
// }
// }
// // Perform reduction within each warp.
// #pragma unroll
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
// float acc = accs[i];
// #pragma unroll
// for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
// acc += __shfl_xor_sync(uint32_t(-1), acc, mask);
// }
// accs[i] = acc;
// }
// // NOTE(woosuk): A barrier is required because the shared memory space for logits
// // is reused for the output.
// __syncthreads();
// // Perform reduction across warps.
// float* out_smem = reinterpret_cast<float*>(shared_mem);
// #pragma unroll
// for (int i = NUM_WARPS; i > 1; i /= 2) {
// int mid = i / 2;
// // Upper warps write to shared memory.
// if (warp_idx >= mid && warp_idx < i) {
// float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
// #pragma unroll
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
// const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
// if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
// dst[row_idx] = accs[i];
// }
// }
// }
// __syncthreads();
// // Lower warps update the output.
// if (warp_idx < mid) {
// const float* src = &out_smem[warp_idx * HEAD_SIZE];
// #pragma unroll
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
// const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
// if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
// accs[i] += src[row_idx];
// }
// }
// }
// __syncthreads();
// }
// // Write the final output.
// if (warp_idx == 0) {
// scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
// #pragma unroll
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
// const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
// if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
// convert_from_float(*(out_ptr + row_idx), accs[i]);
// }
// }
// }
// }
// // Grid: (num_heads, num_query_tokens).
// template<
// typename scalar_t,
// int HEAD_SIZE,
// int BLOCK_SIZE,
// int NUM_THREADS>
// __global__ void multi_query_cached_kv_attention_kernel(
// const int* cu_query_lens, // [num_prompts+1]
// const int* seq_prompt_mapping, // [num_seqs] mapping from seq_idx to prompt_idx
// scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
// const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
// const scalar_t* __restrict__ k_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
// const scalar_t* __restrict__ v_cache, // [num_blocks, num_heads, head_size, block_size]
// const float scale,
// const int* __restrict__ block_tables, // [num_prompts, max_num_blocks_per_seq]
// const int* __restrict__ context_lens, // [num_prompts]
// const int max_num_blocks_per_seq,
// const int q_stride) {
// const int seq_idx = blockIdx.y;
// const int prompt_idx = seq_prompt_mapping[seq_idx];
// const int seq_start_idx = cu_query_lens[prompt_idx];
// const int seq_len = cu_query_lens[prompt_idx + 1] - seq_start_idx;
// const int* block_table = block_tables + prompt_idx * max_num_blocks_per_seq;
// const int context_len = context_lens[prompt_idx];
// multi_query_cached_kv_attention_kernel_unoptimized_<
// scalar_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>(
// out,
// q,
// seq_start_idx,
// seq_len,
// k_cache,
// v_cache,
// scale,
// block_table,
// context_len,
// max_num_blocks_per_seq,
// q_stride);
// }
// } // namespace cacheflow
// #define LAUNCH_MULTI_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS) \
// cacheflow::multi_query_cached_kv_attention_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS> \
// <<<grid, block, shared_mem_size, stream>>>( \
// cu_query_lens_ptr, \
// seq_prompt_mapping_ptr, \
// out_ptr, \
// query_ptr, \
// key_cache_ptr, \
// value_cache_ptr, \
// scale, \
// block_tables_ptr, \
// context_lens_ptr, \
// max_num_blocks_per_seq, \
// query_stride);
// // TODO(woosuk): Tune NUM_THREADS.
// template<
// typename T,
// int BLOCK_SIZE,
// int NUM_THREADS = 128>
// void multi_query_cached_kv_attention_launcher(
// torch::Tensor& cu_query_lens,
// torch::Tensor& seq_prompt_mapping,
// torch::Tensor& out,
// torch::Tensor& query,
// torch::Tensor& key_cache,
// torch::Tensor& value_cache,
// float scale,
// torch::Tensor& block_tables,
// torch::Tensor& context_lens,
// int max_context_len) {
// int num_seqs = query.size(0);
// int num_heads = query.size(1);
// int head_size = query.size(2);
// int max_num_blocks_per_seq = block_tables.size(1);
// int query_stride = query.stride(0);
// int* cu_query_lens_ptr = cu_query_lens.data_ptr<int>();
// int* seq_prompt_mapping_ptr = seq_prompt_mapping.data_ptr<int>();
// T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
// T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
// T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
// T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
// int* block_tables_ptr = block_tables.data_ptr<int>();
// int* context_lens_ptr = context_lens.data_ptr<int>();
// constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
// int padded_max_context_len = ((max_context_len + BLOCK_SIZE - 1) / BLOCK_SIZE) * BLOCK_SIZE;
// int logits_size = padded_max_context_len * sizeof(float);
// int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
// int shared_mem_size = std::max(logits_size, outputs_size);
// dim3 grid(num_heads, num_seqs);
// dim3 block(NUM_THREADS);
// const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// switch (head_size) {
// case 32:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 32, BLOCK_SIZE, NUM_THREADS);
// break;
// case 64:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 64, BLOCK_SIZE, NUM_THREADS);
// break;
// case 80:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 80, BLOCK_SIZE, NUM_THREADS);
// break;
// case 96:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 96, BLOCK_SIZE, NUM_THREADS);
// break;
// case 128:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 128, BLOCK_SIZE, NUM_THREADS);
// break;
// case 160:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 160, BLOCK_SIZE, NUM_THREADS);
// break;
// case 192:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 192, BLOCK_SIZE, NUM_THREADS);
// break;
// case 256:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 256, BLOCK_SIZE, NUM_THREADS);
// break;
// default:
// assert(false);
// break;
// }
// }
// void multi_query_cached_kv_attention(
// torch::Tensor& cu_query_lens,
// torch::Tensor& out,
// torch::Tensor& query,
// torch::Tensor& key_cache,
// torch::Tensor& value_cache,
// float scale,
// torch::Tensor& block_tables,
// torch::Tensor& context_lens,
// int block_size,
// int max_context_len) {
// torch::Tensor query_lens = cu_query_lens.to(torch::kCPU);
// int num_queries = query_lens.size(0) - 1;
// const int* query_lens_ptr = query_lens.data_ptr<int>();
// int num_seqs = query.size(0);
// torch::Tensor cpu_tensor = torch::empty({num_seqs}, torch::dtype(torch::kInt32));
// auto accessor = cpu_tensor.accessor<int32_t, 1>();
// for (int i = 0, query_cursor = 0; i < num_seqs; ++i) {
// if (i >= query_lens_ptr[query_cursor + 1]) {
// ++query_cursor;
// }
// accessor[i] = query_cursor;
// }
// // TODO(suquark): This can be slow, as it to(torch::kCPU) and to(torch::kCUDA)
// // implicitly synchronizes the CPU and GPU. And we can avoid this issue by giving
// // the mapping as an input parameter. Let's do this optimization in a later PR.
// torch::Tensor seq_prompt_mapping = cpu_tensor.to(torch::kCUDA);
// // TODO(woosuk): Support BF16.
// if (query.element_size() == 2) {
// // Half.
// if (block_size == 8) {
// multi_query_cached_kv_attention_launcher<uint16_t, 8>(
// cu_query_lens,
// seq_prompt_mapping,
// out,
// query,
// key_cache,
// value_cache,
// scale,
// block_tables,
// context_lens,
// max_context_len);
// } else if (block_size == 16) {
// multi_query_cached_kv_attention_launcher<uint16_t, 16>(
// cu_query_lens,
// seq_prompt_mapping,
// out,
// query,
// key_cache,
// value_cache,
// scale,
// block_tables,
// context_lens,
// max_context_len);
// } else if (block_size == 32) {
// multi_query_cached_kv_attention_launcher<uint16_t, 32>(
// cu_query_lens,
// seq_prompt_mapping,
// out,
// query,
// key_cache,
// value_cache,
// scale,
// block_tables,
// context_lens,
// max_context_len);
// } else {
// assert(false);
// }
// } else if (query.element_size() == 4) {
// // Float.
// if (block_size == 8) {
// multi_query_cached_kv_attention_launcher<float, 8>(
// cu_query_lens,
// seq_prompt_mapping,
// out,
// query,
// key_cache,
// value_cache,
// scale,
// block_tables,
// context_lens,
// max_context_len);
// } else if (block_size == 16) {
// multi_query_cached_kv_attention_launcher<float, 16>(
// cu_query_lens,
// seq_prompt_mapping,
// out,
// query,
// key_cache,
// value_cache,
// scale,
// block_tables,
// context_lens,
// max_context_len);
// } else if (block_size == 32) {
// multi_query_cached_kv_attention_launcher<float, 32>(
// cu_query_lens,
// seq_prompt_mapping,
// out,
// query,
// key_cache,
// value_cache,
// scale,
// block_tables,
// context_lens,
// max_context_len);
// } else {
// assert(false);
// }
// } else {
// assert(false);
// }
// }
#undef WARP_SIZE
#undef MAX
#undef MIN
csrc/attention/attention_utils.cuh
0 → 100644
View file @
436e523b
#pragma once
#include "attention_dtypes.cuh"
#include <float.h>
#include <type_traits>
namespace
cacheflow
{
// Q*K^T operation.
template
<
int
THREAD_GROUP_SIZE
,
typename
Vec
,
int
N
>
inline
__device__
float
qk_dot_
(
const
Vec
(
&
q
)[
N
],
const
Vec
(
&
k
)[
N
])
{
using
A_vec
=
typename
FloatVec
<
Vec
>::
Type
;
// Compute the parallel products for Q*K^T (treat vector lanes separately).
A_vec
qk_vec
=
mul
<
A_vec
,
Vec
,
Vec
>
(
q
[
0
],
k
[
0
]);
#pragma unroll
for
(
int
ii
=
1
;
ii
<
N
;
++
ii
)
{
qk_vec
=
fma
(
q
[
ii
],
k
[
ii
],
qk_vec
);
}
// Finalize the reduction across lanes.
float
qk
=
sum
(
qk_vec
);
#pragma unroll
for
(
int
mask
=
THREAD_GROUP_SIZE
/
2
;
mask
>=
1
;
mask
/=
2
)
{
qk
+=
__shfl_xor_sync
(
uint32_t
(
-
1
),
qk
,
mask
);
}
return
qk
;
}
template
<
typename
T
,
int
THREAD_GROUP_SIZE
>
struct
Qk_dot
{
template
<
typename
Vec
,
int
N
>
static
inline
__device__
float
dot
(
const
Vec
(
&
q
)[
N
],
const
Vec
(
&
k
)[
N
])
{
return
qk_dot_
<
THREAD_GROUP_SIZE
>
(
q
,
k
);
}
};
}
// namespace cacheflow
csrc/attention/dtype_float16.cuh
0 → 100644
View file @
436e523b
#pragma once
#include "attention_generic.cuh"
#include "dtype_float32.cuh"
#include <stdint.h>
namespace
cacheflow
{
// FP16 vector types for Q, K, V.
template
<
>
struct
Vec
<
uint16_t
,
1
>
{
using
Type
=
uint16_t
;
};
template
<
>
struct
Vec
<
uint16_t
,
2
>
{
using
Type
=
uint32_t
;
};
template
<
>
struct
Vec
<
uint16_t
,
4
>
{
using
Type
=
uint2
;
};
template
<
>
struct
Vec
<
uint16_t
,
8
>
{
using
Type
=
uint4
;
};
// FP32 accumulator vector types corresponding to Vec.
template
<
>
struct
FloatVec
<
uint16_t
>
{
using
Type
=
float
;
};
template
<
>
struct
FloatVec
<
uint32_t
>
{
using
Type
=
float2
;
};
template
<
>
struct
FloatVec
<
uint2
>
{
using
Type
=
Float4_
;
};
template
<
>
struct
FloatVec
<
uint4
>
{
using
Type
=
Float8_
;
};
// Utility functions for type conversions.
inline
__device__
uint32_t
h0_h0
(
uint16_t
a
)
{
uint32_t
b
;
asm
volatile
(
"mov.b32 %0, {%1, %1};"
:
"=r"
(
b
)
:
"h"
(
a
));
return
b
;
}
inline
__device__
float
half_to_float
(
uint16_t
h
)
{
float
f
;
asm
volatile
(
"cvt.f32.f16 %0, %1;
\n
"
:
"=f"
(
f
)
:
"h"
(
h
));
return
f
;
}
inline
__device__
float2
half2_to_float2
(
uint32_t
v
)
{
uint16_t
lo
,
hi
;
asm
volatile
(
"mov.b32 {%0, %1}, %2;
\n
"
:
"=h"
(
lo
),
"=h"
(
hi
)
:
"r"
(
v
));
return
make_float2
(
half_to_float
(
lo
),
half_to_float
(
hi
));
}
inline
__device__
uint16_t
float_to_half
(
float
f
)
{
union
{
uint32_t
u32
;
uint16_t
u16
[
2
];
}
tmp
;
asm
volatile
(
"cvt.rn.f16.f32 %0, %1;
\n
"
:
"=h"
(
tmp
.
u16
[
0
])
:
"f"
(
f
));
return
tmp
.
u16
[
0
];
}
inline
__device__
uint32_t
float2_to_half2
(
float2
f
)
{
union
{
uint32_t
u32
;
uint16_t
u16
[
2
];
}
tmp
;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
asm
volatile
(
"cvt.rn.f16x2.f32 %0, %1, %2;
\n
"
:
"=r"
(
tmp
.
u32
)
:
"f"
(
f
.
y
),
"f"
(
f
.
x
));
#else
asm
volatile
(
"cvt.rn.f16.f32 %0, %1;
\n
"
:
"=h"
(
tmp
.
u16
[
0
])
:
"f"
(
f
.
x
));
asm
volatile
(
"cvt.rn.f16.f32 %0, %1;
\n
"
:
"=h"
(
tmp
.
u16
[
1
])
:
"f"
(
f
.
y
));
#endif
return
tmp
.
u32
;
}
// Vector addition.
inline
__device__
uint16_t
add
(
uint16_t
a
,
uint16_t
b
)
{
uint16_t
c
;
asm
volatile
(
"add.f16 %0, %1, %2;
\n
"
:
"=h"
(
c
)
:
"h"
(
a
),
"h"
(
b
));
return
c
;
}
inline
__device__
uint32_t
add
(
uint32_t
a
,
uint32_t
b
)
{
uint32_t
c
;
asm
volatile
(
"add.f16x2 %0, %1, %2;
\n
"
:
"=r"
(
c
)
:
"r"
(
a
),
"r"
(
b
));
return
c
;
}
inline
__device__
uint2
add
(
uint2
a
,
uint2
b
)
{
uint2
c
;
c
.
x
=
add
(
a
.
x
,
b
.
x
);
c
.
y
=
add
(
a
.
y
,
b
.
y
);
return
c
;
}
inline
__device__
uint4
add
(
uint4
a
,
uint4
b
)
{
uint4
c
;
c
.
x
=
add
(
a
.
x
,
b
.
x
);
c
.
y
=
add
(
a
.
y
,
b
.
y
);
c
.
z
=
add
(
a
.
z
,
b
.
z
);
c
.
w
=
add
(
a
.
w
,
b
.
w
);
return
c
;
}
inline
__device__
float2
add
(
uint32_t
a
,
float2
fb
)
{
float2
fa
=
half2_to_float2
(
a
);
return
add
(
fa
,
fb
);
}
inline
__device__
Float4_
add
(
uint2
a
,
Float4_
fb
)
{
Float4_
fc
;
fc
.
x
=
add
(
a
.
x
,
fb
.
x
);
fc
.
y
=
add
(
a
.
y
,
fb
.
y
);
return
fc
;
}
inline
__device__
Float8_
add
(
uint4
a
,
Float8_
fb
)
{
Float8_
fc
;
fc
.
x
=
add
(
a
.
x
,
fb
.
x
);
fc
.
y
=
add
(
a
.
y
,
fb
.
y
);
fc
.
z
=
add
(
a
.
z
,
fb
.
z
);
fc
.
w
=
add
(
a
.
w
,
fb
.
w
);
return
fc
;
}
// Vector multiplication.
template
<
>
inline
__device__
uint16_t
mul
(
uint16_t
a
,
uint16_t
b
)
{
uint16_t
c
;
asm
volatile
(
"mul.f16 %0, %1, %2;
\n
"
:
"=h"
(
c
)
:
"h"
(
a
),
"h"
(
b
));
return
c
;
}
template
<
>
inline
__device__
uint32_t
mul
(
uint32_t
a
,
uint32_t
b
)
{
uint32_t
c
;
asm
volatile
(
"mul.f16x2 %0, %1, %2;
\n
"
:
"=r"
(
c
)
:
"r"
(
a
),
"r"
(
b
));
return
c
;
}
template
<
>
inline
__device__
uint32_t
mul
(
uint16_t
a
,
uint32_t
b
)
{
return
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
h0_h0
(
a
),
b
);
}
template
<
>
inline
__device__
uint2
mul
(
uint2
a
,
uint2
b
)
{
uint2
c
;
c
.
x
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
a
.
x
,
b
.
x
);
c
.
y
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
a
.
y
,
b
.
y
);
return
c
;
}
template
<
>
inline
__device__
uint2
mul
(
uint16_t
a
,
uint2
b
)
{
uint32_t
s
=
h0_h0
(
a
);
uint2
c
;
c
.
x
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
s
,
b
.
x
);
c
.
y
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
s
,
b
.
y
);
return
c
;
}
template
<
>
inline
__device__
uint4
mul
(
uint4
a
,
uint4
b
)
{
uint4
c
;
c
.
x
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
a
.
x
,
b
.
x
);
c
.
y
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
a
.
y
,
b
.
y
);
c
.
z
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
a
.
z
,
b
.
z
);
c
.
w
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
a
.
w
,
b
.
w
);
return
c
;
}
template
<
>
inline
__device__
uint4
mul
(
uint16_t
a
,
uint4
b
)
{
uint32_t
s
=
h0_h0
(
a
);
uint4
c
;
c
.
x
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
s
,
b
.
x
);
c
.
y
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
s
,
b
.
y
);
c
.
z
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
s
,
b
.
z
);
c
.
w
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
s
,
b
.
w
);
return
c
;
}
template
<
>
inline
__device__
float
mul
(
uint16_t
a
,
uint16_t
b
)
{
float
fa
=
half_to_float
(
a
);
float
fb
=
half_to_float
(
b
);
return
fa
*
fb
;
}
template
<
>
inline
__device__
float2
mul
(
uint32_t
a
,
uint32_t
b
)
{
float2
fa
=
half2_to_float2
(
a
);
float2
fb
=
half2_to_float2
(
b
);
return
mul
<
float2
,
float2
,
float2
>
(
fa
,
fb
);
}
template
<
>
inline
__device__
float2
mul
(
uint16_t
a
,
uint32_t
b
)
{
return
mul
<
float2
,
uint32_t
,
uint32_t
>
(
h0_h0
(
a
),
b
);
}
template
<
>
inline
__device__
Float4_
mul
(
uint2
a
,
uint2
b
)
{
Float4_
fc
;
fc
.
x
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
a
.
x
,
b
.
x
);
fc
.
y
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
a
.
y
,
b
.
y
);
return
fc
;
}
template
<
>
inline
__device__
Float4_
mul
(
uint16_t
a
,
uint2
b
)
{
uint32_t
s
=
h0_h0
(
a
);
Float4_
fc
;
fc
.
x
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
s
,
b
.
x
);
fc
.
y
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
s
,
b
.
y
);
return
fc
;
}
template
<
>
inline
__device__
Float8_
mul
(
uint4
a
,
uint4
b
)
{
Float8_
fc
;
fc
.
x
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
a
.
x
,
b
.
x
);
fc
.
y
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
a
.
y
,
b
.
y
);
fc
.
z
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
a
.
z
,
b
.
z
);
fc
.
w
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
a
.
w
,
b
.
w
);
return
fc
;
}
template
<
>
inline
__device__
Float8_
mul
(
uint16_t
a
,
uint4
b
)
{
uint32_t
s
=
h0_h0
(
a
);
Float8_
fc
;
fc
.
x
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
s
,
b
.
x
);
fc
.
y
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
s
,
b
.
y
);
fc
.
z
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
s
,
b
.
z
);
fc
.
w
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
s
,
b
.
w
);
return
fc
;
}
// Vector fused multiply-add.
inline
__device__
uint32_t
fma
(
uint32_t
a
,
uint32_t
b
,
uint32_t
c
)
{
uint32_t
d
;
asm
volatile
(
"fma.rn.f16x2 %0, %1, %2, %3;
\n
"
:
"=r"
(
d
)
:
"r"
(
a
),
"r"
(
b
),
"r"
(
c
));
return
d
;
}
inline
__device__
uint32_t
fma
(
uint16_t
a
,
uint32_t
b
,
uint32_t
c
)
{
return
fma
(
h0_h0
(
a
),
b
,
c
);
}
inline
__device__
uint2
fma
(
uint2
a
,
uint2
b
,
uint2
c
)
{
uint2
d
;
d
.
x
=
fma
(
a
.
x
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
.
y
,
b
.
y
,
c
.
y
);
return
d
;
}
inline
__device__
uint2
fma
(
uint16_t
a
,
uint2
b
,
uint2
c
)
{
uint32_t
s
=
h0_h0
(
a
);
uint2
d
;
d
.
x
=
fma
(
s
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
s
,
b
.
y
,
c
.
y
);
return
d
;
}
inline
__device__
uint4
fma
(
uint4
a
,
uint4
b
,
uint4
c
)
{
uint4
d
;
d
.
x
=
fma
(
a
.
x
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
.
y
,
b
.
y
,
c
.
y
);
d
.
z
=
fma
(
a
.
z
,
b
.
z
,
c
.
z
);
d
.
w
=
fma
(
a
.
w
,
b
.
w
,
c
.
w
);
return
d
;
}
inline
__device__
uint4
fma
(
uint16_t
a
,
uint4
b
,
uint4
c
)
{
uint32_t
s
=
h0_h0
(
a
);
uint4
d
;
d
.
x
=
fma
(
s
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
s
,
b
.
y
,
c
.
y
);
d
.
z
=
fma
(
s
,
b
.
z
,
c
.
z
);
d
.
w
=
fma
(
s
,
b
.
w
,
c
.
w
);
return
d
;
}
inline
__device__
float
fma
(
uint16_t
a
,
uint16_t
b
,
float
fc
)
{
float
fa
=
half_to_float
(
a
);
float
fb
=
half_to_float
(
b
);
return
fa
*
fb
+
fc
;
}
inline
__device__
float2
fma
(
uint32_t
a
,
uint32_t
b
,
float2
fc
)
{
float2
fa
=
half2_to_float2
(
a
);
float2
fb
=
half2_to_float2
(
b
);
return
fma
(
fa
,
fb
,
fc
);
}
inline
__device__
float2
fma
(
uint16_t
a
,
uint32_t
b
,
float2
fc
)
{
return
fma
(
h0_h0
(
a
),
b
,
fc
);
}
inline
__device__
Float4_
fma
(
uint2
a
,
uint2
b
,
Float4_
fc
)
{
Float4_
fd
;
fd
.
x
=
fma
(
a
.
x
,
b
.
x
,
fc
.
x
);
fd
.
y
=
fma
(
a
.
y
,
b
.
y
,
fc
.
y
);
return
fd
;
}
inline
__device__
Float4_
fma
(
uint16_t
a
,
uint2
b
,
Float4_
fc
)
{
uint32_t
s
=
h0_h0
(
a
);
Float4_
fd
;
fd
.
x
=
fma
(
s
,
b
.
x
,
fc
.
x
);
fd
.
y
=
fma
(
s
,
b
.
y
,
fc
.
y
);
return
fd
;
}
inline
__device__
Float8_
fma
(
uint4
a
,
uint4
b
,
Float8_
fc
)
{
Float8_
fd
;
fd
.
x
=
fma
(
a
.
x
,
b
.
x
,
fc
.
x
);
fd
.
y
=
fma
(
a
.
y
,
b
.
y
,
fc
.
y
);
fd
.
z
=
fma
(
a
.
z
,
b
.
z
,
fc
.
z
);
fd
.
w
=
fma
(
a
.
w
,
b
.
w
,
fc
.
w
);
return
fd
;
}
inline
__device__
Float8_
fma
(
uint16_t
a
,
uint4
b
,
Float8_
fc
)
{
uint32_t
s
=
h0_h0
(
a
);
Float8_
fd
;
fd
.
x
=
fma
(
s
,
b
.
x
,
fc
.
x
);
fd
.
y
=
fma
(
s
,
b
.
y
,
fc
.
y
);
fd
.
z
=
fma
(
s
,
b
.
z
,
fc
.
z
);
fd
.
w
=
fma
(
s
,
b
.
w
,
fc
.
w
);
return
fd
;
}
// Vector sum.
template
<
>
inline
__device__
float
sum
(
uint16_t
v
)
{
return
half_to_float
(
v
);
}
template
<
>
inline
__device__
float
sum
(
uint32_t
v
)
{
float2
tmp
=
half2_to_float2
(
v
);
return
tmp
.
x
+
tmp
.
y
;
}
template
<
>
inline
__device__
float
sum
(
uint2
v
)
{
uint32_t
c
=
add
(
v
.
x
,
v
.
y
);
return
sum
(
c
);
}
template
<
>
inline
__device__
float
sum
(
uint4
v
)
{
uint32_t
c
=
add
(
v
.
x
,
v
.
y
);
c
=
add
(
c
,
v
.
z
);
c
=
add
(
c
,
v
.
w
);
return
sum
(
c
);
}
// Zero-out a vector.
inline
__device__
void
zero
(
uint16_t
&
dst
)
{
dst
=
uint16_t
(
0
);
}
// From float32 to float16.
inline
__device__
void
from_float
(
uint16_t
&
dst
,
float
src
)
{
dst
=
float_to_half
(
src
);
}
inline
__device__
void
from_float
(
uint32_t
&
dst
,
float2
src
)
{
dst
=
float2_to_half2
(
src
);
}
inline
__device__
void
from_float
(
uint2
&
dst
,
Float4_
src
)
{
dst
.
x
=
float2_to_half2
(
src
.
x
);
dst
.
y
=
float2_to_half2
(
src
.
y
);
}
inline
__device__
void
from_float
(
uint4
&
dst
,
Float8_
src
)
{
dst
.
x
=
float2_to_half2
(
src
.
x
);
dst
.
y
=
float2_to_half2
(
src
.
y
);
dst
.
z
=
float2_to_half2
(
src
.
z
);
dst
.
w
=
float2_to_half2
(
src
.
w
);
}
// From float16 to float32.
inline
__device__
float
to_float
(
uint16_t
u
)
{
return
half_to_float
(
u
);
}
inline
__device__
float2
to_float
(
uint32_t
u
)
{
return
half2_to_float2
(
u
);
}
inline
__device__
Float4_
to_float
(
uint2
u
)
{
Float4_
tmp
;
tmp
.
x
=
half2_to_float2
(
u
.
x
);
tmp
.
y
=
half2_to_float2
(
u
.
y
);
return
tmp
;
}
inline
__device__
Float8_
to_float
(
uint4
u
)
{
Float8_
tmp
;
tmp
.
x
=
half2_to_float2
(
u
.
x
);
tmp
.
y
=
half2_to_float2
(
u
.
y
);
tmp
.
z
=
half2_to_float2
(
u
.
z
);
tmp
.
w
=
half2_to_float2
(
u
.
w
);
return
tmp
;
}
}
// namespace cacheflow
csrc/attention/dtype_float32.cuh
0 → 100644
View file @
436e523b
#pragma once
#include "attention_generic.cuh"
#include <stdint.h>
namespace
cacheflow
{
// Define FP32 vector data types.
struct
Float4_
{
float2
x
;
float2
y
;
};
struct
Float8_
{
float2
x
;
float2
y
;
float2
z
;
float2
w
;
};
// FP32 vector types for Q, K, V.
template
<
>
struct
Vec
<
float
,
1
>
{
using
Type
=
float
;
};
template
<
>
struct
Vec
<
float
,
2
>
{
using
Type
=
float2
;
};
template
<
>
struct
Vec
<
float
,
4
>
{
using
Type
=
float4
;
};
// FP32 accumulator vector types corresponding to Vec.
template
<
>
struct
FloatVec
<
float
>
{
using
Type
=
float
;
};
template
<
>
struct
FloatVec
<
float2
>
{
using
Type
=
float2
;
};
template
<
>
struct
FloatVec
<
float4
>
{
using
Type
=
float4
;
};
// Vector addition.
inline
__device__
float
add
(
float
a
,
float
b
)
{
return
a
+
b
;
}
inline
__device__
float2
add
(
float2
a
,
float2
b
)
{
float2
c
;
c
.
x
=
add
(
a
.
x
,
b
.
x
);
c
.
y
=
add
(
a
.
y
,
b
.
y
);
return
c
;
}
inline
__device__
float4
add
(
float4
a
,
float4
b
)
{
float4
c
;
c
.
x
=
add
(
a
.
x
,
b
.
x
);
c
.
y
=
add
(
a
.
y
,
b
.
y
);
c
.
z
=
add
(
a
.
z
,
b
.
z
);
c
.
w
=
add
(
a
.
w
,
b
.
w
);
return
c
;
}
// Vector multiplication.
template
<
>
inline
__device__
float
mul
<
float
,
float
>
(
float
a
,
float
b
)
{
return
a
*
b
;
}
template
<
>
inline
__device__
float2
mul
(
float2
a
,
float2
b
)
{
float2
c
;
c
.
x
=
a
.
x
*
b
.
x
;
c
.
y
=
a
.
y
*
b
.
y
;
return
c
;
}
template
<
>
inline
__device__
float2
mul
(
float
a
,
float2
b
)
{
float2
c
;
c
.
x
=
a
*
b
.
x
;
c
.
y
=
a
*
b
.
y
;
return
c
;
}
template
<
>
inline
__device__
float4
mul
(
float4
a
,
float4
b
)
{
float4
c
;
c
.
x
=
a
.
x
*
b
.
x
;
c
.
y
=
a
.
y
*
b
.
y
;
c
.
z
=
a
.
z
*
b
.
z
;
c
.
w
=
a
.
w
*
b
.
w
;
return
c
;
}
template
<
>
inline
__device__
float4
mul
(
float
a
,
float4
b
)
{
float4
c
;
c
.
x
=
a
*
b
.
x
;
c
.
y
=
a
*
b
.
y
;
c
.
z
=
a
*
b
.
z
;
c
.
w
=
a
*
b
.
w
;
return
c
;
}
// Vector fused multiply-add.
inline
__device__
float
fma
(
float
a
,
float
b
,
float
c
)
{
return
a
*
b
+
c
;
}
inline
__device__
float2
fma
(
float2
a
,
float2
b
,
float2
c
)
{
float2
d
;
d
.
x
=
fma
(
a
.
x
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
.
y
,
b
.
y
,
c
.
y
);
return
d
;
}
inline
__device__
float2
fma
(
float
a
,
float2
b
,
float2
c
)
{
float2
d
;
d
.
x
=
fma
(
a
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
,
b
.
y
,
c
.
y
);
return
d
;
}
inline
__device__
float4
fma
(
float4
a
,
float4
b
,
float4
c
)
{
float4
d
;
d
.
x
=
fma
(
a
.
x
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
.
y
,
b
.
y
,
c
.
y
);
d
.
z
=
fma
(
a
.
z
,
b
.
z
,
c
.
z
);
d
.
w
=
fma
(
a
.
w
,
b
.
w
,
c
.
w
);
return
d
;
}
inline
__device__
float4
fma
(
float
a
,
float4
b
,
float4
c
)
{
float4
d
;
d
.
x
=
fma
(
a
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
,
b
.
y
,
c
.
y
);
d
.
z
=
fma
(
a
,
b
.
z
,
c
.
z
);
d
.
w
=
fma
(
a
,
b
.
w
,
c
.
w
);
return
d
;
}
inline
__device__
Float4_
fma
(
float
a
,
Float4_
b
,
Float4_
c
)
{
Float4_
d
;
d
.
x
=
fma
(
a
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
,
b
.
y
,
c
.
y
);
return
d
;
}
inline
__device__
Float8_
fma
(
float
a
,
Float8_
b
,
Float8_
c
)
{
Float8_
d
;
d
.
x
=
fma
(
a
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
,
b
.
y
,
c
.
y
);
d
.
z
=
fma
(
a
,
b
.
z
,
c
.
z
);
d
.
w
=
fma
(
a
,
b
.
w
,
c
.
w
);
return
d
;
}
// Vector sum.
template
<
>
inline
__device__
float
sum
(
float
v
)
{
return
v
;
}
template
<
>
inline
__device__
float
sum
(
float2
v
)
{
return
v
.
x
+
v
.
y
;
}
template
<
>
inline
__device__
float
sum
(
float4
v
)
{
return
v
.
x
+
v
.
y
+
v
.
z
+
v
.
w
;
}
template
<
>
inline
__device__
float
sum
(
Float4_
v
)
{
return
v
.
x
.
x
+
v
.
x
.
y
+
v
.
y
.
x
+
v
.
y
.
y
;
}
template
<
>
inline
__device__
float
sum
(
Float8_
v
)
{
return
v
.
x
.
x
+
v
.
x
.
y
+
v
.
y
.
x
+
v
.
y
.
y
+
v
.
z
.
x
+
v
.
z
.
y
+
v
.
w
.
x
+
v
.
w
.
y
;
}
// Vector dot product.
inline
__device__
float
dot
(
float
a
,
float
b
)
{
return
a
*
b
;
}
inline
__device__
float
dot
(
float2
a
,
float2
b
)
{
float2
c
=
mul
<
float2
,
float2
,
float2
>
(
a
,
b
);
return
c
.
x
+
c
.
y
;
}
inline
__device__
float
dot
(
Float4_
a
,
Float4_
b
)
{
float2
acc
=
mul
<
float2
,
float2
,
float2
>
(
a
.
x
,
b
.
x
);
acc
=
fma
(
a
.
y
,
b
.
y
,
acc
);
return
acc
.
x
+
acc
.
y
;
}
inline
__device__
float
dot
(
Float8_
a
,
Float8_
b
)
{
float2
acc
=
mul
<
float2
,
float2
,
float2
>
(
a
.
x
,
b
.
x
);
acc
=
fma
(
a
.
y
,
b
.
y
,
acc
);
acc
=
fma
(
a
.
z
,
b
.
z
,
acc
);
acc
=
fma
(
a
.
w
,
b
.
w
,
acc
);
return
acc
.
x
+
acc
.
y
;
}
// From float to float.
inline
__device__
void
from_float
(
float
&
dst
,
float
src
)
{
dst
=
src
;
}
inline
__device__
void
from_float
(
float2
&
dst
,
float2
src
)
{
dst
=
src
;
}
inline
__device__
void
from_float
(
float4
&
dst
,
float4
src
)
{
dst
=
src
;
}
// From float to float.
inline
__device__
float
to_float
(
float
u
)
{
return
u
;
}
inline
__device__
float2
to_float
(
float2
u
)
{
return
u
;
}
inline
__device__
float4
to_float
(
float4
u
)
{
return
u
;
}
inline
__device__
Float4_
to_float
(
Float4_
u
)
{
return
u
;
}
inline
__device__
Float8_
to_float
(
Float8_
u
)
{
return
u
;
}
}
// namespace cacheflow
csrc/attention_utils.h
deleted
100644 → 0
View file @
27f1410d
#pragma once
#include "cuda_primitives.h"
#include <float.h>
#include <type_traits>
#define MMHA_USE_FP32_ACUM_FOR_FMA
#define MMHA_USE_FP32_ACUM_FOR_OUT
namespace
cacheflow
{
// A vector type to store Q, K, V elements.
template
<
typename
T
,
int
VEC_SIZE
>
struct
Vec
{};
template
<
>
struct
Vec
<
float
,
1
>
{
using
Type
=
float
;
};
template
<
>
struct
Vec
<
float
,
2
>
{
using
Type
=
float2
;
};
template
<
>
struct
Vec
<
float
,
4
>
{
using
Type
=
float4
;
};
template
<
>
struct
Vec
<
uint16_t
,
1
>
{
using
Type
=
uint16_t
;
};
template
<
>
struct
Vec
<
uint16_t
,
2
>
{
using
Type
=
uint32_t
;
};
template
<
>
struct
Vec
<
uint16_t
,
4
>
{
using
Type
=
uint2
;
};
template
<
>
struct
Vec
<
uint16_t
,
8
>
{
using
Type
=
uint4
;
};
template
<
typename
T
>
struct
FloatVec
{};
template
<
>
struct
FloatVec
<
float
>
{
using
Type
=
float
;
};
template
<
>
struct
FloatVec
<
float2
>
{
using
Type
=
float2
;
};
template
<
>
struct
FloatVec
<
float4
>
{
using
Type
=
float4
;
};
template
<
>
struct
FloatVec
<
uint16_t
>
{
using
Type
=
float
;
};
template
<
>
struct
FloatVec
<
uint32_t
>
{
using
Type
=
float2
;
};
template
<
>
struct
FloatVec
<
uint2
>
{
using
Type
=
Float4_
;
};
template
<
>
struct
FloatVec
<
uint4
>
{
using
Type
=
Float8_
;
};
template
<
int
THREADS_PER_KEY
,
typename
K_vec
,
int
N
>
inline
__device__
float
qk_dot_
(
const
K_vec
(
&
q
)[
N
],
const
K_vec
(
&
k
)[
N
])
{
using
K_vec_acum
=
typename
FloatVec
<
K_vec
>::
Type
;
// Compute the parallel products for Q*K^T (treat vector lanes separately).
K_vec_acum
qk_vec
=
mul
<
K_vec_acum
,
K_vec
,
K_vec
>
(
q
[
0
],
k
[
0
]);
#pragma unroll
for
(
int
ii
=
1
;
ii
<
N
;
++
ii
)
{
qk_vec
=
fma
(
q
[
ii
],
k
[
ii
],
qk_vec
);
}
// Finalize the reduction across lanes.
float
qk
=
sum
(
qk_vec
);
#pragma unroll
for
(
int
mask
=
THREADS_PER_KEY
/
2
;
mask
>=
1
;
mask
/=
2
)
{
qk
+=
__shfl_xor_sync
(
uint32_t
(
-
1
),
qk
,
mask
);
}
return
qk
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
typename
T
,
int
THREADS_PER_KEY
>
struct
Qk_dot
{
template
<
typename
K_vec
,
int
N
>
static
inline
__device__
float
dot
(
const
K_vec
(
&
q
)[
N
],
const
K_vec
(
&
k
)[
N
])
{
return
qk_dot_
<
THREADS_PER_KEY
>
(
q
,
k
);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float4
hmma_fp32
(
const
uint2
&
a
,
uint32_t
b
)
{
float4
c
;
float
zero
=
0.
f
;
asm
volatile
(
"mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32
\n
"
" {%0, %1, %2, %3},
\n
"
" {%4, %5},
\n
"
" {%6},
\n
"
" {%7, %7, %7, %7};
\n
"
:
"=f"
(
c
.
x
),
"=f"
(
c
.
y
),
"=f"
(
c
.
z
),
"=f"
(
c
.
w
)
:
"r"
(
a
.
x
)
"r"
(
a
.
y
),
"r"
(
b
),
"f"
(
zero
));
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
int
N
>
inline
__device__
float
qk_hmma_dot_
(
const
uint32_t
(
&
q
)[
N
],
const
uint32_t
(
&
k
)[
N
])
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 750
using
K_vec_acum
=
typename
FloatVec
<
uint32_t
>::
Type
;
K_vec_acum
qk_vec
=
mul
<
K_vec_acum
,
uint32_t
,
uint32_t
>
(
q
[
0
],
k
[
0
]);
#pragma unroll
for
(
int
ii
=
1
;
ii
<
N
;
++
ii
)
{
qk_vec
=
fma
(
q
[
ii
],
k
[
ii
],
qk_vec
);
}
#ifdef MMHA_USE_FP32_ACUM_FOR_FMA
uint32_t
qk_vec_
=
float2_to_half2
(
qk_vec
);
return
hmma_fp32
(
make_uint2
(
qk_vec_
,
0u
),
0x3c003c00u
).
x
;
#else
return
hmma_fp32
(
make_uint2
(
qk_vec
,
0u
),
0x3c003c00u
).
x
;
#endif
#else
return
0.
f
;
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
struct
Qk_dot
<
uint16_t
,
4
>
{
template
<
int
N
>
static
inline
__device__
float
dot
(
const
uint32_t
(
&
q
)[
N
],
const
uint32_t
(
&
k
)[
N
])
{
#if __CUDA_ARCH__ >= 750 && defined(MMHA_USE_HMMA_FOR_REDUCTION)
return
qk_hmma_dot_
(
q
,
k
);
#else
return
qk_dot_
<
4
>
(
q
,
k
);
#endif // defined MMHA_USE_HMMA_FOR_REDUCTION
}
};
}
// namespace cacheflow
#undef MMHA_USE_FP32_ACUM_FOR_FMA
#undef MMHA_USE_FP32_ACUM_FOR_OUT
csrc/cuda_primitives.h
deleted
100644 → 0
View file @
27f1410d
#pragma once
#include <stdint.h>
namespace
cacheflow
{
////////////////////////////////////////////////////////////////////////////////////////////////////
struct
Float8_
{
float2
x
;
float2
y
;
float2
z
;
float2
w
;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct
Float4_
{
float2
x
;
float2
y
;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
struct
bf16_4_t
{
__nv_bfloat162
x
;
__nv_bfloat162
y
;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct
bf16_8_t
{
__nv_bfloat162
x
;
__nv_bfloat162
y
;
__nv_bfloat162
z
;
__nv_bfloat162
w
;
};
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
add
(
float
a
,
float
b
)
{
return
a
+
b
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float2
add
(
float2
a
,
float2
b
)
{
float2
c
;
c
.
x
=
add
(
a
.
x
,
b
.
x
);
c
.
y
=
add
(
a
.
y
,
b
.
y
);
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float4
add
(
float4
a
,
float4
b
)
{
float4
c
;
c
.
x
=
add
(
a
.
x
,
b
.
x
);
c
.
y
=
add
(
a
.
y
,
b
.
y
);
c
.
z
=
add
(
a
.
z
,
b
.
z
);
c
.
w
=
add
(
a
.
w
,
b
.
w
);
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
inline
__device__
__nv_bfloat16
add
(
__nv_bfloat16
a
,
__nv_bfloat16
b
)
{
return
a
+
b
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
__nv_bfloat162
add
(
__nv_bfloat162
a
,
__nv_bfloat162
b
)
{
return
bf16hadd2
(
a
,
b
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
bf16_4_t
add
(
bf16_4_t
a
,
bf16_4_t
b
)
{
bf16_4_t
c
;
c
.
x
=
add
(
a
.
x
,
b
.
x
);
c
.
y
=
add
(
a
.
y
,
b
.
y
);
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
bf16_8_t
add
(
bf16_8_t
a
,
bf16_8_t
b
)
{
bf16_8_t
c
;
c
.
x
=
add
(
a
.
x
,
b
.
x
);
c
.
y
=
add
(
a
.
y
,
b
.
y
);
c
.
z
=
add
(
a
.
z
,
b
.
z
);
c
.
w
=
add
(
a
.
w
,
b
.
w
);
return
c
;
}
#endif // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
uint16_t
add
(
uint16_t
a
,
uint16_t
b
)
{
uint16_t
c
;
asm
volatile
(
"add.f16 %0, %1, %2;
\n
"
:
"=h"
(
c
)
:
"h"
(
a
),
"h"
(
b
));
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
uint32_t
add
(
uint32_t
a
,
uint32_t
b
)
{
uint32_t
c
;
asm
volatile
(
"add.f16x2 %0, %1, %2;
\n
"
:
"=r"
(
c
)
:
"r"
(
a
),
"r"
(
b
));
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
uint2
add
(
uint2
a
,
uint2
b
)
{
uint2
c
;
c
.
x
=
add
(
a
.
x
,
b
.
x
);
c
.
y
=
add
(
a
.
y
,
b
.
y
);
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
uint4
add
(
uint4
a
,
uint4
b
)
{
uint4
c
;
c
.
x
=
add
(
a
.
x
,
b
.
x
);
c
.
y
=
add
(
a
.
y
,
b
.
y
);
c
.
z
=
add
(
a
.
z
,
b
.
z
);
c
.
w
=
add
(
a
.
w
,
b
.
w
);
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
uint16_t
float_to_half
(
float
f
)
{
union
{
uint32_t
u32
;
uint16_t
u16
[
2
];
}
tmp
;
#if 0 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 // Is it better?
float zero = 0.f;
asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(zero), "f"(f));
#else
asm
volatile
(
"cvt.rn.f16.f32 %0, %1;
\n
"
:
"=h"
(
tmp
.
u16
[
0
])
:
"f"
(
f
));
#endif
return
tmp
.
u16
[
0
];
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
uint32_t
float2_to_half2
(
float2
f
)
{
union
{
uint32_t
u32
;
uint16_t
u16
[
2
];
}
tmp
;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
asm
volatile
(
"cvt.rn.f16x2.f32 %0, %1, %2;
\n
"
:
"=r"
(
tmp
.
u32
)
:
"f"
(
f
.
y
),
"f"
(
f
.
x
));
#else
asm
volatile
(
"cvt.rn.f16.f32 %0, %1;
\n
"
:
"=h"
(
tmp
.
u16
[
0
])
:
"f"
(
f
.
x
));
asm
volatile
(
"cvt.rn.f16.f32 %0, %1;
\n
"
:
"=h"
(
tmp
.
u16
[
1
])
:
"f"
(
f
.
y
));
#endif
return
tmp
.
u32
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
half_to_float
(
uint16_t
h
)
{
float
f
;
asm
volatile
(
"cvt.f32.f16 %0, %1;
\n
"
:
"=f"
(
f
)
:
"h"
(
h
));
return
f
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float2
half2_to_float2
(
uint32_t
v
)
{
uint16_t
lo
,
hi
;
asm
volatile
(
"mov.b32 {%0, %1}, %2;
\n
"
:
"=h"
(
lo
),
"=h"
(
hi
)
:
"r"
(
v
));
return
make_float2
(
half_to_float
(
lo
),
half_to_float
(
hi
));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float2
add
(
uint32_t
a
,
float2
fb
)
{
float2
fa
=
half2_to_float2
(
a
);
return
add
(
fa
,
fb
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float4_
add
(
uint2
a
,
Float4_
fb
)
{
Float4_
fc
;
fc
.
x
=
add
(
a
.
x
,
fb
.
x
);
fc
.
y
=
add
(
a
.
y
,
fb
.
y
);
return
fc
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float8_
add
(
uint4
a
,
Float8_
fb
)
{
Float8_
fc
;
fc
.
x
=
add
(
a
.
x
,
fb
.
x
);
fc
.
y
=
add
(
a
.
y
,
fb
.
y
);
fc
.
z
=
add
(
a
.
z
,
fb
.
z
);
fc
.
w
=
add
(
a
.
w
,
fb
.
w
);
return
fc
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
uint32_t
h0_h0
(
uint16_t
a
)
{
uint32_t
b
;
asm
volatile
(
"mov.b32 %0, {%1, %1};"
:
"=r"
(
b
)
:
"h"
(
a
));
return
b
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
fma
(
float
a
,
float
b
,
float
c
)
{
return
a
*
b
+
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float2
fma
(
float2
a
,
float2
b
,
float2
c
)
{
float2
d
;
d
.
x
=
fma
(
a
.
x
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
.
y
,
b
.
y
,
c
.
y
);
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float2
fma
(
float
a
,
float2
b
,
float2
c
)
{
float2
d
;
d
.
x
=
fma
(
a
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
,
b
.
y
,
c
.
y
);
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float4
fma
(
float4
a
,
float4
b
,
float4
c
)
{
float4
d
;
d
.
x
=
fma
(
a
.
x
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
.
y
,
b
.
y
,
c
.
y
);
d
.
z
=
fma
(
a
.
z
,
b
.
z
,
c
.
z
);
d
.
w
=
fma
(
a
.
w
,
b
.
w
,
c
.
w
);
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float4
fma
(
float
a
,
float4
b
,
float4
c
)
{
float4
d
;
d
.
x
=
fma
(
a
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
,
b
.
y
,
c
.
y
);
d
.
z
=
fma
(
a
,
b
.
z
,
c
.
z
);
d
.
w
=
fma
(
a
,
b
.
w
,
c
.
w
);
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float4_
fma
(
float
a
,
Float4_
b
,
Float4_
c
)
{
Float4_
d
;
d
.
x
=
fma
(
a
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
,
b
.
y
,
c
.
y
);
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float8_
fma
(
float
a
,
Float8_
b
,
Float8_
c
)
{
Float8_
d
;
d
.
x
=
fma
(
a
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
,
b
.
y
,
c
.
y
);
d
.
z
=
fma
(
a
,
b
.
z
,
c
.
z
);
d
.
w
=
fma
(
a
,
b
.
w
,
c
.
w
);
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
inline
__device__
float2
add
(
__nv_bfloat162
a
,
float2
fb
)
{
float2
fa
=
bf1622float2
(
a
);
return
add
(
fa
,
fb
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float4_
add
(
bf16_4_t
a
,
Float4_
fb
)
{
Float4_
fc
;
fc
.
x
=
add
(
a
.
x
,
fb
.
x
);
fc
.
y
=
add
(
a
.
y
,
fb
.
y
);
return
fc
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float8_
add
(
bf16_8_t
a
,
Float8_
fb
)
{
Float8_
fc
;
fc
.
x
=
add
(
a
.
x
,
fb
.
x
);
fc
.
y
=
add
(
a
.
y
,
fb
.
y
);
fc
.
z
=
add
(
a
.
z
,
fb
.
z
);
fc
.
w
=
add
(
a
.
w
,
fb
.
w
);
return
fc
;
}
#endif // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
uint32_t
fma
(
uint32_t
a
,
uint32_t
b
,
uint32_t
c
)
{
uint32_t
d
;
asm
volatile
(
"fma.rn.f16x2 %0, %1, %2, %3;
\n
"
:
"=r"
(
d
)
:
"r"
(
a
),
"r"
(
b
),
"r"
(
c
));
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
uint32_t
fma
(
uint16_t
a
,
uint32_t
b
,
uint32_t
c
)
{
return
fma
(
h0_h0
(
a
),
b
,
c
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
uint2
fma
(
uint2
a
,
uint2
b
,
uint2
c
)
{
uint2
d
;
d
.
x
=
fma
(
a
.
x
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
.
y
,
b
.
y
,
c
.
y
);
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
uint2
fma
(
uint16_t
a
,
uint2
b
,
uint2
c
)
{
uint32_t
s
=
h0_h0
(
a
);
uint2
d
;
d
.
x
=
fma
(
s
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
s
,
b
.
y
,
c
.
y
);
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
uint4
fma
(
uint4
a
,
uint4
b
,
uint4
c
)
{
uint4
d
;
d
.
x
=
fma
(
a
.
x
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
.
y
,
b
.
y
,
c
.
y
);
d
.
z
=
fma
(
a
.
z
,
b
.
z
,
c
.
z
);
d
.
w
=
fma
(
a
.
w
,
b
.
w
,
c
.
w
);
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
uint4
fma
(
uint16_t
a
,
uint4
b
,
uint4
c
)
{
uint32_t
s
=
h0_h0
(
a
);
uint4
d
;
d
.
x
=
fma
(
s
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
s
,
b
.
y
,
c
.
y
);
d
.
z
=
fma
(
s
,
b
.
z
,
c
.
z
);
d
.
w
=
fma
(
s
,
b
.
w
,
c
.
w
);
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
fma
(
uint16_t
a
,
uint16_t
b
,
float
fc
)
{
float
fa
=
half_to_float
(
a
);
float
fb
=
half_to_float
(
b
);
return
fa
*
fb
+
fc
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float2
fma
(
uint32_t
a
,
uint32_t
b
,
float2
fc
)
{
float2
fa
=
half2_to_float2
(
a
);
float2
fb
=
half2_to_float2
(
b
);
return
fma
(
fa
,
fb
,
fc
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float2
fma
(
uint16_t
a
,
uint32_t
b
,
float2
fc
)
{
return
fma
(
h0_h0
(
a
),
b
,
fc
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float4_
fma
(
uint2
a
,
uint2
b
,
Float4_
fc
)
{
Float4_
fd
;
fd
.
x
=
fma
(
a
.
x
,
b
.
x
,
fc
.
x
);
fd
.
y
=
fma
(
a
.
y
,
b
.
y
,
fc
.
y
);
return
fd
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float4_
fma
(
uint16_t
a
,
uint2
b
,
Float4_
fc
)
{
uint32_t
s
=
h0_h0
(
a
);
Float4_
fd
;
fd
.
x
=
fma
(
s
,
b
.
x
,
fc
.
x
);
fd
.
y
=
fma
(
s
,
b
.
y
,
fc
.
y
);
return
fd
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float8_
fma
(
uint4
a
,
uint4
b
,
Float8_
fc
)
{
Float8_
fd
;
fd
.
x
=
fma
(
a
.
x
,
b
.
x
,
fc
.
x
);
fd
.
y
=
fma
(
a
.
y
,
b
.
y
,
fc
.
y
);
fd
.
z
=
fma
(
a
.
z
,
b
.
z
,
fc
.
z
);
fd
.
w
=
fma
(
a
.
w
,
b
.
w
,
fc
.
w
);
return
fd
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float8_
fma
(
uint16_t
a
,
uint4
b
,
Float8_
fc
)
{
uint32_t
s
=
h0_h0
(
a
);
Float8_
fd
;
fd
.
x
=
fma
(
s
,
b
.
x
,
fc
.
x
);
fd
.
y
=
fma
(
s
,
b
.
y
,
fc
.
y
);
fd
.
z
=
fma
(
s
,
b
.
z
,
fc
.
z
);
fd
.
w
=
fma
(
s
,
b
.
w
,
fc
.
w
);
return
fd
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
inline
__device__
__nv_bfloat162
fma
(
__nv_bfloat162
a
,
__nv_bfloat162
b
,
__nv_bfloat162
c
)
{
return
bf16hfma2
(
a
,
b
,
c
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
__nv_bfloat162
fma
(
__nv_bfloat16
a
,
__nv_bfloat162
b
,
__nv_bfloat162
c
)
{
return
bf16hfma2
(
bf162bf162
(
a
),
b
,
c
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
bf16_4_t
fma
(
bf16_4_t
a
,
bf16_4_t
b
,
bf16_4_t
c
)
{
bf16_4_t
d
;
d
.
x
=
fma
(
a
.
x
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
.
y
,
b
.
y
,
c
.
y
);
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
bf16_4_t
fma
(
__nv_bfloat16
a
,
bf16_4_t
b
,
bf16_4_t
c
)
{
__nv_bfloat162
s
=
bf162bf162
(
a
);
bf16_4_t
d
;
d
.
x
=
fma
(
s
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
s
,
b
.
y
,
c
.
y
);
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
bf16_8_t
fma
(
bf16_8_t
a
,
bf16_8_t
b
,
bf16_8_t
c
)
{
bf16_8_t
d
;
d
.
x
=
fma
(
a
.
x
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
a
.
y
,
b
.
y
,
c
.
y
);
d
.
z
=
fma
(
a
.
z
,
b
.
z
,
c
.
z
);
d
.
w
=
fma
(
a
.
w
,
b
.
w
,
c
.
w
);
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
bf16_8_t
fma
(
__nv_bfloat16
a
,
bf16_8_t
b
,
bf16_8_t
c
)
{
__nv_bfloat162
s
=
bf162bf162
(
a
);
bf16_8_t
d
;
d
.
x
=
fma
(
s
,
b
.
x
,
c
.
x
);
d
.
y
=
fma
(
s
,
b
.
y
,
c
.
y
);
d
.
z
=
fma
(
s
,
b
.
z
,
c
.
z
);
d
.
w
=
fma
(
s
,
b
.
w
,
c
.
w
);
return
d
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
fma
(
__nv_bfloat16
a
,
__nv_bfloat16
b
,
float
fc
)
{
return
__bfloat162float
(
a
)
*
__bfloat162float
(
b
)
+
fc
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float2
fma
(
__nv_bfloat162
a
,
__nv_bfloat162
b
,
float2
fc
)
{
float2
fa
=
bf1622float2
(
a
);
float2
fb
=
bf1622float2
(
b
);
return
fma
(
fa
,
fb
,
fc
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float2
fma
(
__nv_bfloat16
a
,
__nv_bfloat162
b
,
float2
fc
)
{
return
fma
(
bf162bf162
(
a
),
b
,
fc
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float4_
fma
(
bf16_4_t
a
,
bf16_4_t
b
,
Float4_
fc
)
{
Float4_
fd
;
fd
.
x
=
fma
(
a
.
x
,
b
.
x
,
fc
.
x
);
fd
.
y
=
fma
(
a
.
y
,
b
.
y
,
fc
.
y
);
return
fd
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float4_
fma
(
__nv_bfloat16
a
,
bf16_4_t
b
,
Float4_
fc
)
{
__nv_bfloat162
s
=
bf162bf162
(
a
);
Float4_
fd
;
fd
.
x
=
fma
(
s
,
b
.
x
,
fc
.
x
);
fd
.
y
=
fma
(
s
,
b
.
y
,
fc
.
y
);
return
fd
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float8_
fma
(
bf16_8_t
a
,
bf16_8_t
b
,
Float8_
fc
)
{
Float8_
fd
;
fd
.
x
=
fma
(
a
.
x
,
b
.
x
,
fc
.
x
);
fd
.
y
=
fma
(
a
.
y
,
b
.
y
,
fc
.
y
);
fd
.
z
=
fma
(
a
.
z
,
b
.
z
,
fc
.
z
);
fd
.
w
=
fma
(
a
.
w
,
b
.
w
,
fc
.
w
);
return
fd
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float8_
fma
(
__nv_bfloat16
a
,
bf16_8_t
b
,
Float8_
fc
)
{
__nv_bfloat162
s
=
bf162bf162
(
a
);
Float8_
fd
;
fd
.
x
=
fma
(
s
,
b
.
x
,
fc
.
x
);
fd
.
y
=
fma
(
s
,
b
.
y
,
fc
.
y
);
fd
.
z
=
fma
(
s
,
b
.
z
,
fc
.
z
);
fd
.
w
=
fma
(
s
,
b
.
w
,
fc
.
w
);
return
fd
;
}
#endif // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
typename
Acc
,
typename
A
,
typename
B
>
inline
__device__
Acc
mul
(
A
a
,
B
b
);
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
float
mul
<
float
,
float
>
(
float
a
,
float
b
)
{
return
a
*
b
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
float2
mul
(
float2
a
,
float2
b
)
{
float2
c
;
c
.
x
=
a
.
x
*
b
.
x
;
c
.
y
=
a
.
y
*
b
.
y
;
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
float2
mul
(
float
a
,
float2
b
)
{
float2
c
;
c
.
x
=
a
*
b
.
x
;
c
.
y
=
a
*
b
.
y
;
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
float4
mul
(
float4
a
,
float4
b
)
{
float4
c
;
c
.
x
=
a
.
x
*
b
.
x
;
c
.
y
=
a
.
y
*
b
.
y
;
c
.
z
=
a
.
z
*
b
.
z
;
c
.
w
=
a
.
w
*
b
.
w
;
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
float4
mul
(
float
a
,
float4
b
)
{
float4
c
;
c
.
x
=
a
*
b
.
x
;
c
.
y
=
a
*
b
.
y
;
c
.
z
=
a
*
b
.
z
;
c
.
w
=
a
*
b
.
w
;
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
uint16_t
mul
(
uint16_t
a
,
uint16_t
b
)
{
uint16_t
c
;
asm
volatile
(
"mul.f16 %0, %1, %2;
\n
"
:
"=h"
(
c
)
:
"h"
(
a
),
"h"
(
b
));
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
uint32_t
mul
(
uint32_t
a
,
uint32_t
b
)
{
uint32_t
c
;
asm
volatile
(
"mul.f16x2 %0, %1, %2;
\n
"
:
"=r"
(
c
)
:
"r"
(
a
),
"r"
(
b
));
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
uint32_t
mul
(
uint16_t
a
,
uint32_t
b
)
{
return
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
h0_h0
(
a
),
b
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
uint2
mul
(
uint2
a
,
uint2
b
)
{
uint2
c
;
c
.
x
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
a
.
x
,
b
.
x
);
c
.
y
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
a
.
y
,
b
.
y
);
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
uint2
mul
(
uint16_t
a
,
uint2
b
)
{
uint32_t
s
=
h0_h0
(
a
);
uint2
c
;
c
.
x
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
s
,
b
.
x
);
c
.
y
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
s
,
b
.
y
);
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
uint4
mul
(
uint4
a
,
uint4
b
)
{
uint4
c
;
c
.
x
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
a
.
x
,
b
.
x
);
c
.
y
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
a
.
y
,
b
.
y
);
c
.
z
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
a
.
z
,
b
.
z
);
c
.
w
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
a
.
w
,
b
.
w
);
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
uint4
mul
(
uint16_t
a
,
uint4
b
)
{
uint32_t
s
=
h0_h0
(
a
);
uint4
c
;
c
.
x
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
s
,
b
.
x
);
c
.
y
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
s
,
b
.
y
);
c
.
z
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
s
,
b
.
z
);
c
.
w
=
mul
<
uint32_t
,
uint32_t
,
uint32_t
>
(
s
,
b
.
w
);
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
float
mul
(
uint16_t
a
,
uint16_t
b
)
{
float
fa
=
half_to_float
(
a
);
float
fb
=
half_to_float
(
b
);
return
fa
*
fb
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
float2
mul
(
uint32_t
a
,
uint32_t
b
)
{
float2
fa
=
half2_to_float2
(
a
);
float2
fb
=
half2_to_float2
(
b
);
return
mul
<
float2
,
float2
,
float2
>
(
fa
,
fb
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
float2
mul
(
uint16_t
a
,
uint32_t
b
)
{
return
mul
<
float2
,
uint32_t
,
uint32_t
>
(
h0_h0
(
a
),
b
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
Float4_
mul
(
uint2
a
,
uint2
b
)
{
Float4_
fc
;
fc
.
x
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
a
.
x
,
b
.
x
);
fc
.
y
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
a
.
y
,
b
.
y
);
return
fc
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
Float4_
mul
(
uint16_t
a
,
uint2
b
)
{
uint32_t
s
=
h0_h0
(
a
);
Float4_
fc
;
fc
.
x
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
s
,
b
.
x
);
fc
.
y
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
s
,
b
.
y
);
return
fc
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
Float8_
mul
(
uint4
a
,
uint4
b
)
{
Float8_
fc
;
fc
.
x
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
a
.
x
,
b
.
x
);
fc
.
y
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
a
.
y
,
b
.
y
);
fc
.
z
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
a
.
z
,
b
.
z
);
fc
.
w
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
a
.
w
,
b
.
w
);
return
fc
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
Float8_
mul
(
uint16_t
a
,
uint4
b
)
{
uint32_t
s
=
h0_h0
(
a
);
Float8_
fc
;
fc
.
x
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
s
,
b
.
x
);
fc
.
y
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
s
,
b
.
y
);
fc
.
z
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
s
,
b
.
z
);
fc
.
w
=
mul
<
float2
,
uint32_t
,
uint32_t
>
(
s
,
b
.
w
);
return
fc
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
template
<
>
inline
__device__
__nv_bfloat16
mul
(
__nv_bfloat16
a
,
__nv_bfloat16
b
)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
return
__hmul
(
a
,
b
);
#else
return
bf16hmul
(
a
,
b
);
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
__nv_bfloat162
mul
(
__nv_bfloat162
a
,
__nv_bfloat162
b
)
{
return
bf16hmul2
(
a
,
b
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
__nv_bfloat162
mul
(
__nv_bfloat16
a
,
__nv_bfloat162
b
)
{
return
mul
<
__nv_bfloat162
,
__nv_bfloat162
,
__nv_bfloat162
>
(
bf162bf162
(
a
),
b
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
bf16_4_t
mul
(
bf16_4_t
a
,
bf16_4_t
b
)
{
bf16_4_t
c
;
c
.
x
=
mul
<
__nv_bfloat162
,
__nv_bfloat162
,
__nv_bfloat162
>
(
a
.
x
,
b
.
x
);
c
.
y
=
mul
<
__nv_bfloat162
,
__nv_bfloat162
,
__nv_bfloat162
>
(
a
.
y
,
b
.
y
);
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
bf16_4_t
mul
(
__nv_bfloat16
a
,
bf16_4_t
b
)
{
__nv_bfloat162
s
=
bf162bf162
(
a
);
bf16_4_t
c
;
c
.
x
=
mul
<
__nv_bfloat162
,
__nv_bfloat162
,
__nv_bfloat162
>
(
s
,
b
.
x
);
c
.
y
=
mul
<
__nv_bfloat162
,
__nv_bfloat162
,
__nv_bfloat162
>
(
s
,
b
.
y
);
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
bf16_8_t
mul
(
bf16_8_t
a
,
bf16_8_t
b
)
{
bf16_8_t
c
;
c
.
x
=
mul
<
__nv_bfloat162
,
__nv_bfloat162
,
__nv_bfloat162
>
(
a
.
x
,
b
.
x
);
c
.
y
=
mul
<
__nv_bfloat162
,
__nv_bfloat162
,
__nv_bfloat162
>
(
a
.
y
,
b
.
y
);
c
.
z
=
mul
<
__nv_bfloat162
,
__nv_bfloat162
,
__nv_bfloat162
>
(
a
.
z
,
b
.
z
);
c
.
w
=
mul
<
__nv_bfloat162
,
__nv_bfloat162
,
__nv_bfloat162
>
(
a
.
w
,
b
.
w
);
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
bf16_8_t
mul
(
__nv_bfloat16
a
,
bf16_8_t
b
)
{
__nv_bfloat162
s
=
bf162bf162
(
a
);
bf16_8_t
c
;
c
.
x
=
mul
<
__nv_bfloat162
,
__nv_bfloat162
,
__nv_bfloat162
>
(
s
,
b
.
x
);
c
.
y
=
mul
<
__nv_bfloat162
,
__nv_bfloat162
,
__nv_bfloat162
>
(
s
,
b
.
y
);
c
.
z
=
mul
<
__nv_bfloat162
,
__nv_bfloat162
,
__nv_bfloat162
>
(
s
,
b
.
z
);
c
.
w
=
mul
<
__nv_bfloat162
,
__nv_bfloat162
,
__nv_bfloat162
>
(
s
,
b
.
w
);
return
c
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
float
mul
(
__nv_bfloat16
a
,
__nv_bfloat16
b
)
{
float
fa
=
(
float
)
a
;
float
fb
=
(
float
)
b
;
return
fa
*
fb
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
float2
mul
(
__nv_bfloat162
a
,
__nv_bfloat162
b
)
{
float2
fa
=
bf1622float2
(
a
);
float2
fb
=
bf1622float2
(
b
);
return
mul
<
float2
,
float2
,
float2
>
(
fa
,
fb
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
float2
mul
(
__nv_bfloat16
a
,
__nv_bfloat162
b
)
{
return
mul
<
float2
,
__nv_bfloat162
,
__nv_bfloat162
>
(
bf162bf162
(
a
),
b
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
Float4_
mul
(
bf16_4_t
a
,
bf16_4_t
b
)
{
Float4_
fc
;
fc
.
x
=
mul
<
float2
,
__nv_bfloat162
,
__nv_bfloat162
>
(
a
.
x
,
b
.
x
);
fc
.
y
=
mul
<
float2
,
__nv_bfloat162
,
__nv_bfloat162
>
(
a
.
y
,
b
.
y
);
return
fc
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
Float4_
mul
(
__nv_bfloat16
a
,
bf16_4_t
b
)
{
__nv_bfloat162
s
=
bf162bf162
(
a
);
Float4_
fc
;
fc
.
x
=
mul
<
float2
,
__nv_bfloat162
,
__nv_bfloat162
>
(
s
,
b
.
x
);
fc
.
y
=
mul
<
float2
,
__nv_bfloat162
,
__nv_bfloat162
>
(
s
,
b
.
y
);
return
fc
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
Float8_
mul
(
bf16_8_t
a
,
bf16_8_t
b
)
{
Float8_
fc
;
fc
.
x
=
mul
<
float2
,
__nv_bfloat162
,
__nv_bfloat162
>
(
a
.
x
,
b
.
x
);
fc
.
y
=
mul
<
float2
,
__nv_bfloat162
,
__nv_bfloat162
>
(
a
.
y
,
b
.
y
);
fc
.
z
=
mul
<
float2
,
__nv_bfloat162
,
__nv_bfloat162
>
(
a
.
z
,
b
.
z
);
fc
.
w
=
mul
<
float2
,
__nv_bfloat162
,
__nv_bfloat162
>
(
a
.
w
,
b
.
w
);
return
fc
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
>
inline
__device__
Float8_
mul
(
__nv_bfloat16
a
,
bf16_8_t
b
)
{
__nv_bfloat162
s
=
bf162bf162
(
a
);
Float8_
fc
;
fc
.
x
=
mul
<
float2
,
__nv_bfloat162
,
__nv_bfloat162
>
(
s
,
b
.
x
);
fc
.
y
=
mul
<
float2
,
__nv_bfloat162
,
__nv_bfloat162
>
(
s
,
b
.
y
);
fc
.
z
=
mul
<
float2
,
__nv_bfloat162
,
__nv_bfloat162
>
(
s
,
b
.
z
);
fc
.
w
=
mul
<
float2
,
__nv_bfloat162
,
__nv_bfloat162
>
(
s
,
b
.
w
);
return
fc
;
}
#endif // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
sum
(
float
v
)
{
return
v
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
sum
(
float2
v
)
{
return
v
.
x
+
v
.
y
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
sum
(
float4
v
)
{
return
v
.
x
+
v
.
y
+
v
.
z
+
v
.
w
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
inline
__device__
float
sum
(
__nv_bfloat162
v
)
{
float2
vf
=
bf1622float2
(
v
);
return
vf
.
x
+
vf
.
y
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
sum
(
bf16_4_t
v
)
{
return
sum
(
v
.
x
)
+
sum
(
v
.
y
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
sum
(
bf16_8_t
v
)
{
return
sum
(
v
.
x
)
+
sum
(
v
.
y
)
+
sum
(
v
.
z
)
+
sum
(
v
.
w
);
}
#endif // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
sum
(
uint16_t
v
)
{
return
half_to_float
(
v
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
sum
(
uint32_t
v
)
{
float2
tmp
=
half2_to_float2
(
v
);
return
tmp
.
x
+
tmp
.
y
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
sum
(
uint2
v
)
{
uint32_t
c
=
add
(
v
.
x
,
v
.
y
);
return
sum
(
c
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
sum
(
uint4
v
)
{
#if 1
uint32_t
c
=
add
(
v
.
x
,
v
.
y
);
c
=
add
(
c
,
v
.
z
);
c
=
add
(
c
,
v
.
w
);
#else
uint32_t
c
=
add
(
v
.
x
,
v
.
y
);
uint32_t
d
=
add
(
v
.
z
,
v
.
w
);
c
=
add
(
c
,
d
);
#endif
return
sum
(
c
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
sum
(
Float4_
v
)
{
return
v
.
x
.
x
+
v
.
x
.
y
+
v
.
y
.
x
+
v
.
y
.
y
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
sum
(
Float8_
v
)
{
return
v
.
x
.
x
+
v
.
x
.
y
+
v
.
y
.
x
+
v
.
y
.
y
+
v
.
z
.
x
+
v
.
z
.
y
+
v
.
w
.
x
+
v
.
w
.
y
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
dot
(
float
a
,
float
b
)
{
return
a
*
b
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
dot
(
float2
a
,
float2
b
)
{
float2
c
=
mul
<
float2
,
float2
,
float2
>
(
a
,
b
);
return
c
.
x
+
c
.
y
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
dot
(
Float4_
a
,
Float4_
b
)
{
float2
acc
=
mul
<
float2
,
float2
,
float2
>
(
a
.
x
,
b
.
x
);
acc
=
fma
(
a
.
y
,
b
.
y
,
acc
);
return
acc
.
x
+
acc
.
y
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
dot
(
Float8_
a
,
Float8_
b
)
{
float2
acc
=
mul
<
float2
,
float2
,
float2
>
(
a
.
x
,
b
.
x
);
acc
=
fma
(
a
.
y
,
b
.
y
,
acc
);
acc
=
fma
(
a
.
z
,
b
.
z
,
acc
);
acc
=
fma
(
a
.
w
,
b
.
w
,
acc
);
return
acc
.
x
+
acc
.
y
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
typename
T
>
inline
__device__
float
dot
(
T
a
,
T
b
)
{
return
sum
(
mul
<
T
,
T
,
T
>
(
a
,
b
));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
typename
A
,
typename
T
>
inline
__device__
float
dot
(
T
a
,
T
b
)
{
return
sum
(
mul
<
A
,
T
,
T
>
(
a
,
b
));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
void
zero
(
uint16_t
&
dst
)
{
dst
=
uint16_t
(
0
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template
<
typename
T
>
inline
__device__
void
zero
(
T
&
dst
)
{
constexpr
int
WORDS
=
sizeof
(
T
)
/
4
;
union
{
T
raw
;
uint32_t
words
[
WORDS
];
}
tmp
;
#pragma unroll
for
(
int
ii
=
0
;
ii
<
WORDS
;
++
ii
)
{
tmp
.
words
[
ii
]
=
0u
;
}
dst
=
tmp
.
raw
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
void
convert_from_float
(
float
&
dst
,
float
src
)
{
dst
=
src
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
void
convert_from_float
(
uint16_t
&
dst
,
float
src
)
{
dst
=
float_to_half
(
src
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
void
convert_from_float
(
uint32_t
&
dst
,
float2
src
)
{
dst
=
float2_to_half2
(
src
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
inline
__device__
void
convert_from_float
(
__nv_bfloat16
&
dst
,
float
src
)
{
dst
=
__float2bfloat16
(
src
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
void
convert_from_float
(
__nv_bfloat162
&
dst
,
float2
src
)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
dst
=
__float22bfloat162_rn
(
src
);
#else
dst
=
__floats2bfloat162_rn
(
src
.
x
,
src
.
y
);
#endif
}
#endif // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
void
convert_from_float
(
uint2
&
dst
,
Float4_
src
)
{
dst
.
x
=
float2_to_half2
(
src
.
x
);
dst
.
y
=
float2_to_half2
(
src
.
y
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
void
convert_from_float
(
uint4
&
dst
,
Float8_
src
)
{
dst
.
x
=
float2_to_half2
(
src
.
x
);
dst
.
y
=
float2_to_half2
(
src
.
y
);
dst
.
z
=
float2_to_half2
(
src
.
z
);
dst
.
w
=
float2_to_half2
(
src
.
w
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
inline
__device__
void
convert_from_float
(
bf16_4_t
&
dst
,
Float4_
src
)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
dst
.
x
=
__float22bfloat162_rn
(
src
.
x
);
dst
.
y
=
__float22bfloat162_rn
(
src
.
y
);
#else
dst
.
x
=
__floats2bfloat162_rn
(
src
.
x
.
x
,
src
.
x
.
y
);
dst
.
y
=
__floats2bfloat162_rn
(
src
.
y
.
x
,
src
.
y
.
y
);
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
void
convert_from_float
(
bf16_8_t
&
dst
,
Float8_
src
)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
dst
.
x
=
__float22bfloat162_rn
(
src
.
x
);
dst
.
y
=
__float22bfloat162_rn
(
src
.
y
);
dst
.
z
=
__float22bfloat162_rn
(
src
.
z
);
dst
.
w
=
__float22bfloat162_rn
(
src
.
w
);
#else
dst
.
x
=
__floats2bfloat162_rn
(
src
.
x
.
x
,
src
.
x
.
y
);
dst
.
y
=
__floats2bfloat162_rn
(
src
.
y
.
x
,
src
.
y
.
y
);
dst
.
z
=
__floats2bfloat162_rn
(
src
.
z
.
x
,
src
.
z
.
y
);
dst
.
w
=
__floats2bfloat162_rn
(
src
.
w
.
x
,
src
.
w
.
y
);
#endif
}
#endif // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
void
convert_from_float
(
float2
&
dst
,
float2
src
)
{
dst
=
src
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
void
convert_from_float
(
float4
&
dst
,
float4
src
)
{
dst
=
src
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
convert_to_float
(
float4
u
)
{
return
u
.
x
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
convert_to_float
(
uint4
u
)
{
float2
tmp
=
half2_to_float2
(
u
.
x
);
return
tmp
.
x
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// inline __device__ float cast_to_float(float u)
// {
// return u;
// }
////////////////////////////////////////////////////////////////////////////////////////////////////
// inline __device__ float2 cast_to_float(float2 u)
// {
// return u;
// }
////////////////////////////////////////////////////////////////////////////////////////////////////
// inline __device__ float4 cast_to_float(float4 u)
// {
// return u;
// }
////////////////////////////////////////////////////////////////////////////////////////////////////
// inline __device__ Float4_ cast_to_float(Float4_ u)
// {
// return u;
// }
////////////////////////////////////////////////////////////////////////////////////////////////////
// inline __device__ Float8_ cast_to_float(Float8_ u)
// {
// return u;
// }
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
cast_to_float
(
uint16_t
u
)
{
return
half_to_float
(
u
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float2
cast_to_float
(
uint32_t
u
)
{
return
half2_to_float2
(
u
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float4_
cast_to_float
(
uint2
u
)
{
Float4_
tmp
;
tmp
.
x
=
half2_to_float2
(
u
.
x
);
tmp
.
y
=
half2_to_float2
(
u
.
y
);
return
tmp
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float8_
cast_to_float
(
uint4
u
)
{
Float8_
tmp
;
tmp
.
x
=
half2_to_float2
(
u
.
x
);
tmp
.
y
=
half2_to_float2
(
u
.
y
);
tmp
.
z
=
half2_to_float2
(
u
.
z
);
tmp
.
w
=
half2_to_float2
(
u
.
w
);
return
tmp
;
}
}
csrc/layernorm_kernels.cu
View file @
436e523b
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include "reduction_utils.h"
#include "reduction_utils.
cu
h"
namespace
cacheflow
{
...
...
csrc/reduction_utils.cuh
0 → 100644
View file @
436e523b
#pragma once
namespace
cacheflow
{
template
<
typename
T
>
__inline__
__device__
T
warpReduceSum
(
T
val
)
{
#pragma unroll
for
(
int
mask
=
16
;
mask
>
0
;
mask
>>=
1
)
val
+=
__shfl_xor_sync
(
0xffffffff
,
val
,
mask
,
32
);
return
val
;
}
/* Calculate the sum of all elements in a block */
template
<
typename
T
>
__inline__
__device__
T
blockReduceSum
(
T
val
)
{
static
__shared__
T
shared
[
32
];
int
lane
=
threadIdx
.
x
&
0x1f
;
int
wid
=
threadIdx
.
x
>>
5
;
val
=
warpReduceSum
<
T
>
(
val
);
if
(
lane
==
0
)
shared
[
wid
]
=
val
;
__syncthreads
();
// Modify from blockDim.x << 5 to blockDim.x / 32. to prevent
// blockDim.x is not divided by 32
val
=
(
threadIdx
.
x
<
(
blockDim
.
x
/
32.
f
))
?
shared
[
lane
]
:
(
T
)(
0.0
f
);
val
=
warpReduceSum
<
T
>
(
val
);
return
val
;
}
}
// namespace cacheflow
csrc/reduction_utils.h
deleted
100644 → 0
View file @
27f1410d
#pragma once
namespace
cacheflow
{
template
<
int
WARPS_PER_BLOCK
,
int
WARP_SIZE
=
32
>
inline
__device__
float
block_sum
(
float
*
red_smem
,
float
sum
)
{
// Decompose the thread index into warp / lane.
int
warp
=
threadIdx
.
x
/
WARP_SIZE
;
int
lane
=
threadIdx
.
x
%
WARP_SIZE
;
// Compute the sum per warp.
#pragma unroll
for
(
int
mask
=
WARP_SIZE
/
2
;
mask
>=
1
;
mask
/=
2
)
{
sum
+=
__shfl_xor_sync
(
uint32_t
(
-
1
),
sum
,
mask
);
}
// Warp leaders store the data to shared memory.
if
(
lane
==
0
)
{
red_smem
[
warp
]
=
sum
;
}
// Make sure the data is in shared memory.
__syncthreads
();
// The warps compute the final sums.
if
(
lane
<
WARPS_PER_BLOCK
)
{
sum
=
red_smem
[
lane
];
}
// Parallel reduction inside the warp.
#pragma unroll
for
(
int
mask
=
WARPS_PER_BLOCK
/
2
;
mask
>=
1
;
mask
/=
2
)
{
sum
+=
__shfl_xor_sync
(
uint32_t
(
-
1
),
sum
,
mask
);
}
// Broadcast to other threads.
return
__shfl_sync
(
uint32_t
(
-
1
),
sum
,
0
);
}
#define FINAL_MASK 0xffffffff
template
<
typename
T
>
__inline__
__device__
T
warpReduceSum
(
T
val
)
{
#pragma unroll
for
(
int
mask
=
16
;
mask
>
0
;
mask
>>=
1
)
val
+=
__shfl_xor_sync
(
FINAL_MASK
,
val
,
mask
,
32
);
return
val
;
}
/* Calculate the sum of all elements in a block */
template
<
typename
T
>
__inline__
__device__
T
blockReduceSum
(
T
val
)
{
static
__shared__
T
shared
[
32
];
int
lane
=
threadIdx
.
x
&
0x1f
;
int
wid
=
threadIdx
.
x
>>
5
;
val
=
warpReduceSum
<
T
>
(
val
);
if
(
lane
==
0
)
shared
[
wid
]
=
val
;
__syncthreads
();
// Modify from blockDim.x << 5 to blockDim.x / 32. to prevent
// blockDim.x is not divided by 32
val
=
(
threadIdx
.
x
<
(
blockDim
.
x
/
32.
f
))
?
shared
[
lane
]
:
(
T
)(
0.0
f
);
val
=
warpReduceSum
<
T
>
(
val
);
return
val
;
}
}
// namespace cacheflow
setup.py
View file @
436e523b
...
...
@@ -18,7 +18,7 @@ ext_modules.append(cache_extension)
# Attention kernels.
attention_extension
=
cpp_extension
.
CUDAExtension
(
name
=
'cacheflow.attention_ops'
,
sources
=
[
'csrc/attention.cpp'
,
'csrc/attention_kernels.cu'
],
sources
=
[
'csrc/attention.cpp'
,
'csrc/attention
/attention
_kernels.cu'
],
extra_compile_args
=
{
'cxx'
:
CXX_FLAGS
,
'nvcc'
:
NVCC_FLAGS
},
)
ext_modules
.
append
(
attention_extension
)
...
...
tests/kernels/attention.py
View file @
436e523b
...
...
@@ -271,78 +271,6 @@ def test_multi_query_kv_attention(
assert
torch
.
allclose
(
output
,
ref_output
,
atol
=
1e-3
,
rtol
=
1e-5
)
def
test_multi_query_cached_kv_attention
(
num_queries
:
int
,
num_heads
:
int
,
head_size
:
int
,
block_size
:
int
,
num_blocks
:
int
,
dtype
:
torch
.
dtype
,
)
->
None
:
query_lens
=
random
.
sample
(
range
(
1
,
MAX_SEQ_LEN
),
num_queries
)
cu_query_lens
=
[
0
]
for
query_len
in
query_lens
:
cu_query_lens
.
append
(
cu_query_lens
[
-
1
]
+
query_len
)
num_total_tokens
=
cu_query_lens
[
-
1
]
qkv
=
torch
.
randn
(
num_total_tokens
,
3
,
num_heads
,
head_size
,
dtype
=
dtype
,
device
=
'cuda'
)
query
,
_
,
_
=
qkv
.
unbind
(
dim
=
1
)
x
=
16
//
torch
.
tensor
([],
dtype
=
dtype
).
element_size
()
key_block_shape
=
(
num_heads
,
head_size
//
x
,
block_size
,
x
)
key_cache
=
torch
.
randn
(
size
=
(
num_blocks
,
*
key_block_shape
),
dtype
=
dtype
,
device
=
'cuda'
)
value_block_shape
=
(
num_heads
,
head_size
,
block_size
)
value_cache
=
torch
.
randn
(
size
=
(
num_blocks
,
*
value_block_shape
),
dtype
=
dtype
,
device
=
'cuda'
)
cu_query_lens
=
torch
.
tensor
(
cu_query_lens
,
dtype
=
torch
.
int
,
device
=
'cuda'
)
context_lens
=
[
query_len
+
random
.
randint
(
0
,
MAX_SEQ_LEN
-
query_len
)
for
query_len
in
query_lens
]
max_context_len
=
max
(
context_lens
)
context_lens
=
torch
.
tensor
(
context_lens
,
dtype
=
torch
.
int
,
device
=
'cuda'
)
max_num_blocks_per_seq
=
(
max_context_len
+
block_size
-
1
)
//
block_size
block_tables
=
[]
for
_
in
range
(
num_queries
):
block_table
=
[
random
.
randint
(
0
,
num_blocks
-
1
)
for
_
in
range
(
max_num_blocks_per_seq
)
]
block_tables
.
append
(
block_table
)
block_tables
=
torch
.
tensor
(
block_tables
,
dtype
=
torch
.
int
,
device
=
'cuda'
)
scale
=
float
(
1.0
/
(
head_size
**
0.5
))
output
=
torch
.
empty
(
num_total_tokens
,
num_heads
,
head_size
,
dtype
=
dtype
,
device
=
'cuda'
)
attention_ops
.
multi_query_cached_kv_attention
(
cu_query_lens
,
output
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
block_size
,
max_context_len
,
)
ref_output
=
ref_multi_query_cached_kv_attention
(
cu_query_lens
,
query
,
key_cache
,
value_cache
,
block_tables
,
context_lens
,
dtype
,
)
assert
torch
.
allclose
(
output
,
ref_output
,
atol
=
1e-3
,
rtol
=
1e-5
)
@
torch
.
inference_mode
()
def
test_attention
(
seed
:
int
)
->
None
:
# NOTE(woosuk): Even when the seed is fixed, there is a chance that
...
...
@@ -364,24 +292,6 @@ def test_attention(seed: int) -> None:
dtype
=
dtype
,
)
# NOTE(siyuan): Same as above. Re-run the test if it fails. Also
# note that the test is also more likely to fail due to the much
# larger amount of tokens in the input may increase the variance.
for
dtype
in
[
torch
.
half
,
torch
.
float
]:
for
block_size
in
[
8
,
16
,
32
]:
for
head_size
in
[
32
,
64
,
80
,
96
,
128
,
160
,
192
,
256
]:
print
(
f
'Testing multi_query_cached_kv_attention with '
f
'dtype=
{
dtype
}
, block_size=
{
block_size
}
, '
f
'head_size=
{
head_size
}
'
)
test_multi_query_cached_kv_attention
(
num_queries
=
11
,
num_heads
=
3
,
head_size
=
head_size
,
block_size
=
block_size
,
num_blocks
=
1024
,
dtype
=
dtype
,
)
# NOTE(woosuk): FlashAttention does not support FP32.
for
dtype
in
[
torch
.
half
]:
# NOTE(woosuk): FlashAttention does not support head_size > 128.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment