Commit 1b14cd54 authored by zhuwenwen's avatar zhuwenwen
Browse files

merge main

parents 726ed56c 1db83e31
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gptj/modeling_gptj.py
# Copyright 2023 The vLLM team.
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GPT-J model compatible with HuggingFace weights."""
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import GPTJConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
LinearMethodBase,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class GPTJAttention(nn.Module):
def __init__(
self,
config: GPTJConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads
self.qkv_proj = QKVParallelLinear(
config.hidden_size,
self.head_size,
self.total_num_heads,
bias=False,
linear_method=linear_method,
)
self.out_proj = RowParallelLinear(
config.hidden_size,
config.hidden_size,
bias=False,
linear_method=linear_method,
)
tp_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tp_world_size == 0
self.num_heads = self.total_num_heads // tp_world_size
scaling = self.head_size**-0.5
assert getattr(config, "rotary", True)
assert config.rotary_dim % 2 == 0
rope_theta = getattr(config, "rope_theta", 10000)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
self.rotary_emb = get_rope(
self.head_size,
rotary_dim=config.rotary_dim,
max_position=max_position_embeddings,
base=rope_theta,
is_neox_style=False,
)
self.attn = PagedAttention(self.num_heads, self.head_size, scaling)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
attn_output, _ = self.out_proj(attn_output)
return attn_output
class GPTJMLP(nn.Module):
def __init__(
self,
intermediate_size: int,
config: GPTJConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
hidden_size = config.n_embd
self.fc_in = ColumnParallelLinear(
hidden_size,
intermediate_size,
linear_method=linear_method,
)
self.fc_out = RowParallelLinear(
intermediate_size,
hidden_size,
linear_method=linear_method,
)
quant_config = getattr(linear_method, "quant_config", None)
self.act = get_act_fn(config.activation_function, quant_config,
intermediate_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.fc_in(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.fc_out(hidden_states)
return hidden_states
class GPTJBlock(nn.Module):
def __init__(
self,
config: GPTJConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
inner_dim = 4 * config.n_embd if config.n_inner is None else config.n_inner
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.attn = GPTJAttention(config, linear_method)
self.mlp = GPTJMLP(inner_dim, config, linear_method)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_output = self.attn(
position_ids=position_ids,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
mlp_output = self.mlp(hidden_states)
hidden_states = attn_output + mlp_output + residual
return hidden_states
class GPTJModel(nn.Module):
def __init__(
self,
config: GPTJConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.embed_dim = config.n_embd
self.wte = VocabParallelEmbedding(
config.vocab_size,
self.embed_dim,
)
self.h = nn.ModuleList(
[GPTJBlock(config, linear_method) for _ in range(config.n_layer)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.wte(input_ids)
for i in range(len(self.h)):
layer = self.h[i]
hidden_states = layer(
position_ids,
hidden_states,
kv_caches[i],
input_metadata,
)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class GPTJForCausalLM(nn.Module):
def __init__(
self,
config: GPTJConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.linear_method = linear_method
assert not config.tie_word_embeddings
self.transformer = GPTJModel(config, linear_method)
self.lm_head = ParallelLMHead(
config.vocab_size,
config.n_embd,
bias=True,
)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata, self.lm_head.bias)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "attn.bias" in name or "attn.masked_bias" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt_neox/modeling_gpt_neox.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GPT-NeoX model compatible with HuggingFace weights."""
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import GPTNeoXConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
LinearMethodBase,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class GPTNeoXAttention(nn.Module):
def __init__(
self,
config: GPTNeoXConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = (self.total_num_heads //
tensor_model_parallel_world_size)
self.query_key_value = QKVParallelLinear(
config.hidden_size,
self.head_size,
self.total_num_heads,
linear_method=linear_method,
)
self.dense = RowParallelLinear(
config.hidden_size,
config.hidden_size,
linear_method=linear_method,
)
scaling = self.head_size**-0.5
rotary_dim = int(self.head_size * config.rotary_pct)
assert rotary_dim % 2 == 0
rope_theta = getattr(config, "rope_theta", 10000)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
self.rotary_emb = get_rope(
self.head_size,
rotary_dim=rotary_dim,
max_position=max_position_embeddings,
base=rope_theta,
)
self.attn = PagedAttention(self.num_heads, self.head_size, scaling)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.query_key_value(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.dense(attn_output)
return output
class GPTNeoXMLP(nn.Module):
def __init__(
self,
config: GPTNeoXConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.dense_h_to_4h = ColumnParallelLinear(
config.hidden_size,
config.intermediate_size,
linear_method=linear_method,
)
self.dense_4h_to_h = RowParallelLinear(
config.intermediate_size,
config.hidden_size,
linear_method=linear_method,
)
quant_config = getattr(linear_method, "quant_config", None)
self.act = get_act_fn(config.hidden_act, quant_config,
config.intermediate_size)
def forward(self, hidden_states):
hidden_states, _ = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.dense_4h_to_h(hidden_states)
return hidden_states
class GPTNeoXLayer(nn.Module):
def __init__(
self,
config: GPTNeoXConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.use_parallel_residual = config.use_parallel_residual
self.input_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.attention = GPTNeoXAttention(config, linear_method)
self.mlp = GPTNeoXMLP(config, linear_method)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
attn_input = self.input_layernorm(hidden_states)
attn_output = self.attention(
position_ids=position_ids,
hidden_states=attn_input,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
if self.use_parallel_residual:
# pseudocode:
# x = x + attn(ln1(x)) + mlp(ln2(x))
mlp_input = self.post_attention_layernorm(hidden_states)
mlp_output = self.mlp(mlp_input)
hidden_states = mlp_output + attn_output + hidden_states
else:
# pseudocode:
# x = x + attn(ln1(x))
# x = x + mlp(ln2(x))
attn_output = attn_output + hidden_states
mlp_input = self.post_attention_layernorm(attn_output)
mlp_output = self.mlp(mlp_input)
hidden_states = mlp_output + attn_output
return hidden_states
class GPTNeoXModel(nn.Module):
def __init__(
self,
config: GPTNeoXConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.embed_in = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
GPTNeoXLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])
self.final_layer_norm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.embed_in(input_ids)
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states = layer(
position_ids,
hidden_states,
kv_caches[i],
input_metadata,
)
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states
class GPTNeoXForCausalLM(nn.Module):
def __init__(
self,
config,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.linear_method = linear_method
self.gpt_neox = GPTNeoXModel(config, linear_method)
self.embed_out = ParallelLMHead(
config.vocab_size,
config.hidden_size,
)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.gpt_neox(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
next_tokens = self.sampler(self.embed_out.weight, hidden_states,
sampling_metadata)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if ("attention.bias" in name or "attention.masked_bias" in name
or "rotary_emb.inv_freq" in name):
continue
param = params_dict[name]
if "query_key_value" in name:
# NOTE: GPT-NeoX's fused QKV's output_dim has the shape of
# (num_heads * 3 * head_size), while the
# required shape is (3 * num_heads * head_size).
# Thus, we need weight conversion.
output_dim = getattr(param, "output_dim", None)
num_heads = self.config.num_attention_heads
if output_dim is not None:
loaded_weight_shape = loaded_weight.shape
loaded_weight = loaded_weight.view(
loaded_weight_shape[:output_dim] + (num_heads, 3, -1) +
loaded_weight_shape[output_dim + 1:])
loaded_weight = loaded_weight.transpose(
output_dim, output_dim + 1)
loaded_weight = loaded_weight.reshape(loaded_weight_shape)
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
# -*- coding: utf-8 -*-
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import nn
from transformers import LlamaConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class InternLMMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2,
bias=False,
linear_method=linear_method)
self.down_proj = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
linear_method=linear_method)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class InternLMAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
bias: bool,
rope_theta: float = 10000,
max_position_embeddings: int = 8192,
linear_method: Optional[LinearMethodBase] = None,
rope_scaling: Optional[Dict[str, Any]] = None,
):
super().__init__()
self.hidden_size = hidden_size
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
self.total_num_heads = num_heads
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = (self.total_num_heads //
tensor_model_parallel_world_size)
self.head_dim = hidden_size // self.total_num_heads
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
bias=bias,
linear_method=linear_method,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=bias,
linear_method=linear_method,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
base=self.rope_theta,
rope_scaling=rope_scaling,
)
self.attn = PagedAttention(self.num_heads, self.head_dim, self.scaling)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(positions, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.o_proj(attn_output)
return output
class InternLMDecoderLayer(nn.Module):
def __init__(
self,
config: LlamaConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
self.self_attn = InternLMAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
bias=config.bias,
rope_theta=rope_theta,
max_position_embeddings=max_position_embeddings,
linear_method=linear_method,
rope_scaling=getattr(config, "rope_scaling", None),
)
self.mlp = InternLMMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
linear_method=linear_method,
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
class InternLMModel(nn.Module):
def __init__(
self,
config: LlamaConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
vocab_size = ((config.vocab_size + 63) // 64) * 64
self.embed_tokens = VocabParallelEmbedding(
vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
InternLMDecoderLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
residual,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class InternLMForCausalLM(nn.Module):
def __init__(
self,
config,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.linear_method = linear_method
self.model = InternLMModel(config, linear_method)
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only LLaMA model compatible with HuggingFace weights."""
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import nn
from transformers import LlamaConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class LlamaMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2,
bias=False,
linear_method=linear_method)
self.down_proj = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
linear_method=linear_method)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class LlamaAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
linear_method=linear_method,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
linear_method=linear_method,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
self.attn = PagedAttention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.o_proj(attn_output)
return output
class LlamaDecoderLayer(nn.Module):
def __init__(
self,
config: LlamaConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
self.self_attn = LlamaAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
linear_method=linear_method,
)
self.mlp = LlamaMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
linear_method=linear_method,
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
class LlamaModel(nn.Module):
def __init__(
self,
config: LlamaConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
LlamaDecoderLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
residual,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class LlamaForCausalLM(nn.Module):
def __init__(
self,
config: LlamaConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.config = config
self.linear_method = linear_method
self.model = LlamaModel(config, linear_method)
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Mistral model compatible with HuggingFace weights."""
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import MistralConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class MistralMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2,
bias=False,
linear_method=linear_method)
self.down_proj = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
linear_method=linear_method)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class MistralAttention(nn.Module):
def __init__(self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position: int = 4096 * 32,
rope_theta: float = 10000,
linear_method: Optional[LinearMethodBase] = None,
sliding_window: Optional[int] = None) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.sliding_window = sliding_window
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
linear_method=linear_method,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
linear_method=linear_method,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position,
base=self.rope_theta,
)
self.attn = PagedAttention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
sliding_window=self.sliding_window)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.o_proj(attn_output)
return output
class MistralDecoderLayer(nn.Module):
def __init__(
self,
config: MistralConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
# Requires transformers > 4.32.0
rope_theta = getattr(config, "rope_theta", 10000)
self.self_attn = MistralAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
max_position=config.max_position_embeddings,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
linear_method=linear_method,
sliding_window=config.sliding_window)
self.mlp = MistralMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
linear_method=linear_method,
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
class MistralModel(nn.Module):
def __init__(
self,
config: MistralConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
MistralDecoderLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
residual,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class MistralForCausalLM(nn.Module):
def __init__(
self,
config: MistralConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.config = config
self.linear_method = linear_method
self.model = MistralModel(config, linear_method)
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Mixtral model."""
from typing import List, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from transformers import MixtralConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
ReplicatedLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.communication_op import (
tensor_model_parallel_all_reduce)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class MixtralMLP(nn.Module):
def __init__(
self,
num_experts: int,
hidden_size: int,
intermediate_size: int,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.num_experts = num_experts
self.ffn_dim = intermediate_size
self.hidden_dim = hidden_size
self.w1 = ReplicatedLinear(self.hidden_dim,
self.ffn_dim,
bias=False,
linear_method=linear_method)
self.w2 = ReplicatedLinear(self.ffn_dim,
self.hidden_dim,
bias=False,
linear_method=linear_method)
self.w3 = ReplicatedLinear(self.hidden_dim,
self.ffn_dim,
bias=False,
linear_method=linear_method)
# TODO: Use vllm's SiluAndMul
self.act_fn = nn.SiLU()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
w1_out, _ = self.w1(hidden_states)
w1_out = self.act_fn(w1_out)
w3_out, _ = self.w3(hidden_states)
current_hidden_states = w1_out * w3_out
current_hidden_states, _ = self.w2(current_hidden_states)
return current_hidden_states
class MixtralMoE(nn.Module):
def __init__(
self,
config: MixtralConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.rank = get_tensor_model_parallel_rank()
self.tp_size = get_tensor_model_parallel_world_size()
self.num_total_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
if self.tp_size > self.num_total_experts:
raise ValueError(
f"Tensor parallel size {self.tp_size} is greater than "
f"the number of experts {self.num_total_experts}.")
# Split experts equally between ranks
self.expert_indicies = np.array_split(range(
self.num_total_experts), self.tp_size)[self.rank].tolist()
if not self.expert_indicies:
raise ValueError(
f"Rank {self.rank} has no experts assigned to it.")
self.experts = nn.ModuleList([
MixtralMLP(self.num_total_experts,
config.hidden_size,
config.intermediate_size,
linear_method=linear_method)
if idx in self.expert_indicies else None
for idx in range(self.num_total_experts)
])
self.gate = ReplicatedLinear(config.hidden_size,
self.num_total_experts,
bias=False,
linear_method=None)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits, _ = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights,
self.top_k,
dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
final_hidden_states = None
for expert_idx in self.expert_indicies:
expert_layer = self.experts[expert_idx]
expert_mask = (selected_experts == expert_idx)
expert_weights = (routing_weights * expert_mask).sum(dim=-1,
keepdim=True)
current_hidden_states = expert_layer(hidden_states).mul_(
expert_weights)
if final_hidden_states is None:
final_hidden_states = current_hidden_states
else:
final_hidden_states.add_(current_hidden_states)
return tensor_model_parallel_all_reduce(final_hidden_states).view(
batch_size, sequence_length, hidden_dim)
class MixtralAttention(nn.Module):
def __init__(self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position: int = 4096 * 32,
rope_theta: float = 10000,
linear_method: Optional[LinearMethodBase] = None,
sliding_window: Optional[int] = None) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.sliding_window = sliding_window
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
linear_method=linear_method,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
linear_method=linear_method,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position,
base=int(self.rope_theta),
is_neox_style=True,
)
self.attn = PagedAttention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
sliding_window=self.sliding_window,
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.o_proj(attn_output)
return output
class MixtralDecoderLayer(nn.Module):
def __init__(
self,
config: MixtralConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
# Requires transformers > 4.32.0
rope_theta = getattr(config, "rope_theta", 10000)
self.self_attn = MixtralAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
max_position=config.max_position_embeddings,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
sliding_window=config.sliding_window,
linear_method=linear_method)
self.block_sparse_moe = MixtralMoE(config=config,
linear_method=linear_method)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
residual: Optional[torch.Tensor],
) -> torch.Tensor:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.block_sparse_moe(hidden_states)
return hidden_states, residual
class MixtralModel(nn.Module):
def __init__(
self,
config: MixtralConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
MixtralDecoderLayer(config, linear_method=linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> SamplerOutput:
hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(positions, hidden_states,
kv_caches[i], input_metadata,
residual)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class MixtralForCausalLM(nn.Module):
def __init__(
self,
config: MixtralConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.config = config
self.linear_method = linear_method
self.model = MixtralModel(config, linear_method)
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
self,
hidden_states: Optional[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path,
cache_dir,
load_format,
revision,
fall_back_to_pt=False):
if "rotary_emb.inv_freq" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Skip experts that are not assigned to this worker.
if ("block_sparse_moe.experts." in name
and name not in params_dict):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
# coding=utf-8
# Adapted from https://huggingface.co/mosaicml/mpt-7b/tree/main
import math
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
LinearMethodBase,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs.mpt import MPTConfig
KVCache = Tuple[torch.Tensor, torch.Tensor]
def _get_alibi_slopes(
total_num_heads: int,
alibi_bias_max: int,
) -> torch.Tensor:
next_power_of_2 = 2**math.ceil(math.log2(total_num_heads))
m = torch.arange(1, next_power_of_2 + 1, dtype=torch.float32)
m = m.mul(alibi_bias_max / next_power_of_2)
slopes = 1.0 / torch.pow(2, m)
if next_power_of_2 != total_num_heads:
slopes = torch.concat([slopes[1::2], slopes[::2]])[:total_num_heads]
return slopes
class MPTAttention(nn.Module):
def __init__(
self,
config: MPTConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.d_model = config.d_model
self.total_num_heads = config.n_heads
self.head_dim = self.d_model // self.total_num_heads
self.clip_qkv = config.attn_config["clip_qkv"]
self.qk_ln = config.attn_config["qk_ln"]
self.alibi_bias_max = config.attn_config["alibi_bias_max"]
if "kv_n_heads" in config.attn_config:
self.total_num_kv_heads = config.attn_config['kv_n_heads']
else:
self.total_num_kv_heads = self.total_num_heads
assert not config.attn_config["prefix_lm"]
assert config.attn_config["alibi"]
# pylint: disable=invalid-name
self.Wqkv = QKVParallelLinear(
self.d_model,
self.d_model // self.total_num_heads,
self.total_num_heads,
self.total_num_kv_heads,
bias=not config.no_bias,
linear_method=linear_method,
)
if self.qk_ln:
self.q_ln = nn.LayerNorm(self.d_model)
self.k_ln = nn.LayerNorm(self.d_model)
self.out_proj = RowParallelLinear(
self.d_model,
self.d_model,
bias=not config.no_bias,
linear_method=linear_method,
)
tp_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tp_world_size == 0
self.num_heads = self.total_num_heads // tp_world_size
if self.total_num_kv_heads >= tp_world_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_world_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_world_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
# Create the alibi slopes and slice them.
tp_rank = get_tensor_model_parallel_rank()
head_start = tp_rank * self.num_heads
head_end = (tp_rank + 1) * self.num_heads
alibi_slopes = _get_alibi_slopes(self.total_num_heads,
self.alibi_bias_max)
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
self.head_dim = self.d_model // self.total_num_heads
scaling = self.head_dim**-0.5
self.attn = PagedAttention(self.num_heads,
self.head_dim,
scaling,
alibi_slopes=alibi_slopes,
num_kv_heads=self.num_kv_heads)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
del position_ids # unused.
qkv, _ = self.Wqkv(hidden_states)
if self.clip_qkv is not None:
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
if self.qk_ln:
q = self.q_ln(q)
k = self.k_ln(k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.out_proj(attn_output)
return output
class MPTMLP(nn.Module):
def __init__(
self,
config: MPTConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
hidden_size = config.d_model
expansion_ratio = config.expansion_ratio
intermediate_size = expansion_ratio * hidden_size
self.up_proj = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=not config.no_bias,
linear_method=linear_method,
)
quant_config = getattr(linear_method, "quant_config", None)
self.act = get_act_fn("gelu", quant_config, intermediate_size)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=not config.no_bias,
linear_method=linear_method,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x, _ = self.up_proj(x)
x = self.act(x)
x, _ = self.down_proj(x)
return x
class MPTBlock(nn.Module):
def __init__(
self,
config: MPTConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
hidden_size = config.d_model
self.norm_1 = nn.LayerNorm(hidden_size)
self.attn = MPTAttention(config, linear_method)
self.norm_2 = nn.LayerNorm(hidden_size)
self.ffn = MPTMLP(config, linear_method)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
x = self.norm_1(hidden_states)
x = self.attn(
position_ids=position_ids,
hidden_states=x,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
hidden_states = hidden_states + x
x = self.norm_2(hidden_states)
x = self.ffn(x)
hidden_states = hidden_states + x
return hidden_states
class MPTModel(nn.Module):
def __init__(
self,
config: MPTConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
assert config.embedding_fraction == 1.0
assert config.norm_type == "low_precision_layernorm"
self.wte = VocabParallelEmbedding(
config.vocab_size,
config.d_model,
)
self.blocks = nn.ModuleList(
[MPTBlock(config, linear_method) for _ in range(config.n_layers)])
self.norm_f = nn.LayerNorm(config.d_model)
if config.no_bias:
for module in self.modules():
if hasattr(module, "bias") and isinstance(
module.bias, nn.Parameter):
# Remove the bias term in Linear and LayerNorm.
module.register_parameter("bias", None)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.wte(input_ids)
for i in range(len(self.blocks)):
block = self.blocks[i]
hidden_states = block(
position_ids,
hidden_states,
kv_caches[i],
input_metadata,
)
hidden_states = self.norm_f(hidden_states)
return hidden_states
class MPTForCausalLM(nn.Module):
def __init__(
self,
config: MPTConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
assert config.tie_word_embeddings
self.linear_method = linear_method
self.transformer = MPTModel(config, linear_method)
self.lm_head_weight = self.transformer.wte.weight
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
sampling_metadata)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/opt/modeling_opt.py
# Copyright 2023 The vLLM team.
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights
# reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only OPT model compatible with HuggingFace weights."""
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import OPTConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
LinearMethodBase,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear)
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class OPTLearnedPositionalEmbedding(nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int):
# OPT is set up so that if padding_idx is specified then offset the
# embedding ids by 2 and adjust num_embeddings appropriately. Other
# models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, positions: torch.Tensor):
return super().forward(positions + self.offset)
class OPTAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
bias: bool = True,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.embed_dim = embed_dim
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
total_num_heads = num_heads
assert num_heads % tensor_model_parallel_world_size == 0
self.num_heads = total_num_heads // tensor_model_parallel_world_size
self.head_dim = embed_dim // total_num_heads
self.scaling = self.head_dim**-0.5
self.qkv_proj = QKVParallelLinear(
embed_dim,
self.head_dim,
total_num_heads,
bias=bias,
linear_method=linear_method,
)
self.out_proj = RowParallelLinear(
embed_dim,
embed_dim,
bias=bias,
linear_method=linear_method,
)
self.attn = PagedAttention(self.num_heads,
self.head_dim,
scale=self.scaling)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
key_cache, value_cache = kv_cache
attn_output = self.attn(q, k, v, key_cache, value_cache,
input_metadata)
output, _ = self.out_proj(attn_output)
return output
class OPTDecoderLayer(nn.Module):
def __init__(
self,
config: OPTConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.self_attn = OPTAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
bias=config.enable_bias,
linear_method=linear_method,
)
self.do_layer_norm_before = config.do_layer_norm_before
self.self_attn_layer_norm = nn.LayerNorm(
self.embed_dim,
elementwise_affine=config.layer_norm_elementwise_affine)
self.fc1 = ColumnParallelLinear(
self.embed_dim,
config.ffn_dim,
bias=config.enable_bias,
linear_method=linear_method,
)
quant_config = getattr(linear_method, "quant_config", None)
self.activation_fn = get_act_fn(config.activation_function,
quant_config, config.ffn_dim)
self.fc2 = RowParallelLinear(
config.ffn_dim,
self.embed_dim,
bias=config.enable_bias,
linear_method=linear_method,
)
self.final_layer_norm = nn.LayerNorm(
self.embed_dim,
elementwise_affine=config.layer_norm_elementwise_affine)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
# Self Attention
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states = self.self_attn(hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states
class OPTDecoder(nn.Module):
def __init__(
self,
config: OPTConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.word_embed_proj_dim,
)
# Positional embeddings are replicated (not sharded).
self.embed_positions = OPTLearnedPositionalEmbedding(
config.max_position_embeddings, config.hidden_size)
# Project out & in will be replicated if they exist.
if config.word_embed_proj_dim != config.hidden_size:
self.project_out = ReplicatedLinear(config.hidden_size,
config.word_embed_proj_dim,
bias=False,
linear_method=linear_method)
else:
self.project_out = None
if config.word_embed_proj_dim != config.hidden_size:
self.project_in = ReplicatedLinear(config.word_embed_proj_dim,
config.hidden_size,
bias=False,
linear_method=linear_method)
else:
self.project_in = None
# Note that the only purpose of `config._remove_final_layer_norm` is to
# keep backward compatibility with checkpoints that have been fine-tuned
# before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if config.do_layer_norm_before and not config._remove_final_layer_norm:
self.final_layer_norm = nn.LayerNorm(
config.hidden_size,
elementwise_affine=config.layer_norm_elementwise_affine)
else:
self.final_layer_norm = None
self.layers = nn.ModuleList([
OPTDecoderLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
inputs_embeds = self.embed_tokens(input_ids)
pos_embeds = self.embed_positions(positions)
if self.project_in is not None:
inputs_embeds, _ = self.project_in(inputs_embeds)
hidden_states = inputs_embeds + pos_embeds
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states = layer(hidden_states, kv_caches[i], input_metadata)
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
if self.project_out is not None:
hidden_states, _ = self.project_out(hidden_states)
return hidden_states
class OPTModel(nn.Module):
def __init__(
self,
config: OPTConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.decoder = OPTDecoder(config, linear_method)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
return self.decoder(input_ids, positions, kv_caches, input_metadata)
class OPTForCausalLM(nn.Module):
def __init__(
self,
config,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.linear_method = linear_method
self.model = OPTModel(config, linear_method)
self.lm_head_weight = self.model.decoder.embed_tokens.weight
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
sampling_metadata)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "lm_head.weight" in name:
continue
if name.startswith("decoder."):
name = "model." + name
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
# coding=utf-8
# Adapted from
# https://huggingface.co/microsoft/phi-1_5/blob/main/modeling_phi.py
# Copyright 2023 The vLLM team.
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
#
# BSD 3-Clause License
#
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Inference-only Phi-1.5 model compatible with HuggingFace weights."""
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
LinearMethodBase,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class PhiEmbedding(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.wte = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
def forward(self, input_ids: torch.LongTensor):
return self.wte(input_ids)
class PhiAttention(nn.Module):
def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = (self.total_num_heads //
tensor_model_parallel_world_size)
# pylint: disable=C0103
self.Wqkv = QKVParallelLinear(
self.hidden_size,
self.head_size,
self.total_num_heads,
linear_method=linear_method,
)
self.qkv_proj = QKVParallelLinear(
config.hidden_size,
self.head_size,
self.total_num_heads,
bias=False,
linear_method=linear_method,
)
self.out_proj = RowParallelLinear(
self.hidden_size,
self.hidden_size,
linear_method=linear_method,
)
scaling = self.head_size**-0.5
rotary_dim = config.rotary_dim
assert rotary_dim % 2 == 0
# pylint: disable=C0301
# Refer to:
# https://huggingface.co/microsoft/phi-1_5/blob/d212a789620c380ff32ca1d1ee9943a777360987/modeling_phi.py#L518
rope_theta = 10000
max_position_embeddings = getattr(config, "n_positions", 2048)
self.rotary_emb = get_rope(
self.head_size,
rotary_dim=rotary_dim,
max_position=max_position_embeddings,
base=rope_theta,
)
self.attn = PagedAttention(self.num_heads, self.head_size, scaling)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.Wqkv(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.out_proj(attn_output)
return output
class PhiMLP(nn.Module):
def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
n_inner = getattr(config, "n_inner", None)
n_inner = n_inner if n_inner is not None else 4 * config.hidden_size
self.fc1 = ColumnParallelLinear(
config.hidden_size,
n_inner,
linear_method=linear_method,
)
self.fc2 = RowParallelLinear(
n_inner,
config.hidden_size,
linear_method=linear_method,
)
quant_config = getattr(linear_method, "quant_config", None)
self.act = get_act_fn(config.activation_function, quant_config,
n_inner)
def forward(self, hidden_states):
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
return hidden_states
class PhiLayer(nn.Module):
def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.ln = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
self.mixer = PhiAttention(config, linear_method)
self.mlp = PhiMLP(config, linear_method)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln(hidden_states)
attn_outputs = self.mixer(
position_ids=position_ids,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = attn_outputs + feed_forward_hidden_states + residual
return hidden_states
class PhiModel(nn.Module):
def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.config = config
self.linear_method = linear_method
self.embd = PhiEmbedding(config)
self.h = nn.ModuleList([
PhiLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.embd(input_ids)
for i in range(self.config.num_hidden_layers):
layer = self.h[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
)
return hidden_states
class PhiCausalLMHead(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.ln = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
self.linear = ParallelLMHead(config.vocab_size,
config.hidden_size,
bias=True)
class PhiForCausalLM(nn.Module):
def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.config = config
self.linear_method = linear_method
self.transformer = PhiModel(config, linear_method)
self.lm_head = PhiCausalLMHead(config)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata)
hidden_states = self.lm_head.ln(hidden_states)
return hidden_states
def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
head = self.lm_head.linear
next_tokens = self.sampler(head.weight, hidden_states,
sampling_metadata, head.bias)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# pylint: disable=E1136
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
# coding=utf-8
# Adapted from
# https://huggingface.co/Qwen/Qwen-7B/blob/main/modeling_qwen.py
# Copyright (c) Alibaba Cloud.
# LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE
"""Inference-only QWen model compatible with HuggingFace weights."""
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import nn
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs.qwen import QWenConfig
KVCache = Tuple[torch.Tensor, torch.Tensor]
class QWenMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str = "silu",
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2,
bias=False,
linear_method=linear_method)
self.c_proj = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
linear_method=linear_method)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.c_proj(x)
return x
class QWenAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
max_position_embeddings: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.hidden_size = hidden_size
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size(
)
self.total_num_heads = num_heads
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = (self.total_num_heads //
tensor_model_parallel_world_size)
self.head_dim = hidden_size // self.total_num_heads
self.c_attn = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
bias=True,
linear_method=linear_method,
)
self.c_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
linear_method=linear_method,
)
self.scaling = self.head_dim**-0.5
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
self.attn = PagedAttention(self.num_heads, self.head_dim, self.scaling)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.c_attn(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(positions, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.c_proj(attn_output)
return output
class QWenBlock(nn.Module):
def __init__(
self,
config: QWenConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
self.attn = QWenAttention(config.hidden_size,
config.num_attention_heads,
config.max_position_embeddings,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
linear_method=linear_method)
self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.mlp = QWenMLP(config.hidden_size,
config.intermediate_size // 2,
linear_method=linear_method)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
else:
hidden_states, residual = self.ln_1(hidden_states, residual)
hidden_states = self.attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
# Fully Connected
hidden_states, residual = self.ln_2(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
class QWenModel(nn.Module):
def __init__(
self,
config: QWenConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.wte = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.h = nn.ModuleList([
QWenBlock(config, linear_method)
for _ in range(config.num_hidden_layers)
])
self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.wte(input_ids)
residual = None
for i in range(len(self.h)):
layer = self.h[i]
hidden_states, residual = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
residual,
)
hidden_states, _ = self.ln_f(hidden_states, residual)
return hidden_states
class QWenLMHeadModel(nn.Module):
def __init__(
self,
config: QWenConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.linear_method = linear_method
self.transformer = QWenModel(config, linear_method)
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("gate_up_proj", "w2", 0),
("gate_up_proj", "w1", 1),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Yi model (https://01.ai) compatible with HuggingFace weights."""
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import nn
from vllm.transformers_utils.configs.yi import YiConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class YiMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2,
bias=False,
linear_method=linear_method)
self.down_proj = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
linear_method=linear_method)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class YiAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
linear_method=linear_method,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
linear_method=linear_method,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=self.rope_theta,
rope_scaling=rope_scaling,
)
self.attn = PagedAttention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.o_proj(attn_output)
return output
class YiDecoderLayer(nn.Module):
def __init__(
self,
config: YiConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
self.self_attn = YiAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
linear_method=linear_method,
)
self.mlp = YiMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
linear_method=linear_method,
)
self.ln1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.ln2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.ln1(hidden_states)
else:
hidden_states, residual = self.ln1(hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
# Fully Connected
hidden_states, residual = self.ln2(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
class YiModel(nn.Module):
def __init__(
self,
config: YiConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
YiDecoderLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
residual,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class YiForCausalLM(nn.Module):
def __init__(
self,
config: YiConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.config = config
self.linear_method = linear_method
self.model = YiModel(config, linear_method)
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
The files in this folder are ported from [Megatron-LM](https://github.com/NVIDIA/Megatron-LM/tree/main/megatron/core). We only keep the codes that are used in inference.
\ No newline at end of file
import torch
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size,
get_tensor_model_parallel_group,
)
def tensor_model_parallel_all_reduce(input_):
"""All-reduce the input tensor across model parallel group.
NOTE: This operation is applied in-place on the input tensor.
"""
# Bypass the function if we are using only 1 GPU.
if get_tensor_model_parallel_world_size() == 1:
return input_
# All-reduce.
torch.distributed.all_reduce(input_,
group=get_tensor_model_parallel_group())
return input_
def tensor_model_parallel_all_gather(input_, dim=-1):
"""All-gather the input tensor across model parallel group."""
world_size = get_tensor_model_parallel_world_size()
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
assert -input_.dim() <= dim < input_.dim(), (
f"Invalid dim ({dim}) for input tensor with shape {input_.size()}")
if dim < 0:
# Convert negative dim to positive.
dim += input_.dim()
input_size = input_.size()
# Allocate output tensor.
output_tensor = torch.empty((world_size, ) + input_size,
dtype=input_.dtype,
device=input_.device)
# All-gather.
torch.distributed.all_gather_into_tensor(
output_tensor, input_, group=get_tensor_model_parallel_group())
# Reshape
output_tensor = output_tensor.movedim(0, dim)
output_tensor = output_tensor.reshape(input_size[:dim] +
(world_size * input_size[dim], ) +
input_size[dim + 1:])
return output_tensor
# Copyright 2023 The vLLM team.
# Adapted from
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/parallel_state.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Tensor and pipeline parallel groups."""
import torch
# Tensor model parallel group that the current rank belongs to.
_TENSOR_MODEL_PARALLEL_GROUP = None
# Pipeline model parallel group that the current rank belongs to.
_PIPELINE_MODEL_PARALLEL_GROUP = None
# A list of global ranks for each pipeline group to ease calculation of the
# source rank when broadcasting from the first or last pipeline stage.
_PIPELINE_GLOBAL_RANKS = None
def initialize_model_parallel(
tensor_model_parallel_size: int = 1,
pipeline_model_parallel_size: int = 1,
) -> None:
"""
Initialize model parallel groups.
Arguments:
tensor_model_parallel_size: number of GPUs used for tensor model
parallelism.
pipeline_model_parallel_size: number of GPUs used for pipeline model
parallelism.
Let's say we have a total of 8 GPUs denoted by g0 ... g7 and we
use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
the model pipeline. The present function will
create 4 tensor model-parallel groups and 2 pipeline model-parallel groups:
4 tensor model-parallel groups:
[g0, g1], [g2, g3], [g4, g5], [g6, g7]
2 pipeline model-parallel groups:
[g0, g2, g4, g6], [g1, g3, g5, g7]
Note that for efficiency, the caller should make sure adjacent ranks
are on the same DGX box. For example if we are using 2 DGX-1 boxes
with a total of 16 GPUs, rank 0 to 7 belong to the first box and
ranks 8 to 15 belong to the second box.
"""
# Get world size and rank. Ensure some consistencies.
assert torch.distributed.is_initialized()
world_size: int = torch.distributed.get_world_size()
if (world_size !=
tensor_model_parallel_size * pipeline_model_parallel_size):
raise RuntimeError(
f"world_size ({world_size}) is not equal to "
f"tensor_model_parallel_size ({tensor_model_parallel_size}) x "
f"pipeline_model_parallel_size ({pipeline_model_parallel_size})")
num_tensor_model_parallel_groups: int = (world_size //
tensor_model_parallel_size)
num_pipeline_model_parallel_groups: int = (world_size //
pipeline_model_parallel_size)
rank = torch.distributed.get_rank()
# Build the tensor model-parallel groups.
global _TENSOR_MODEL_PARALLEL_GROUP
assert _TENSOR_MODEL_PARALLEL_GROUP is None, (
"tensor model parallel group is already initialized")
for i in range(num_tensor_model_parallel_groups):
ranks = range(i * tensor_model_parallel_size,
(i + 1) * tensor_model_parallel_size)
group = torch.distributed.new_group(ranks)
if rank in ranks:
_TENSOR_MODEL_PARALLEL_GROUP = group
# Build the pipeline model-parallel groups.
global _PIPELINE_MODEL_PARALLEL_GROUP
global _PIPELINE_GLOBAL_RANKS
assert _PIPELINE_MODEL_PARALLEL_GROUP is None, (
"pipeline model parallel group is already initialized")
for i in range(num_pipeline_model_parallel_groups):
ranks = range(i, world_size, num_pipeline_model_parallel_groups)
group = torch.distributed.new_group(ranks)
if rank in ranks:
_PIPELINE_MODEL_PARALLEL_GROUP = group
_PIPELINE_GLOBAL_RANKS = ranks
def model_parallel_is_initialized():
"""Check if tensor and pipeline parallel groups are initialized."""
return (_TENSOR_MODEL_PARALLEL_GROUP is not None
and _PIPELINE_MODEL_PARALLEL_GROUP is not None)
def get_tensor_model_parallel_group():
"""Get the tensor model parallel group the caller rank belongs to."""
assert _TENSOR_MODEL_PARALLEL_GROUP is not None, (
"tenosr model parallel group is not initialized")
return _TENSOR_MODEL_PARALLEL_GROUP
def get_pipeline_model_parallel_group():
"""Get the pipeline model parallel group the caller rank belongs to."""
assert _PIPELINE_MODEL_PARALLEL_GROUP is not None, (
"pipeline model parallel group is not initialized")
return _PIPELINE_MODEL_PARALLEL_GROUP
def get_tensor_model_parallel_world_size():
"""Return world size for the tensor model parallel group."""
return torch.distributed.get_world_size(
group=get_tensor_model_parallel_group())
def get_pipeline_model_parallel_world_size():
"""Return world size for the pipeline model parallel group."""
return torch.distributed.get_world_size(
group=get_pipeline_model_parallel_group())
def get_tensor_model_parallel_rank():
"""Return my rank for the tensor model parallel group."""
return torch.distributed.get_rank(group=get_tensor_model_parallel_group())
def get_pipeline_model_parallel_rank():
"""Return my rank for the pipeline model parallel group."""
return torch.distributed.get_rank(
group=get_pipeline_model_parallel_group())
def get_tensor_model_parallel_src_rank():
"""Calculate the global rank corresponding to the first local rank
in the tensor model parallel group."""
global_rank = torch.distributed.get_rank()
local_world_size = get_tensor_model_parallel_world_size()
return (global_rank // local_world_size) * local_world_size
def get_pipeline_model_parallel_first_rank():
"""Return the global rank of the first process in the pipeline for the
current tensor parallel group"""
assert _PIPELINE_GLOBAL_RANKS is not None, (
"Pipeline parallel group is not initialized")
return _PIPELINE_GLOBAL_RANKS[0]
def get_pipeline_model_parallel_last_rank():
"""Return the global rank of the last process in the pipeline for the
current tensor parallel group"""
assert _PIPELINE_GLOBAL_RANKS is not None, (
"Pipeline parallel group is not initialized")
last_rank_local = get_pipeline_model_parallel_world_size() - 1
return _PIPELINE_GLOBAL_RANKS[last_rank_local]
def get_pipeline_model_parallel_next_rank():
"""Return the global rank that follows the caller in the pipeline"""
assert _PIPELINE_GLOBAL_RANKS is not None, (
"Pipeline parallel group is not initialized")
rank_in_pipeline = get_pipeline_model_parallel_rank()
world_size = get_pipeline_model_parallel_world_size()
return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline + 1) % world_size]
def get_pipeline_model_parallel_prev_rank():
"""Return the global rank that preceeds the caller in the pipeline"""
assert _PIPELINE_GLOBAL_RANKS is not None, (
"Pipeline parallel group is not initialized")
rank_in_pipeline = get_pipeline_model_parallel_rank()
world_size = get_pipeline_model_parallel_world_size()
return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline - 1) % world_size]
def destroy_model_parallel():
"""Set the groups to none."""
global _TENSOR_MODEL_PARALLEL_GROUP
_TENSOR_MODEL_PARALLEL_GROUP = None
global _PIPELINE_MODEL_PARALLEL_GROUP
_PIPELINE_MODEL_PARALLEL_GROUP = None
global _PIPELINE_GLOBAL_RANKS
_PIPELINE_GLOBAL_RANKS = None
# Copyright 2023 The vLLM team.
# Adapted from
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/tensor_parallel/utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
from typing import Sequence
import torch
def ensure_divisibility(numerator, denominator):
"""Ensure that numerator is divisible by the denominator."""
assert numerator % denominator == 0, "{} is not divisible by {}".format(
numerator, denominator)
def divide(numerator, denominator):
"""Ensure that numerator is divisible by the denominator and return
the division value."""
ensure_divisibility(numerator, denominator)
return numerator // denominator
def split_tensor_along_last_dim(
tensor: torch.Tensor,
num_partitions: int,
contiguous_split_chunks: bool = False,
) -> Sequence[torch.Tensor]:
""" Split a tensor along its last dimension.
Arguments:
tensor: input tensor.
num_partitions: number of partitions to split the tensor
contiguous_split_chunks: If True, make each chunk contiguous
in memory.
Returns:
A list of Tensors
"""
# Get the size and dimension.
last_dim = tensor.dim() - 1
last_dim_size = divide(tensor.size()[last_dim], num_partitions)
# Split.
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
# NOTE: torch.split does not create contiguous tensors by default.
if contiguous_split_chunks:
return tuple(chunk.contiguous() for chunk in tensor_list)
return tensor_list
from dataclasses import dataclass
from typing import Dict, List, Tuple
import torch
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import SequenceData
from vllm.utils import in_wsl
_SAMPLING_EPS = 1e-5
class SamplingMetadata:
"""Metadata for input sequences. Used in sampler.
Args:
seq_groups: List of (seq_ids, sampling_params).
seq_data: Seq_id -> SequenceData.
prompt_lens: Lengths of prompts.
selected_token_indices: Token indices selected for sampling.
categorized_sample_indices: SamplingType -> token indicies to sample.
"""
def __init__(
self,
seq_groups: List[Tuple[List[int], SamplingParams]],
seq_data: Dict[int, SequenceData],
prompt_lens: List[int],
selected_token_indices: torch.Tensor,
categorized_sample_indices: Dict[SamplingType, torch.Tensor],
) -> None:
self.seq_groups = seq_groups
self.seq_data = seq_data
self.prompt_lens = prompt_lens
self.selected_token_indices = selected_token_indices
self.categorized_sample_indices = categorized_sample_indices
self.num_prompts = len(prompt_lens)
def __repr__(self) -> str:
return (
"SamplingMetadata("
f"seq_groups={self.seq_groups}, "
f"seq_data={self.seq_data}, "
f"prompt_lens={self.prompt_lens}, "
f"selected_token_indices={self.selected_token_indices}, "
f"categorized_sample_indices={self.categorized_sample_indices})")
@dataclass
class SamplingTensors:
"""Tensors for sampling."""
temperatures: torch.Tensor
top_ps: torch.Tensor
top_ks: torch.Tensor
min_ps: torch.Tensor
presence_penalties: torch.Tensor
frequency_penalties: torch.Tensor
repetition_penalties: torch.Tensor
prompt_tokens: torch.Tensor
output_tokens: torch.Tensor
@classmethod
def from_sampling_metadata(
cls, sampling_metadata: "SamplingMetadata", vocab_size: int,
device: torch.device,
dtype: torch.dtype) -> Tuple["SamplingTensors", bool, bool, bool]:
prompt_tokens: List[List[int]] = []
output_tokens: List[List[int]] = []
top_ks: List[int] = []
temperatures: List[float] = []
top_ps: List[float] = []
min_ps: List[float] = []
presence_penalties: List[float] = []
frequency_penalties: List[float] = []
repetition_penalties: List[float] = []
do_penalties = False
do_top_p_top_k = False
do_min_p = False
for i, seq_group in enumerate(sampling_metadata.seq_groups):
seq_ids, sampling_params = seq_group
temperature = sampling_params.temperature
p = sampling_params.presence_penalty
f = sampling_params.frequency_penalty
r = sampling_params.repetition_penalty
top_p = sampling_params.top_p
min_p = sampling_params.min_p
# k should not be greater than the vocab size.
top_k = min(sampling_params.top_k, vocab_size)
top_k = vocab_size if top_k == -1 else top_k
if temperature < _SAMPLING_EPS:
# NOTE: Zero temperature means deterministic sampling
# (i.e., greedy sampling or beam search).
# Set the temperature to 1 to avoid division by zero.
temperature = 1.0
if not do_top_p_top_k and (top_p < 1.0 - _SAMPLING_EPS
or top_k != vocab_size):
do_top_p_top_k = True
if not do_min_p and min_p > _SAMPLING_EPS:
do_min_p = True
if not do_penalties and (abs(p) >= _SAMPLING_EPS
or abs(f) >= _SAMPLING_EPS
or abs(r - 1.0) >= _SAMPLING_EPS):
do_penalties = True
if (i < sampling_metadata.num_prompts
and sampling_params.prompt_logprobs is not None):
# For tokens in the prompt that we only need to get their logprobs
prompt_len = sampling_metadata.prompt_lens[i]
temperatures += [temperature] * (prompt_len - 1)
top_ps += [top_p] * (prompt_len - 1)
top_ks += [top_k] * (prompt_len - 1)
min_ps += [min_p] * (prompt_len - 1)
presence_penalties += [0] * (prompt_len - 1)
frequency_penalties += [0] * (prompt_len - 1)
repetition_penalties += [1] * (prompt_len - 1)
prompt_tokens.extend([] for _ in range(prompt_len - 1))
output_tokens.extend([] for _ in range(prompt_len - 1))
for seq_id in seq_ids:
seq_data = sampling_metadata.seq_data[seq_id]
prompt_tokens.append(seq_data.prompt_token_ids)
output_tokens.append(seq_data.output_token_ids)
temperatures += [temperature] * len(seq_ids)
top_ps += [top_p] * len(seq_ids)
top_ks += [top_k] * len(seq_ids)
min_ps += [min_p] * len(seq_ids)
presence_penalties += [p] * len(seq_ids)
frequency_penalties += [f] * len(seq_ids)
repetition_penalties += [r] * len(seq_ids)
sampling_tensors = SamplingTensors.from_lists(
temperatures, top_ps, top_ks, min_ps, presence_penalties,
frequency_penalties, repetition_penalties, prompt_tokens,
output_tokens, vocab_size, device, dtype)
return (sampling_tensors, do_penalties, do_top_p_top_k, do_min_p)
@classmethod
def from_lists(cls, temperatures: List[float], top_ps: List[float],
top_ks: List[int], min_ps: List[float],
presence_penalties: List[float],
frequency_penalties: List[float],
repetition_penalties: List[float],
prompt_tokens: List[List[int]],
output_tokens: List[List[int]], vocab_size: int,
device: torch.device,
dtype: torch.dtype) -> "SamplingTensors":
# Note that the performance will be very bad without
# pinned memory.
pin_memory = not in_wsl()
prompt_max_len = max(len(tokens) for tokens in prompt_tokens)
prompt_padded_tokens = [
tokens + [vocab_size] * (prompt_max_len - len(tokens))
for tokens in prompt_tokens
]
output_max_len = max(len(tokens) for tokens in output_tokens)
output_padded_tokens = [
tokens + [vocab_size] * (output_max_len - len(tokens))
for tokens in output_tokens
]
temperatures_t = torch.tensor(
temperatures,
device="cpu",
dtype=dtype,
pin_memory=pin_memory,
)
top_ps_t = torch.tensor(
top_ps,
device="cpu",
dtype=dtype,
pin_memory=pin_memory,
)
min_ps_t = torch.tensor(
min_ps,
device="cpu",
dtype=dtype,
pin_memory=pin_memory,
)
presence_penalties_t = torch.tensor(
presence_penalties,
device="cpu",
dtype=dtype,
pin_memory=pin_memory,
)
frequency_penalties_t = torch.tensor(
frequency_penalties,
device="cpu",
dtype=dtype,
pin_memory=pin_memory,
)
repetition_penalties_t = torch.tensor(
repetition_penalties,
device="cpu",
dtype=dtype,
pin_memory=pin_memory,
)
top_ks_t = torch.tensor(
top_ks,
device="cpu",
dtype=torch.int,
pin_memory=pin_memory,
)
prompt_tensor = torch.tensor(
prompt_padded_tokens,
device="cpu",
dtype=torch.long,
pin_memory=pin_memory,
)
output_tensor = torch.tensor(
output_padded_tokens,
device="cpu",
dtype=torch.long,
pin_memory=pin_memory,
)
# Because the memory is pinned, we can do non-blocking
# transfer to device.
return cls(
temperatures=temperatures_t.to(device=device, non_blocking=True),
top_ps=top_ps_t.to(device=device, non_blocking=True),
top_ks=top_ks_t.to(device=device, non_blocking=True),
min_ps=min_ps_t.to(device=device, non_blocking=True),
presence_penalties=presence_penalties_t.to(device=device,
non_blocking=True),
frequency_penalties=frequency_penalties_t.to(device=device,
non_blocking=True),
repetition_penalties=repetition_penalties_t.to(device=device,
non_blocking=True),
prompt_tokens=prompt_tensor.to(device=device, non_blocking=True),
output_tokens=output_tensor.to(device=device, non_blocking=True),
)
"""Utils for model executor."""
import random
from typing import Any, Dict, Optional
import numpy as np
import torch
def set_random_seed(seed: int) -> None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def set_weight_attrs(
weight: torch.Tensor,
weight_attrs: Optional[Dict[str, Any]],
):
"""Set attributes on a weight tensor.
This method is used to set attributes on a weight tensor. This method
will not overwrite existing attributes.
Args:
weight: The weight tensor.
weight_attrs: A dictionary of attributes to set on the weight tensor.
"""
if weight_attrs is None:
return
for key, value in weight_attrs.items():
assert not hasattr(
weight, key), (f"Overwriting existing tensor attribute: {key}")
setattr(weight, key, value)
"""Utilities for downloading and initializing model weights."""
import filelock
import glob
import json
import os
from collections import defaultdict
from typing import Any, Iterator, List, Optional, Tuple
from huggingface_hub import snapshot_download
import numpy as np
from safetensors.torch import load_file, save_file, safe_open
import torch
from transformers import PretrainedConfig
from tqdm.auto import tqdm
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization import (get_quantization_config,
QuantizationConfig)
logger = init_logger(__name__)
class Disabledtqdm(tqdm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs, disable=True)
def get_lock(model_name_or_path: str, cache_dir: Optional[str] = None):
lock_dir = cache_dir if cache_dir is not None else "/tmp"
lock_file_name = model_name_or_path.replace("/", "-") + ".lock"
lock = filelock.FileLock(os.path.join(lock_dir, lock_file_name))
return lock
def _shared_pointers(tensors):
ptrs = defaultdict(list)
for k, v in tensors.items():
ptrs[v.data_ptr()].append(k)
failing = []
for _, names in ptrs.items():
if len(names) > 1:
failing.append(names)
return failing
def convert_bin_to_safetensor_file(
pt_filename: str,
sf_filename: str,
) -> None:
loaded = torch.load(pt_filename, map_location="cpu")
if "state_dict" in loaded:
loaded = loaded["state_dict"]
shared = _shared_pointers(loaded)
for shared_weights in shared:
for name in shared_weights[1:]:
loaded.pop(name)
# For tensors to be contiguous
loaded = {k: v.contiguous() for k, v in loaded.items()}
dirname = os.path.dirname(sf_filename)
os.makedirs(dirname, exist_ok=True)
save_file(loaded, sf_filename, metadata={"format": "pt"})
# check file size
sf_size = os.stat(sf_filename).st_size
pt_size = os.stat(pt_filename).st_size
if (sf_size - pt_size) / pt_size > 0.01:
raise RuntimeError(f"""The file size different is more than 1%:
- {sf_filename}: {sf_size}
- {pt_filename}: {pt_size}
""")
# check if the tensors are the same
reloaded = load_file(sf_filename)
for k in loaded:
pt_tensor = loaded[k]
sf_tensor = reloaded[k]
if not torch.equal(pt_tensor, sf_tensor):
raise RuntimeError(f"The output tensors do not match for key {k}")
# TODO(woosuk): Move this to other place.
def get_quant_config(
quantization: str,
model_name_or_path: str,
hf_config: PretrainedConfig,
cache_dir: Optional[str] = None,
) -> QuantizationConfig:
quant_cls = get_quantization_config(quantization)
# Read the quantization config from the HF model config, if available.
hf_quant_config = getattr(hf_config, "quantization_config", None)
if hf_quant_config is not None:
return quant_cls.from_config(hf_quant_config)
is_local = os.path.isdir(model_name_or_path)
if not is_local:
# Download the config files.
with get_lock(model_name_or_path, cache_dir):
hf_folder = snapshot_download(model_name_or_path,
allow_patterns="*.json",
cache_dir=cache_dir,
tqdm_class=Disabledtqdm)
else:
hf_folder = model_name_or_path
config_files = glob.glob(os.path.join(hf_folder, "*.json"))
quant_config_files = [
f for f in config_files if any(
f.endswith(x) for x in quant_cls.get_config_filenames())
]
if len(quant_config_files) == 0:
raise ValueError(f"Cannot find the config file for {quantization}")
if len(quant_config_files) > 1:
raise ValueError(f"Found multiple config files for {quantization}: "
f"{quant_config_files}")
quant_config_file = quant_config_files[0]
with open(quant_config_file, "r") as f:
config = json.load(f)
return quant_cls.from_config(config)
def prepare_hf_model_weights(
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
fall_back_to_pt: bool = True,
revision: Optional[str] = None,
) -> Tuple[str, List[str], bool]:
# Download model weights from huggingface.
is_local = os.path.isdir(model_name_or_path)
use_safetensors = False
# Some quantized models use .pt files for storing the weights.
if load_format == "auto":
allow_patterns = ["*.safetensors", "*.bin"]
elif load_format == "safetensors":
use_safetensors = True
allow_patterns = ["*.safetensors"]
elif load_format == "pt":
allow_patterns = ["*.pt"]
elif load_format == "npcache":
allow_patterns = ["*.bin"]
else:
raise ValueError(f"Unknown load_format: {load_format}")
if fall_back_to_pt:
allow_patterns += ["*.pt"]
if not is_local:
# Use file lock to prevent multiple processes from
# downloading the same model weights at the same time.
with get_lock(model_name_or_path, cache_dir):
hf_folder = snapshot_download(model_name_or_path,
allow_patterns=allow_patterns,
cache_dir=cache_dir,
tqdm_class=Disabledtqdm,
revision=revision)
else:
hf_folder = model_name_or_path
hf_weights_files: List[str] = []
for pattern in allow_patterns:
hf_weights_files += glob.glob(os.path.join(hf_folder, pattern))
if len(hf_weights_files) > 0:
if pattern == "*.safetensors":
use_safetensors = True
break
if not use_safetensors:
# Exclude files that are not needed for inference.
# https://github.com/huggingface/transformers/blob/v4.34.0/src/transformers/trainer.py#L227-L233
blacklist = [
"training_args.bin",
"optimizer.bin",
"optimizer.pt",
"scheduler.pt",
"scaler.pt",
]
hf_weights_files = [
f for f in hf_weights_files
if not any(f.endswith(x) for x in blacklist)
]
if len(hf_weights_files) == 0:
raise RuntimeError(
f"Cannot find any model weights with `{model_name_or_path}`")
return hf_folder, hf_weights_files, use_safetensors
def hf_model_weights_iterator(
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None,
fall_back_to_pt: Optional[bool] = True,
) -> Iterator[Tuple[str, torch.Tensor]]:
hf_folder, hf_weights_files, use_safetensors = prepare_hf_model_weights(
model_name_or_path,
cache_dir=cache_dir,
load_format=load_format,
fall_back_to_pt=fall_back_to_pt,
revision=revision)
if load_format == "npcache":
# Currently np_cache only support *.bin checkpoints
assert use_safetensors is False
# Convert the model weights from torch tensors to numpy arrays for
# faster loading.
np_folder = os.path.join(hf_folder, "np")
os.makedirs(np_folder, exist_ok=True)
weight_names_file = os.path.join(np_folder, "weight_names.json")
# Use file lock to prevent multiple processes from
# dumping the same model weights to numpy at the same time.
with get_lock(model_name_or_path, cache_dir):
if not os.path.exists(weight_names_file):
weight_names = []
for bin_file in hf_weights_files:
state = torch.load(bin_file, map_location="cpu")
for name, param in state.items():
param_path = os.path.join(np_folder, name)
with open(param_path, "wb") as f:
np.save(f, param.cpu().detach().numpy())
weight_names.append(name)
with open(weight_names_file, "w") as f:
json.dump(weight_names, f)
with open(weight_names_file, "r") as f:
weight_names = json.load(f)
for name in weight_names:
param_path = os.path.join(np_folder, name)
with open(param_path, "rb") as f:
param = np.load(f)
yield name, torch.from_numpy(param)
elif use_safetensors:
for st_file in hf_weights_files:
with safe_open(st_file, framework="pt") as f:
for name in f.keys(): # noqa: SIM118
param = f.get_tensor(name)
yield name, param
else:
for bin_file in hf_weights_files:
state = torch.load(bin_file, map_location="cpu")
for name, param in state.items():
yield name, param
del state
torch.cuda.empty_cache()
def convert_pyslice_to_tensor(x: Any) -> torch.Tensor:
"""convert PySafeSlice object from safetensors to torch.Tensor
PySafeSlice object supports indexing, which is done before loading the
actual tensor and can reduce the amount of memory being read into the
memory. However, it does not support more advanced functionalities
like `.view()` or `.t()`. Therefore, if we need to modify the loaded
tensor with these more complicated operators, we need to convert to
tensor first.
"""
if not isinstance(x, torch.Tensor):
x = x[:]
return x
def default_weight_loader(param: torch.Tensor,
loaded_weight: torch.Tensor) -> None:
"""Default weight loader."""
assert param.size() == loaded_weight.size()
param.data.copy_(loaded_weight)
def initialize_dummy_weights(
model: torch.nn.Module,
low: float = -1e-3,
high: float = 1e-3,
) -> None:
"""Initialize model weights with random values.
The model weights must be randomly initialized for accurate performance
measurements. Additionally, the model weights should not cause NaNs in the
forward pass. We empirically found that initializing the weights with
values between -1e-3 and 1e-3 works well for most models.
"""
for param in model.state_dict().values():
if torch.is_floating_point(param):
param.data.uniform_(low, high)
from typing import List, Optional
from vllm.sequence import (PromptLogprobs, SampleLogprobs, SequenceGroup,
SequenceStatus)
class CompletionOutput:
"""The output data of one completion output of a request.
Args:
index: The index of the output in the request.
text: The generated output text.
token_ids: The token IDs of the generated output text.
cumulative_logprob: The cumulative log probability of the generated
output text.
logprobs: The log probabilities of the top probability words at each
position if the logprobs are requested.
finish_reason: The reason why the sequence is finished.
"""
def __init__(
self,
index: int,
text: str,
token_ids: List[int],
cumulative_logprob: float,
logprobs: Optional[SampleLogprobs],
finish_reason: Optional[str] = None,
) -> None:
self.index = index
self.text = text
self.token_ids = token_ids
self.cumulative_logprob = cumulative_logprob
self.logprobs = logprobs
self.finish_reason = finish_reason
def finished(self) -> bool:
return self.finish_reason is not None
def __repr__(self) -> str:
return (f"CompletionOutput(index={self.index}, "
f"text={self.text!r}, "
f"token_ids={self.token_ids}, "
f"cumulative_logprob={self.cumulative_logprob}, "
f"logprobs={self.logprobs}, "
f"finish_reason={self.finish_reason})")
class RequestOutput:
"""The output data of a request to the LLM.
Args:
request_id: The unique ID of the request.
prompt: The prompt string of the request.
prompt_token_ids: The token IDs of the prompt.
prompt_logprobs: The log probabilities to return per prompt token.
outputs: The output sequences of the request.
finished: Whether the whole request is finished.
"""
def __init__(
self,
request_id: str,
prompt: str,
prompt_token_ids: List[int],
prompt_logprobs: Optional[PromptLogprobs],
outputs: List[CompletionOutput],
finished: bool,
) -> None:
self.request_id = request_id
self.prompt = prompt
self.prompt_token_ids = prompt_token_ids
self.prompt_logprobs = prompt_logprobs
self.outputs = outputs
self.finished = finished
@classmethod
def from_seq_group(cls, seq_group: SequenceGroup) -> "RequestOutput":
# Get the top-n sequences.
n = seq_group.sampling_params.n
seqs = seq_group.get_seqs()
if seq_group.sampling_params.use_beam_search:
sorting_key = lambda seq: seq.get_beam_search_score(
seq_group.sampling_params.length_penalty)
else:
sorting_key = lambda seq: seq.get_cumulative_logprob()
sorted_seqs = sorted(seqs, key=sorting_key, reverse=True)
top_n_seqs = sorted_seqs[:n]
# Create the outputs.
outputs: List[CompletionOutput] = []
for seq in top_n_seqs:
logprobs = seq.output_logprobs
if seq_group.sampling_params.logprobs is None:
# NOTE: We need to take care of this case because the sequence
# always has the logprobs of the sampled tokens even if the
# logprobs are not requested.
logprobs = None
finshed_reason = SequenceStatus.get_finished_reason(seq.status)
output = CompletionOutput(seqs.index(seq), seq.output_text,
seq.get_output_token_ids(),
seq.get_cumulative_logprob(), logprobs,
finshed_reason)
outputs.append(output)
# Every sequence in the sequence group should have the same prompt.
prompt = seq_group.prompt
prompt_token_ids = seq_group.prompt_token_ids
prompt_logprobs = seq_group.prompt_logprobs
finished = seq_group.is_finished()
return cls(seq_group.request_id, prompt, prompt_token_ids,
prompt_logprobs, outputs, finished)
def __repr__(self) -> str:
return (f"RequestOutput(request_id={self.request_id}, "
f"prompt={self.prompt!r}, "
f"prompt_token_ids={self.prompt_token_ids}, "
f"prompt_logprobs={self.prompt_logprobs}, "
f"outputs={self.outputs}, "
f"finished={self.finished})")
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment