Commit 1b14cd54 authored by zhuwenwen's avatar zhuwenwen
Browse files

merge main

parents 726ed56c 1db83e31
from typing import List
from vllm.sequence import SequenceGroup
class Policy:
def get_priority(
self,
now: float,
seq_group: SequenceGroup,
) -> float:
raise NotImplementedError
def sort_by_priority(
self,
now: float,
seq_groups: List[SequenceGroup],
) -> List[SequenceGroup]:
return sorted(
seq_groups,
key=lambda seq_group: self.get_priority(now, seq_group),
reverse=True,
)
class FCFS(Policy):
def get_priority(
self,
now: float,
seq_group: SequenceGroup,
) -> float:
return now - seq_group.arrival_time
class PolicyFactory:
_POLICY_REGISTRY = {
'fcfs': FCFS,
}
@classmethod
def get_policy(cls, policy_name: str, **kwargs) -> Policy:
return cls._POLICY_REGISTRY[policy_name](**kwargs)
import enum
import time
from typing import Dict, Iterable, List, Optional, Tuple, Union
from vllm.config import CacheConfig, SchedulerConfig
from vllm.core.block_manager import AllocStatus, BlockSpaceManager
from vllm.core.policy import PolicyFactory
from vllm.logger import init_logger
from vllm.sequence import (Sequence, SequenceData, SequenceGroup,
SequenceGroupMetadata, SequenceStatus)
logger = init_logger(__name__)
class PreemptionMode(enum.Enum):
"""Preemption modes.
1. Swapping: Swap out the blocks of the preempted sequences to CPU memory
and swap them back in when the sequences are resumed.
2. Recomputation: Discard the blocks of the preempted sequences and
recompute them when the sequences are resumed, treating the sequences as
new prompts.
"""
SWAP = enum.auto()
RECOMPUTE = enum.auto()
class SchedulerOutputs:
def __init__(
self,
scheduled_seq_groups: List[SequenceGroup],
prompt_run: bool,
num_batched_tokens: int,
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
ignored_seq_groups: List[SequenceGroup],
) -> None:
self.scheduled_seq_groups = scheduled_seq_groups
self.prompt_run = prompt_run
self.num_batched_tokens = num_batched_tokens
self.blocks_to_swap_in = blocks_to_swap_in
self.blocks_to_swap_out = blocks_to_swap_out
self.blocks_to_copy = blocks_to_copy
# Swap in and swap out should never happen at the same time.
assert not (blocks_to_swap_in and blocks_to_swap_out)
self.ignored_seq_groups = ignored_seq_groups
def is_empty(self) -> bool:
# NOTE: We do not consider the ignored sequence groups.
return (not self.scheduled_seq_groups and not self.blocks_to_swap_in
and not self.blocks_to_swap_out and not self.blocks_to_copy)
class Scheduler:
def __init__(
self,
scheduler_config: SchedulerConfig,
cache_config: CacheConfig,
) -> None:
self.scheduler_config = scheduler_config
self.cache_config = cache_config
self.prompt_limit = min(self.scheduler_config.max_model_len,
self.scheduler_config.max_num_batched_tokens)
# Instantiate the scheduling policy.
self.policy = PolicyFactory.get_policy(policy_name="fcfs")
# Create the block space manager.
self.block_manager = BlockSpaceManager(
block_size=self.cache_config.block_size,
num_gpu_blocks=self.cache_config.num_gpu_blocks,
num_cpu_blocks=self.cache_config.num_cpu_blocks,
sliding_window=self.cache_config.sliding_window)
# TODO(zhuohan): Use deque instead of list for better performance.
# Sequence groups in the WAITING state.
self.waiting: List[SequenceGroup] = []
# Sequence groups in the RUNNING state.
self.running: List[SequenceGroup] = []
# Sequence groups in the SWAPPED state.
self.swapped: List[SequenceGroup] = []
def add_seq_group(self, seq_group: SequenceGroup) -> None:
# Add sequence groups to the waiting queue.
self.waiting.append(seq_group)
def abort_seq_group(self, request_id: Union[str, Iterable[str]]) -> None:
if isinstance(request_id, str):
request_id = (request_id, )
request_ids = set(request_id)
for state_queue in [self.waiting, self.running, self.swapped]:
# We need to reverse the list as we are removing elements
# from it as we iterate over it. If we don't do it,
# indices will get messed up and we will skip over elements.
for seq_group in reversed(state_queue):
if seq_group.request_id in request_ids:
# Remove the sequence group from the state queue.
state_queue.remove(seq_group)
for seq in seq_group.get_seqs():
if seq.is_finished():
continue
seq.status = SequenceStatus.FINISHED_ABORTED
self.free_seq(seq)
request_ids.remove(seq_group.request_id)
if not request_ids:
return
def has_unfinished_seqs(self) -> bool:
return self.waiting or self.running or self.swapped
def get_num_unfinished_seq_groups(self) -> int:
return len(self.waiting) + len(self.running) + len(self.swapped)
def _schedule(self) -> SchedulerOutputs:
# Blocks that need to be swaped or copied before model execution.
blocks_to_swap_in: Dict[int, int] = {}
blocks_to_swap_out: Dict[int, int] = {}
blocks_to_copy: Dict[int, List[int]] = {}
# Fix the current time.
now = time.monotonic()
# Join waiting sequences if possible.
if not self.swapped:
ignored_seq_groups: List[SequenceGroup] = []
scheduled: List[SequenceGroup] = []
# The total number of sequences on the fly, including the
# requests in the generation phase.
num_curr_seqs = sum(seq_group.get_max_num_running_seqs()
for seq_group in self.running)
seq_lens: List[int] = []
# Optimization: We do not sort the waiting queue since the preempted
# sequence groups are added to the front and the new sequence groups
# are added to the back.
while self.waiting:
seq_group = self.waiting[0]
waiting_seqs = seq_group.get_seqs(
status=SequenceStatus.WAITING)
assert len(waiting_seqs) == 1, (
"Waiting sequence group should have only one prompt "
"sequence.")
num_prompt_tokens = waiting_seqs[0].get_len()
if num_prompt_tokens > self.prompt_limit:
logger.warning(
f"Input prompt ({num_prompt_tokens} tokens) is too long"
f" and exceeds limit of {self.prompt_limit}")
for seq in waiting_seqs:
seq.status = SequenceStatus.FINISHED_IGNORED
ignored_seq_groups.append(seq_group)
self.waiting.pop(0)
continue
# If the sequence group cannot be allocated, stop.
can_allocate = self.block_manager.can_allocate(seq_group)
if can_allocate == AllocStatus.LATER:
break
elif can_allocate == AllocStatus.NEVER:
logger.warning(
f"Input prompt ({num_prompt_tokens} tokens) is too long"
f" and exceeds the capacity of block_manager")
for seq in waiting_seqs:
seq.status = SequenceStatus.FINISHED_IGNORED
ignored_seq_groups.append(seq_group)
self.waiting.pop(0)
continue
# If the number of batched tokens exceeds the limit, stop.
new_seq_lens = seq_lens + [num_prompt_tokens]
num_batched_tokens = len(new_seq_lens) * max(new_seq_lens)
if (num_batched_tokens >
self.scheduler_config.max_num_batched_tokens):
break
# The total number of sequences in the RUNNING state should not
# exceed the maximum number of sequences.
num_new_seqs = seq_group.get_max_num_running_seqs()
if (num_curr_seqs + num_new_seqs >
self.scheduler_config.max_num_seqs):
break
num_paddings = num_batched_tokens - sum(new_seq_lens)
if num_paddings > self.scheduler_config.max_paddings:
break
seq_lens = new_seq_lens
seq_group = self.waiting.pop(0)
self._allocate(seq_group)
self.running.append(seq_group)
num_curr_seqs += num_new_seqs
scheduled.append(seq_group)
if scheduled or ignored_seq_groups:
scheduler_outputs = SchedulerOutputs(
scheduled_seq_groups=scheduled,
prompt_run=True,
num_batched_tokens=len(seq_lens) *
max(seq_lens) if seq_lens else 0,
blocks_to_swap_in=blocks_to_swap_in,
blocks_to_swap_out=blocks_to_swap_out,
blocks_to_copy=blocks_to_copy,
ignored_seq_groups=ignored_seq_groups,
)
return scheduler_outputs
# NOTE(woosuk): Preemption happens only when there is no available slot
# to keep all the sequence groups in the RUNNING state.
# In this case, the policy is responsible for deciding which sequence
# groups to preempt.
self.running = self.policy.sort_by_priority(now, self.running)
# Reserve new token slots for the running sequence groups.
running: List[SequenceGroup] = []
preempted: List[SequenceGroup] = []
while self.running:
seq_group = self.running.pop(0)
while not self.block_manager.can_append_slot(seq_group):
if self.running:
# Preempt the lowest-priority sequence groups.
victim_seq_group = self.running.pop(-1)
self._preempt(victim_seq_group, blocks_to_swap_out)
preempted.append(victim_seq_group)
else:
# No other sequence groups can be preempted.
# Preempt the current sequence group.
self._preempt(seq_group, blocks_to_swap_out)
preempted.append(seq_group)
break
else:
# Append new slots to the sequence group.
self._append_slot(seq_group, blocks_to_copy)
running.append(seq_group)
self.running = running
# Swap in the sequence groups in the SWAPPED state if possible.
self.swapped = self.policy.sort_by_priority(now, self.swapped)
if not preempted:
num_curr_seqs = sum(seq_group.get_max_num_running_seqs()
for seq_group in self.running)
while self.swapped:
seq_group = self.swapped[0]
# If the sequence group cannot be swapped in, stop.
if not self.block_manager.can_swap_in(seq_group):
break
# The total number of sequences in the RUNNING state should not
# exceed the maximum number of sequences.
num_new_seqs = seq_group.get_max_num_running_seqs()
if (num_curr_seqs + num_new_seqs >
self.scheduler_config.max_num_seqs):
break
seq_group = self.swapped.pop(0)
self._swap_in(seq_group, blocks_to_swap_in)
self._append_slot(seq_group, blocks_to_copy)
num_curr_seqs += num_new_seqs
self.running.append(seq_group)
# Each sequence in the generation phase only takes one token slot.
# Therefore, the number of batched tokens is equal to the number of
# sequences in the RUNNING state.
num_batched_tokens = sum(
seq_group.num_seqs(status=SequenceStatus.RUNNING)
for seq_group in self.running)
scheduler_outputs = SchedulerOutputs(
scheduled_seq_groups=self.running,
prompt_run=False,
num_batched_tokens=num_batched_tokens,
blocks_to_swap_in=blocks_to_swap_in,
blocks_to_swap_out=blocks_to_swap_out,
blocks_to_copy=blocks_to_copy,
ignored_seq_groups=[],
)
return scheduler_outputs
def schedule(self) -> Tuple[List[SequenceGroupMetadata], SchedulerOutputs]:
# Schedule sequence groups.
# This function call changes the internal states of the scheduler
# such as self.running, self.swapped, and self.waiting.
scheduler_outputs = self._schedule()
# Create input data structures.
seq_group_metadata_list: List[SequenceGroupMetadata] = []
for seq_group in scheduler_outputs.scheduled_seq_groups:
seq_data: Dict[int, SequenceData] = {}
block_tables: Dict[int, List[int]] = {}
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
seq_id = seq.seq_id
seq_data[seq_id] = seq.data
block_tables[seq_id] = self.block_manager.get_block_table(seq)
seq_group_metadata = SequenceGroupMetadata(
request_id=seq_group.request_id,
is_prompt=scheduler_outputs.prompt_run,
seq_data=seq_data,
sampling_params=seq_group.sampling_params,
block_tables=block_tables,
)
seq_group_metadata_list.append(seq_group_metadata)
return seq_group_metadata_list, scheduler_outputs
def fork_seq(self, parent_seq: Sequence, child_seq: Sequence) -> None:
self.block_manager.fork(parent_seq, child_seq)
def free_seq(self, seq: Sequence) -> None:
self.block_manager.free(seq)
def free_finished_seq_groups(self) -> None:
self.running = [
seq_group for seq_group in self.running
if not seq_group.is_finished()
]
def _allocate(self, seq_group: SequenceGroup) -> None:
self.block_manager.allocate(seq_group)
for seq in seq_group.get_seqs(status=SequenceStatus.WAITING):
seq.status = SequenceStatus.RUNNING
def _append_slot(
self,
seq_group: SequenceGroup,
blocks_to_copy: Dict[int, List[int]],
) -> None:
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
ret = self.block_manager.append_slot(seq)
if ret is not None:
src_block, dst_block = ret
if src_block in blocks_to_copy:
blocks_to_copy[src_block].append(dst_block)
else:
blocks_to_copy[src_block] = [dst_block]
def _preempt(
self,
seq_group: SequenceGroup,
blocks_to_swap_out: Dict[int, int],
preemption_mode: Optional[PreemptionMode] = None,
) -> None:
# If preemption mode is not specified, we determine the mode as follows:
# We use recomputation by default since it incurs lower overhead than
# swapping. However, when the sequence group has multiple sequences
# (e.g., beam search), recomputation is not currently supported. In
# such a case, we use swapping instead.
# FIXME(woosuk): This makes our scheduling policy a bit bizarre.
# As swapped sequences are prioritized over waiting sequences,
# sequence groups with multiple sequences are implicitly prioritized
# over sequence groups with a single sequence.
# TODO(woosuk): Support recomputation for sequence groups with multiple
# sequences. This may require a more sophisticated CUDA kernel.
if preemption_mode is None:
if seq_group.get_max_num_running_seqs() == 1:
preemption_mode = PreemptionMode.RECOMPUTE
else:
preemption_mode = PreemptionMode.SWAP
if preemption_mode == PreemptionMode.RECOMPUTE:
self._preempt_by_recompute(seq_group)
elif preemption_mode == PreemptionMode.SWAP:
self._preempt_by_swap(seq_group, blocks_to_swap_out)
else:
raise AssertionError("Invalid preemption mode.")
def _preempt_by_recompute(
self,
seq_group: SequenceGroup,
) -> None:
seqs = seq_group.get_seqs(status=SequenceStatus.RUNNING)
assert len(seqs) == 1
for seq in seqs:
seq.status = SequenceStatus.WAITING
self.block_manager.free(seq)
# NOTE: For FCFS, we insert the preempted sequence group to the front
# of the waiting queue.
self.waiting.insert(0, seq_group)
def _preempt_by_swap(
self,
seq_group: SequenceGroup,
blocks_to_swap_out: Dict[int, int],
) -> None:
self._swap_out(seq_group, blocks_to_swap_out)
self.swapped.append(seq_group)
def _swap_in(
self,
seq_group: SequenceGroup,
blocks_to_swap_in: Dict[int, int],
) -> None:
mapping = self.block_manager.swap_in(seq_group)
blocks_to_swap_in.update(mapping)
for seq in seq_group.get_seqs(status=SequenceStatus.SWAPPED):
seq.status = SequenceStatus.RUNNING
def _swap_out(
self,
seq_group: SequenceGroup,
blocks_to_swap_out: Dict[int, int],
) -> None:
if not self.block_manager.can_swap_out(seq_group):
# FIXME(woosuk): Abort the sequence group instead of aborting the
# entire engine.
raise RuntimeError(
"Aborted due to the lack of CPU swap space. Please increase "
"the swap space to avoid this error.")
mapping = self.block_manager.swap_out(seq_group)
blocks_to_swap_out.update(mapping)
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
seq.status = SequenceStatus.SWAPPED
import argparse
import dataclasses
from dataclasses import dataclass
from typing import Optional, Tuple
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
SchedulerConfig)
@dataclass
class EngineArgs:
"""Arguments for vLLM engine."""
model: str
tokenizer: Optional[str] = None
tokenizer_mode: str = 'auto'
trust_remote_code: bool = False
download_dir: Optional[str] = None
load_format: str = 'auto'
dtype: str = 'auto'
seed: int = 0
max_model_len: Optional[int] = None
worker_use_ray: bool = False
pipeline_parallel_size: int = 1
tensor_parallel_size: int = 1
max_parallel_loading_workers: Optional[int] = None
block_size: int = 16
swap_space: int = 4 # GiB
gpu_memory_utilization: float = 0.90
max_num_batched_tokens: Optional[int] = None
max_num_seqs: int = 256
max_paddings: int = 256
disable_log_stats: bool = False
revision: Optional[str] = None
tokenizer_revision: Optional[str] = None
quantization: Optional[str] = None
enforce_eager: bool = False
max_context_len_to_capture: int = 8192
def __post_init__(self):
if self.tokenizer is None:
self.tokenizer = self.model
@staticmethod
def add_cli_args(
parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
"""Shared CLI arguments for vLLM engine."""
# NOTE: If you update any of the arguments below, please also
# make sure to update docs/source/models/engine_args.rst
# Model arguments
parser.add_argument(
'--model',
type=str,
default='facebook/opt-125m',
help='name or path of the huggingface model to use')
parser.add_argument(
'--tokenizer',
type=str,
default=EngineArgs.tokenizer,
help='name or path of the huggingface tokenizer to use')
parser.add_argument(
'--revision',
type=str,
default=None,
help='the specific model version to use. It can be a branch '
'name, a tag name, or a commit id. If unspecified, will use '
'the default version.')
parser.add_argument(
'--tokenizer-revision',
type=str,
default=None,
help='the specific tokenizer version to use. It can be a branch '
'name, a tag name, or a commit id. If unspecified, will use '
'the default version.')
parser.add_argument('--tokenizer-mode',
type=str,
default=EngineArgs.tokenizer_mode,
choices=['auto', 'slow'],
help='tokenizer mode. "auto" will use the fast '
'tokenizer if available, and "slow" will '
'always use the slow tokenizer.')
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
parser.add_argument('--download-dir',
type=str,
default=EngineArgs.download_dir,
help='directory to download and load the weights, '
'default to the default cache dir of '
'huggingface')
parser.add_argument(
'--load-format',
type=str,
default=EngineArgs.load_format,
choices=['auto', 'pt', 'safetensors', 'npcache', 'dummy'],
help='The format of the model weights to load. '
'"auto" will try to load the weights in the safetensors format '
'and fall back to the pytorch bin format if safetensors format '
'is not available. '
'"pt" will load the weights in the pytorch bin format. '
'"safetensors" will load the weights in the safetensors format. '
'"npcache" will load the weights in pytorch format and store '
'a numpy cache to speed up the loading. '
'"dummy" will initialize the weights with random values, '
'which is mainly for profiling.')
parser.add_argument(
'--dtype',
type=str,
default=EngineArgs.dtype,
choices=[
'auto', 'half', 'float16', 'bfloat16', 'float', 'float32'
],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--max-model-len',
type=int,
default=None,
help='model context length. If unspecified, '
'will be automatically derived from the model.')
# Parallel arguments
parser.add_argument('--worker-use-ray',
action='store_true',
help='use Ray for distributed serving, will be '
'automatically set when using more than 1 GPU')
parser.add_argument('--pipeline-parallel-size',
'-pp',
type=int,
default=EngineArgs.pipeline_parallel_size,
help='number of pipeline stages')
parser.add_argument('--tensor-parallel-size',
'-tp',
type=int,
default=EngineArgs.tensor_parallel_size,
help='number of tensor parallel replicas')
parser.add_argument(
'--max-parallel-loading-workers',
type=int,
help='load model sequentially in multiple batches, '
'to avoid RAM OOM when using tensor '
'parallel and large models')
# KV cache arguments
parser.add_argument('--block-size',
type=int,
default=EngineArgs.block_size,
choices=[8, 16, 32],
help='token block size')
# TODO(woosuk): Support fine-grained seeds (e.g., seed per request).
parser.add_argument('--seed',
type=int,
default=EngineArgs.seed,
help='random seed')
parser.add_argument('--swap-space',
type=int,
default=EngineArgs.swap_space,
help='CPU swap space size (GiB) per GPU')
parser.add_argument(
'--gpu-memory-utilization',
type=float,
default=EngineArgs.gpu_memory_utilization,
help='the fraction of GPU memory to be used for '
'the model executor, which can range from 0 to 1.'
'If unspecified, will use the default value of 0.9.')
parser.add_argument('--max-num-batched-tokens',
type=int,
default=EngineArgs.max_num_batched_tokens,
help='maximum number of batched tokens per '
'iteration')
parser.add_argument('--max-num-seqs',
type=int,
default=EngineArgs.max_num_seqs,
help='maximum number of sequences per iteration')
parser.add_argument('--max-paddings',
type=int,
default=EngineArgs.max_paddings,
help='maximum number of paddings in a batch')
parser.add_argument('--disable-log-stats',
action='store_true',
help='disable logging statistics')
# Quantization settings.
parser.add_argument('--quantization',
'-q',
type=str,
choices=['awq', 'gptq', 'squeezellm', None],
default=None,
help='Method used to quantize the weights. If '
'None, we first check the `quantization_config` '
'attribute in the model config file. If that is '
'None, we assume the model weights are not '
'quantized and use `dtype` to determine the data '
'type of the weights.')
parser.add_argument('--enforce-eager',
action='store_true',
help='Always use eager-mode PyTorch. If False, '
'will use eager mode and CUDA graph in hybrid '
'for maximal performance and flexibility.')
parser.add_argument('--max-context-len-to-capture',
type=int,
default=EngineArgs.max_context_len_to_capture,
help='maximum context length covered by CUDA '
'graphs. When a sequence has context length '
'larger than this, we fall back to eager mode.')
return parser
@classmethod
def from_cli_args(cls, args: argparse.Namespace) -> 'EngineArgs':
# Get the list of attributes of this dataclass.
attrs = [attr.name for attr in dataclasses.fields(cls)]
# Set the attributes from the parsed arguments.
engine_args = cls(**{attr: getattr(args, attr) for attr in attrs})
return engine_args
def create_engine_configs(
self,
) -> Tuple[ModelConfig, CacheConfig, ParallelConfig, SchedulerConfig]:
model_config = ModelConfig(self.model, self.tokenizer,
self.tokenizer_mode, self.trust_remote_code,
self.download_dir, self.load_format,
self.dtype, self.seed, self.revision,
self.tokenizer_revision, self.max_model_len,
self.quantization, self.enforce_eager,
self.max_context_len_to_capture)
cache_config = CacheConfig(self.block_size,
self.gpu_memory_utilization,
self.swap_space,
model_config.get_sliding_window())
parallel_config = ParallelConfig(self.pipeline_parallel_size,
self.tensor_parallel_size,
self.worker_use_ray,
self.max_parallel_loading_workers)
scheduler_config = SchedulerConfig(self.max_num_batched_tokens,
self.max_num_seqs,
model_config.max_model_len,
self.max_paddings)
return model_config, cache_config, parallel_config, scheduler_config
@dataclass
class AsyncEngineArgs(EngineArgs):
"""Arguments for asynchronous vLLM engine."""
engine_use_ray: bool = False
disable_log_requests: bool = False
max_log_len: Optional[int] = None
@staticmethod
def add_cli_args(
parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
parser = EngineArgs.add_cli_args(parser)
parser.add_argument('--engine-use-ray',
action='store_true',
help='use Ray to start the LLM engine in a '
'separate process as the server process.')
parser.add_argument('--disable-log-requests',
action='store_true',
help='disable logging requests')
parser.add_argument('--max-log-len',
type=int,
default=None,
help='max number of prompt characters or prompt '
'ID numbers being printed in log. '
'Default: unlimited.')
return parser
import asyncio
import time
from functools import partial
from typing import (Any, Dict, Iterable, List, Optional, Set, Tuple, Type,
Union, AsyncIterator)
from vllm.config import ModelConfig
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.llm_engine import LLMEngine
from vllm.engine.ray_utils import initialize_cluster, ray
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
logger = init_logger(__name__)
class AsyncEngineDeadError(RuntimeError):
pass
def _raise_exception_on_finish(task: asyncio.Task,
request_tracker: "RequestTracker") -> None:
msg = ("Task finished unexpectedly. This should never happen! "
"Please open an issue on Github.")
try:
try:
task.result()
except asyncio.CancelledError:
return
except Exception as exc:
raise AsyncEngineDeadError(
msg + " See stack trace above for the actual cause.") from exc
raise AsyncEngineDeadError(msg)
except Exception as exc:
request_tracker.propagate_exception(exc)
raise exc
class AsyncStream:
"""A stream of RequestOutputs for a request that can be
iterated over asynchronously."""
def __init__(self, request_id: str) -> None:
self.request_id = request_id
self._queue = asyncio.Queue()
self._finished = False
def put(self, item: RequestOutput) -> None:
if self._finished:
return
self._queue.put_nowait(item)
def finish(self) -> None:
self._queue.put_nowait(StopIteration)
self._finished = True
@property
def finished(self) -> bool:
return self._finished
def __aiter__(self):
return self
async def __anext__(self) -> RequestOutput:
result = await self._queue.get()
if result is StopIteration:
raise StopAsyncIteration
elif isinstance(result, Exception):
raise result
return result
class RequestTracker:
"""Synchronous abstraction for tracking requests."""
def __init__(self) -> None:
self._request_streams: Dict[str, AsyncStream] = {}
self._finished_requests: asyncio.Queue[str] = asyncio.Queue()
self._new_requests: asyncio.Queue[Tuple[AsyncStream,
dict]] = asyncio.Queue()
self.new_requests_event = None
def __contains__(self, item):
return item in self._request_streams
def init_event(self):
self.new_requests_event = asyncio.Event()
def propagate_exception(self,
exc: Exception,
request_id: Optional[str] = None) -> None:
"""Propagate an exception to request streams
(all if request_id is None)."""
if request_id is not None:
self._request_streams[request_id].put(exc)
else:
for stream in self._request_streams.values():
stream.put(exc)
def process_request_output(self,
request_output: RequestOutput,
*,
verbose: bool = False) -> None:
"""Process a request output from the engine."""
request_id = request_output.request_id
self._request_streams[request_id].put(request_output)
if request_output.finished:
if verbose:
logger.info(f"Finished request {request_id}.")
self.abort_request(request_id)
def add_request(self, request_id: str,
**engine_add_request_kwargs) -> AsyncStream:
"""Add a request to be sent to the engine on the next background
loop iteration."""
if request_id in self._request_streams:
raise KeyError(f"Request {request_id} already exists.")
stream = AsyncStream(request_id)
self._new_requests.put_nowait((stream, {
"request_id": request_id,
**engine_add_request_kwargs
}))
self.new_requests_event.set()
return stream
def abort_request(self, request_id: str, *, verbose: bool = False) -> None:
"""Abort a request during next background loop iteration."""
if verbose:
logger.info(f"Aborted request {request_id}.")
self._finished_requests.put_nowait(request_id)
if request_id not in self._request_streams or self._request_streams[
request_id].finished:
# The request has already finished or been aborted.
return
self._request_streams[request_id].finish()
def get_new_and_finished_requests(self) -> Tuple[List[Dict], Set[str]]:
"""Get the new requests and finished requests to be
sent to the engine."""
new_requests: List[Dict] = []
finished_requests: Set[str] = set()
while not self._finished_requests.empty():
request_id = self._finished_requests.get_nowait()
finished_requests.add(request_id)
self._request_streams.pop(request_id, None)
while not self._new_requests.empty():
stream, new_request = self._new_requests.get_nowait()
if stream.request_id in finished_requests:
# The request has already been aborted.
stream.finish()
continue
self._request_streams[stream.request_id] = stream
new_requests.append(new_request)
self.new_requests_event.clear()
return new_requests, finished_requests
async def wait_for_new_requests(self):
await self.new_requests_event.wait()
class _AsyncLLMEngine(LLMEngine):
"""Extension of LLMEngine to add async methods."""
async def step_async(self) -> List[RequestOutput]:
"""Performs one decoding iteration and returns newly generated results.
The workers are ran asynchronously if possible.
This function performs one decoding iteration of the engine. It first
schedules the sequences to be executed in the next iteration and the
token blocks to be swapped in/out/copy. Then, it executes the model
and updates the scheduler with the model outputs. Finally, it decodes
the sequences and returns the newly generated results.
"""
seq_group_metadata_list, scheduler_outputs, ignored = self._schedule()
if scheduler_outputs.is_empty():
return ignored
# Execute the model.
output = await self._run_workers_async(
"execute_model",
seq_group_metadata_list=seq_group_metadata_list,
blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
blocks_to_copy=scheduler_outputs.blocks_to_copy,
)
return self._process_model_outputs(output, scheduler_outputs) + ignored
async def _run_workers_async(
self,
method: str,
*args,
get_all_outputs: bool = False,
**kwargs,
) -> Any:
"""Runs the given method on all workers."""
coros = []
for worker in self.workers:
if self.parallel_config.worker_use_ray:
coros.append(
worker.execute_method.remote(method, *args, **kwargs))
else:
executor = getattr(worker, method)
coros.append(asyncio.get_event_loop().run_in_executor(
None, partial(executor, *args, **kwargs)))
all_outputs = await asyncio.gather(*coros)
if get_all_outputs:
return all_outputs
# Make sure all workers have the same results.
output = all_outputs[0]
for other_output in all_outputs[1:]:
assert output == other_output
return output
class AsyncLLMEngine:
"""An asynchronous wrapper for LLMEngine.
This class is used to wrap the LLMEngine class to make it asynchronous. It
uses asyncio to create a background loop that keeps processing incoming
requests. The LLMEngine is kicked by the generate method when there
are requests in the waiting queue. The generate method yields the outputs
from the LLMEngine to the caller.
NOTE: For the comprehensive list of arguments, see `LLMEngine`.
Args:
worker_use_ray: Whether to use Ray for model workers. Required for
distributed execution. Should be the same as
`parallel_config.worker_use_ray`.
engine_use_ray: Whether to make LLMEngine a Ray actor. If so, the
async frontend will be executed in a separate process as the
model workers.
log_requests: Whether to log the requests.
start_engine_loop: If True, the background task to run the engine
will be automatically started in the generate call.
*args, *kwargs: Arguments for LLMEngine.
"""
_engine_class: Type[_AsyncLLMEngine] = _AsyncLLMEngine
def __init__(self,
worker_use_ray: bool,
engine_use_ray: bool,
*args,
log_requests: bool = True,
max_log_len: Optional[int] = None,
start_engine_loop: bool = True,
**kwargs) -> None:
self.worker_use_ray = worker_use_ray
self.engine_use_ray = engine_use_ray
self.log_requests = log_requests
self.max_log_len = max_log_len
self.engine = self._init_engine(*args, **kwargs)
self.background_loop = None
# We need to keep a reference to unshielded
# task as well to prevent it from being garbage
# collected
self._background_loop_unshielded = None
self.start_engine_loop = start_engine_loop
self._request_tracker = RequestTracker()
@property
def is_running(self) -> bool:
return (self.background_loop is not None
and not self.background_loop.done())
def start_background_loop(self) -> None:
"""Start the background loop."""
if self.is_running:
raise RuntimeError("Background loop is already running.")
self._request_tracker.init_event()
self._background_loop_unshielded = asyncio.get_event_loop(
).create_task(self.run_engine_loop())
self._background_loop_unshielded.add_done_callback(
partial(_raise_exception_on_finish,
request_tracker=self._request_tracker))
self.background_loop = asyncio.shield(self._background_loop_unshielded)
def _init_engine(self, *args,
**kwargs) -> Union[_AsyncLLMEngine, "ray.ObjectRef"]:
if not self.engine_use_ray:
engine_class = self._engine_class
elif self.worker_use_ray:
engine_class = ray.remote(num_cpus=0)(self._engine_class).remote
else:
# FIXME(woosuk): This is a bit hacky. Be careful when changing the
# order of the arguments.
cache_config = args[1]
parallel_config = args[2]
if parallel_config.tensor_parallel_size == 1:
num_gpus = cache_config.gpu_memory_utilization
else:
num_gpus = 1
engine_class = ray.remote(num_gpus=num_gpus)(
self._engine_class).remote
return engine_class(*args, **kwargs)
async def engine_step(self) -> bool:
"""Kick the engine to process the waiting requests.
Returns True if there are in-progress requests."""
new_requests, finished_requests = (
self._request_tracker.get_new_and_finished_requests())
for new_request in new_requests:
# Add the request into the vLLM engine's waiting queue.
# TODO: Maybe add add_request_batch to reduce Ray overhead
if self.engine_use_ray:
await self.engine.add_request.remote(**new_request)
else:
self.engine.add_request(**new_request)
if finished_requests:
await self._engine_abort(finished_requests)
if self.engine_use_ray:
request_outputs = await self.engine.step.remote()
else:
request_outputs = await self.engine.step_async()
# Put the outputs into the corresponding streams.
for request_output in request_outputs:
self._request_tracker.process_request_output(
request_output, verbose=self.log_requests)
return len(request_outputs) > 0
async def _engine_abort(self, request_ids: Iterable[str]):
if self.engine_use_ray:
await self.engine.abort_request.remote(request_ids)
else:
self.engine.abort_request(request_ids)
async def run_engine_loop(self):
# Initialize the RequestTracker here so it uses the right event loop.
has_requests_in_progress = False
while True:
if not has_requests_in_progress:
await self._request_tracker.wait_for_new_requests()
has_requests_in_progress = await self.engine_step()
await asyncio.sleep(0)
async def add_request(
self,
request_id: str,
prompt: Optional[str],
sampling_params: SamplingParams,
prompt_token_ids: Optional[List[int]] = None,
arrival_time: Optional[float] = None,
) -> AsyncStream:
if self.log_requests:
shortened_prompt = prompt
shortened_token_ids = prompt_token_ids
if self.max_log_len is not None:
if shortened_prompt is not None:
shortened_prompt = shortened_prompt[:self.max_log_len]
if shortened_token_ids is not None:
shortened_token_ids = shortened_token_ids[:self.
max_log_len]
logger.info(f"Received request {request_id}: "
f"prompt: {shortened_prompt!r}, "
f"sampling params: {sampling_params}, "
f"prompt token ids: {shortened_token_ids}.")
if not self.is_running:
if self.start_engine_loop:
self.start_background_loop()
else:
raise AsyncEngineDeadError(
"Background loop is not running. If it was running, "
"inspect the output to find the stacktrace of the "
"error that caused the background loop to stop "
"(AsyncEngineDeadError).")
stream = self._request_tracker.add_request(
request_id,
prompt=prompt,
sampling_params=sampling_params,
prompt_token_ids=prompt_token_ids,
arrival_time=arrival_time)
return stream
async def generate(
self,
prompt: Optional[str],
sampling_params: SamplingParams,
request_id: str,
prompt_token_ids: Optional[List[int]] = None
) -> AsyncIterator[RequestOutput]:
"""Generate outputs for a request.
Generate outputs for a request. This method is a coroutine. It adds the
request into the waiting queue of the LLMEngine and streams the outputs
from the LLMEngine to the caller.
Args:
prompt: The prompt string. Can be None if prompt_token_ids is
provided.
sampling_params: The sampling parameters of the request.
request_id: The unique id of the request.
prompt_token_ids: The token IDs of the prompt. If None, we
use the tokenizer to convert the prompts to token IDs.
Yields:
The output `RequestOutput` objects from the LLMEngine for the
request.
"""
# Preprocess the request.
# This should not be used for logging, as it is monotonic time.
arrival_time = time.monotonic()
try:
stream = await self.add_request(request_id,
prompt,
sampling_params,
prompt_token_ids=prompt_token_ids,
arrival_time=arrival_time)
async for request_output in stream:
yield request_output
except (Exception, asyncio.CancelledError) as e:
# If there is an exception or coroutine is cancelled, abort the
# request.
self._abort(request_id)
raise e
async def abort(self, request_id: str) -> None:
"""Abort a request.
Abort a submitted request. If the request is finished or not found,
this method will be a no-op.
Args:
request_id: The unique id of the request.
"""
if not self.is_running:
raise AsyncEngineDeadError(
"Background loop is not running. If it was running, "
"inspect the output to find the stacktrace of the "
"error that caused the background loop to stop "
"(AsyncEngineDeadError).")
return self._abort(request_id)
def _abort(self, request_id: str) -> None:
"""Abort a request.
Abort a submitted request. If the request is finished or not found,
this method will be a no-op.
Args:
request_id: The unique id of the request.
"""
self._request_tracker.abort_request(request_id,
verbose=self.log_requests)
async def get_model_config(self) -> ModelConfig:
"""Get the model configuration of the vLLM engine."""
if self.engine_use_ray:
return await self.engine.get_model_config.remote()
else:
return self.engine.get_model_config()
@classmethod
def from_engine_args(cls,
engine_args: AsyncEngineArgs,
start_engine_loop: bool = True) -> "AsyncLLMEngine":
"""Creates an async LLM engine from the engine arguments."""
# Create the engine configs.
engine_configs = engine_args.create_engine_configs()
parallel_config = engine_configs[2]
# Initialize the cluster.
distributed_init_method, placement_group = initialize_cluster(
parallel_config, engine_args.engine_use_ray)
# Create the async LLM engine.
engine = cls(parallel_config.worker_use_ray,
engine_args.engine_use_ray,
*engine_configs,
distributed_init_method,
placement_group,
log_requests=not engine_args.disable_log_requests,
log_stats=not engine_args.disable_log_stats,
max_log_len=engine_args.max_log_len,
start_engine_loop=start_engine_loop)
return engine
import copy
import os
import time
from functools import partial
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Union
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
SchedulerConfig)
from vllm.core.scheduler import Scheduler, SchedulerOutputs
from vllm.engine.arg_utils import EngineArgs
from vllm.engine.metrics import record_metrics
from vllm.engine.ray_utils import RayWorkerVllm, initialize_cluster, ray
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.sequence import (SamplerOutput, Sequence, SequenceGroup,
SequenceGroupMetadata, SequenceGroupOutput,
SequenceOutput, SequenceStatus)
from vllm.transformers_utils.tokenizer import (detokenize_incrementally,
get_tokenizer)
from vllm.utils import Counter
if ray:
from ray.air.util.torch_dist import init_torch_dist_process_group
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
if TYPE_CHECKING:
from ray.util.placement_group import PlacementGroup
logger = init_logger(__name__)
_LOGGING_INTERVAL_SEC = 5
class LLMEngine:
"""An LLM engine that receives requests and generates texts.
This is the main class for the vLLM engine. It receives requests
from clients and generates texts from the LLM. It includes a tokenizer, a
language model (possibly distributed across multiple GPUs), and GPU memory
space allocated for intermediate states (aka KV cache). This class utilizes
iteration-level scheduling and efficient memory management to maximize the
serving throughput.
The `LLM` class wraps this class for offline batched inference and the
`AsyncLLMEngine` class wraps this class for online serving.
NOTE: The config arguments are derived from the `EngineArgs` class. For the
comprehensive list of arguments, see `EngineArgs`.
Args:
model_config: The configuration related to the LLM model.
cache_config: The configuration related to the KV cache memory
management.
parallel_config: The configuration related to distributed execution.
scheduler_config: The configuration related to the request scheduler.
distributed_init_method: The initialization method for distributed
execution. See `torch.distributed.init_process_group` for details.
placement_group: Ray placement group for distributed execution.
Required for distributed execution.
log_stats: Whether to log statistics.
"""
def __init__(
self,
model_config: ModelConfig,
cache_config: CacheConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
distributed_init_method: str,
placement_group: Optional["PlacementGroup"],
log_stats: bool,
) -> None:
logger.info(
"Initializing an LLM engine with config: "
f"model={model_config.model!r}, "
f"tokenizer={model_config.tokenizer!r}, "
f"tokenizer_mode={model_config.tokenizer_mode}, "
f"revision={model_config.revision}, "
f"tokenizer_revision={model_config.tokenizer_revision}, "
f"trust_remote_code={model_config.trust_remote_code}, "
f"dtype={model_config.dtype}, "
f"max_seq_len={model_config.max_model_len}, "
f"download_dir={model_config.download_dir!r}, "
f"load_format={model_config.load_format}, "
f"tensor_parallel_size={parallel_config.tensor_parallel_size}, "
f"quantization={model_config.quantization}, "
f"enforce_eager={model_config.enforce_eager}, "
f"seed={model_config.seed})")
# TODO(woosuk): Print more configs in debug mode.
self.model_config = model_config
self.cache_config = cache_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.log_stats = log_stats
self._verify_args()
self.tokenizer = get_tokenizer(
model_config.tokenizer,
tokenizer_mode=model_config.tokenizer_mode,
trust_remote_code=model_config.trust_remote_code,
tokenizer_revision=model_config.tokenizer_revision,
revision=model_config.revision)
self.seq_counter = Counter()
# Create the parallel GPU workers.
if self.parallel_config.worker_use_ray:
# Disable Ray usage stats collection.
ray_usage = os.environ.get("RAY_USAGE_STATS_ENABLED", "0")
if ray_usage != "1":
os.environ["RAY_USAGE_STATS_ENABLED"] = "0"
self._init_workers_ray(placement_group)
else:
self._init_workers(distributed_init_method)
# Profile the memory usage and initialize the cache.
self._init_cache()
# Create the scheduler.
self.scheduler = Scheduler(scheduler_config, cache_config)
# Logging.
self.last_logging_time = 0.0
# List of (timestamp, num_tokens)
self.num_prompt_tokens: List[Tuple[float, int]] = []
# List of (timestamp, num_tokens)
self.num_generation_tokens: List[Tuple[float, int]] = []
def _init_workers(self, distributed_init_method: str):
# Lazy import the Worker to avoid importing torch.cuda/xformers
# before CUDA_VISIBLE_DEVICES is set in the Worker
from vllm.worker.worker import Worker
assert self.parallel_config.world_size == 1, (
"Ray is required if parallel_config.world_size > 1.")
self.workers: List[Worker] = []
worker = Worker(
self.model_config,
self.parallel_config,
self.scheduler_config,
0,
distributed_init_method,
)
self.workers.append(worker)
self._run_workers(
"init_model",
get_all_outputs=True,
)
self._run_workers(
"load_model",
get_all_outputs=True,
max_concurrent_workers=self.parallel_config.
max_parallel_loading_workers,
)
def _init_workers_ray(self, placement_group: "PlacementGroup",
**ray_remote_kwargs):
# Lazy import the Worker to avoid importing torch.cuda/xformers
# before CUDA_VISIBLE_DEVICES is set in the Worker
from vllm.worker.worker import Worker
self.workers: List[Worker] = []
for bundle in placement_group.bundle_specs:
if not bundle.get("GPU", 0):
continue
if self.parallel_config.tensor_parallel_size == 1:
num_gpus = self.cache_config.gpu_memory_utilization
else:
num_gpus = 1
worker = ray.remote(
num_cpus=0,
num_gpus=num_gpus,
scheduling_strategy=PlacementGroupSchedulingStrategy(
placement_group=placement_group,
placement_group_capture_child_tasks=True),
**ray_remote_kwargs,
)(RayWorkerVllm).remote(self.model_config.trust_remote_code)
self.workers.append(worker)
# Initialize torch distributed process group for the workers.
init_torch_dist_process_group(self.workers, backend="nccl")
model_config = copy.deepcopy(self.model_config)
parallel_config = copy.deepcopy(self.parallel_config)
scheduler_config = copy.deepcopy(self.scheduler_config)
self._run_workers("init_worker",
get_all_outputs=True,
worker_init_fn=lambda: Worker(
model_config,
parallel_config,
scheduler_config,
None,
None,
))
self._run_workers(
"init_model",
get_all_outputs=True,
)
self._run_workers(
"load_model",
get_all_outputs=True,
max_concurrent_workers=self.parallel_config.
max_parallel_loading_workers,
)
def _verify_args(self) -> None:
self.model_config.verify_with_parallel_config(self.parallel_config)
self.cache_config.verify_with_parallel_config(self.parallel_config)
def _init_cache(self) -> None:
"""Profiles the memory usage and initializes the KV cache."""
# Get the maximum number of blocks that can be allocated on GPU and CPU.
num_blocks = self._run_workers(
"profile_num_available_blocks",
get_all_outputs=True,
block_size=self.cache_config.block_size,
gpu_memory_utilization=self.cache_config.gpu_memory_utilization,
cpu_swap_space=self.cache_config.swap_space_bytes,
)
# Since we use a shared centralized controller, we take the minimum
# number of blocks across all workers to make sure all the memory
# operators can be applied to all workers.
num_gpu_blocks = min(b[0] for b in num_blocks)
num_cpu_blocks = min(b[1] for b in num_blocks)
# FIXME(woosuk): Change to debug log.
logger.info(f"# GPU blocks: {num_gpu_blocks}, "
f"# CPU blocks: {num_cpu_blocks}")
if num_gpu_blocks <= 0:
raise ValueError("No available memory for the cache blocks. "
"Try increasing `gpu_memory_utilization` when "
"initializing the engine.")
max_seq_len = self.cache_config.block_size * num_gpu_blocks
if self.model_config.max_model_len > max_seq_len:
raise ValueError(
f"The model's max seq len ({self.model_config.max_model_len}) "
"is larger than the maximum number of tokens that can be "
f"stored in KV cache ({max_seq_len}). Try increasing "
"`gpu_memory_utilization` or decreasing `max_model_len` when "
"initializing the engine.")
self.cache_config.num_gpu_blocks = num_gpu_blocks
self.cache_config.num_cpu_blocks = num_cpu_blocks
# Initialize the cache.
self._run_workers("init_cache_engine", cache_config=self.cache_config)
# Warm up the model. This includes capturing the model into CUDA graph
# if enforce_eager is False.
self._run_workers("warm_up_model")
@classmethod
def from_engine_args(cls, engine_args: EngineArgs) -> "LLMEngine":
"""Creates an LLM engine from the engine arguments."""
# Create the engine configs.
engine_configs = engine_args.create_engine_configs()
parallel_config = engine_configs[2]
# Initialize the cluster.
distributed_init_method, placement_group = initialize_cluster(
parallel_config)
# Create the LLM engine.
engine = cls(*engine_configs,
distributed_init_method,
placement_group,
log_stats=not engine_args.disable_log_stats)
return engine
def add_request(
self,
request_id: str,
prompt: Optional[str],
sampling_params: SamplingParams,
prompt_token_ids: Optional[List[int]] = None,
arrival_time: Optional[float] = None,
) -> None:
"""Add a request to the engine's request pool.
The request is added to the request pool and will be processed by the
scheduler as `engine.step()` is called. The exact scheduling policy is
determined by the scheduler.
Args:
request_id: The unique ID of the request.
prompt: The prompt string. Can be None if prompt_token_ids is
provided.
sampling_params: The sampling parameters for text generation.
prompt_token_ids: The token IDs of the prompt. If None, we
use the tokenizer to convert the prompts to token IDs.
arrival_time: The arrival time of the request. If None, we use
the current monotonic time.
"""
if arrival_time is None:
arrival_time = time.monotonic()
if prompt_token_ids is None:
assert prompt is not None
prompt_token_ids = self.tokenizer.encode(prompt)
# Create the sequences.
block_size = self.cache_config.block_size
seq_id = next(self.seq_counter)
seq = Sequence(seq_id, prompt, prompt_token_ids, block_size)
# Create the sequence group.
seq_group = SequenceGroup(request_id, [seq], sampling_params,
arrival_time)
# Add the sequence group to the scheduler.
self.scheduler.add_seq_group(seq_group)
def abort_request(self, request_id: Union[str, Iterable[str]]) -> None:
"""Aborts a request(s) with the given ID.
Args:
request_id: The ID(s) of the request to abort.
"""
self.scheduler.abort_seq_group(request_id)
def get_model_config(self) -> ModelConfig:
"""Gets the model configuration."""
return self.model_config
def get_num_unfinished_requests(self) -> int:
"""Gets the number of unfinished requests."""
return self.scheduler.get_num_unfinished_seq_groups()
def has_unfinished_requests(self) -> bool:
"""Returns True if there are unfinished requests."""
return self.scheduler.has_unfinished_seqs()
def _schedule(
self
) -> Tuple[List[SequenceGroupMetadata], SchedulerOutputs,
List[RequestOutput]]:
seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
return seq_group_metadata_list, scheduler_outputs, [
RequestOutput.from_seq_group(seq_group)
for seq_group in scheduler_outputs.ignored_seq_groups
]
def _check_beam_search_early_stopping(
self,
early_stopping: Union[bool, str],
sampling_params: SamplingParams,
best_running_seq: Sequence,
current_worst_seq: Sequence,
) -> bool:
assert sampling_params.use_beam_search
length_penalty = sampling_params.length_penalty
if early_stopping is True:
return True
current_worst_score = (current_worst_seq.get_beam_search_score(
length_penalty=length_penalty,
eos_token_id=self.tokenizer.eos_token_id))
if early_stopping is False:
highest_attainable_score = (best_running_seq.get_beam_search_score(
length_penalty=length_penalty,
eos_token_id=self.tokenizer.eos_token_id))
else:
assert early_stopping == "never"
if length_penalty > 0.0:
# If length_penalty > 0.0, beam search will prefer longer
# sequences. The highest attainable score calculation is
# based on the longest possible sequence length in this case.
max_possible_length = max(
best_running_seq.get_prompt_len() +
sampling_params.max_tokens,
self.scheduler_config.max_model_len)
highest_attainable_score = (
best_running_seq.get_beam_search_score(
length_penalty=length_penalty,
eos_token_id=self.tokenizer.eos_token_id,
seq_len=max_possible_length))
else:
# Otherwise, beam search will prefer shorter sequences. The
# highest attainable score calculation is based on the current
# sequence length.
highest_attainable_score = (
best_running_seq.get_beam_search_score(
length_penalty=length_penalty,
eos_token_id=self.tokenizer.eos_token_id))
return current_worst_score >= highest_attainable_score
def _process_sequence_group_outputs(self, seq_group: SequenceGroup,
outputs: SequenceGroupOutput) -> None:
# Process prompt logprobs
prompt_logprobs = outputs.prompt_logprobs
if prompt_logprobs is not None:
seq_group.prompt_logprobs = prompt_logprobs
# Process samples
samples = outputs.samples
parent_seqs = seq_group.get_seqs(status=SequenceStatus.RUNNING)
existing_finished_seqs = seq_group.get_finished_seqs()
parent_child_dict = {
parent_seq.seq_id: []
for parent_seq in parent_seqs
}
for sample in samples:
parent_child_dict[sample.parent_seq_id].append(sample)
# List of (child, parent)
child_seqs: List[Tuple[Sequence, Sequence]] = []
# Process the child samples for each parent sequence
for parent in parent_seqs:
child_samples: List[SequenceOutput] = parent_child_dict[
parent.seq_id]
if len(child_samples) == 0:
# This parent sequence has no children samples. Remove
# the parent sequence from the sequence group since it will
# not be used in the future iterations.
parent.status = SequenceStatus.FINISHED_ABORTED
seq_group.remove(parent.seq_id)
self.scheduler.free_seq(parent)
continue
# Fork the parent sequence if there are multiple child samples.
for child_sample in child_samples[:-1]:
new_child_seq_id = next(self.seq_counter)
child = parent.fork(new_child_seq_id)
child.append_token_id(child_sample.output_token,
child_sample.logprobs)
child_seqs.append((child, parent))
# Continue the parent sequence for the last child sample.
# We reuse the parent sequence here to reduce redundant memory
# copies, especially when using non-beam search sampling methods.
last_child_sample = child_samples[-1]
parent.append_token_id(last_child_sample.output_token,
last_child_sample.logprobs)
child_seqs.append((parent, parent))
for seq, _ in child_seqs:
self._decode_sequence(seq, seq_group.sampling_params)
self._check_stop(seq, seq_group.sampling_params)
# Non-beam search case
if not seq_group.sampling_params.use_beam_search:
# For newly created child sequences, add them to the sequence group
# and fork them in block manager if they are not finished.
for seq, parent in child_seqs:
if seq is not parent:
seq_group.add(seq)
if not seq.is_finished():
self.scheduler.fork_seq(parent, seq)
# Free the finished and selected parent sequences' memory in block
# manager. Keep them in the sequence group as candidate output.
# NOTE: we need to fork the new sequences before freeing the
# old sequences.
for seq, parent in child_seqs:
if seq is parent and seq.is_finished():
self.scheduler.free_seq(seq)
return
# Beam search case
# Select the child sequences to keep in the sequence group.
selected_child_seqs = []
unselected_child_seqs = []
beam_width = seq_group.sampling_params.best_of
length_penalty = seq_group.sampling_params.length_penalty
# Select the newly finished sequences with the highest scores
# to replace existing finished sequences.
# Tuple of (seq, parent, is_new)
existing_finished_seqs = [(seq, None, False)
for seq in existing_finished_seqs]
new_finished_seqs = [(seq, parent, True) for seq, parent in child_seqs
if seq.is_finished()]
all_finished_seqs = existing_finished_seqs + new_finished_seqs
# Sort the finished sequences by their scores.
all_finished_seqs.sort(key=lambda x: x[0].get_beam_search_score(
length_penalty=length_penalty,
eos_token_id=self.tokenizer.eos_token_id),
reverse=True)
for seq, parent, is_new in all_finished_seqs[:beam_width]:
if is_new:
# A newly generated child sequence finishes and has a high
# score, so we will add it into the sequence group.
selected_child_seqs.append((seq, parent))
for seq, parent, is_new in all_finished_seqs[beam_width:]:
if is_new:
# A newly generated child sequence finishes but has a low
# score, so we will not add it into the sequence group.
# Additionally, if this sequence is a continuation of a
# parent sequence, we will need remove the parent sequence
# from the sequence group.
unselected_child_seqs.append((seq, parent))
else:
# An existing finished sequence has a low score, so we will
# remove it from the sequence group.
seq_group.remove(seq.seq_id)
# select the top beam_width sequences from the running
# sequences for the next iteration to continue the beam
# search.
running_child_seqs = [(seq, parent) for seq, parent in child_seqs
if not seq.is_finished()]
# Sort the running sequences by their scores.
running_child_seqs.sort(key=lambda x: x[0].get_beam_search_score(
length_penalty=length_penalty,
eos_token_id=self.tokenizer.eos_token_id),
reverse=True)
# Check if we can stop the beam search.
if len(running_child_seqs) == 0:
# No running sequences, stop the beam search.
stop_beam_search = True
elif len(all_finished_seqs) < beam_width:
# Not enough finished sequences, continue the beam search.
stop_beam_search = False
else:
# Check the early stopping criteria
best_running_seq = running_child_seqs[0][0]
current_worst_seq = all_finished_seqs[beam_width - 1][0]
stop_beam_search = self._check_beam_search_early_stopping(
seq_group.sampling_params.early_stopping,
seq_group.sampling_params, best_running_seq, current_worst_seq)
if stop_beam_search:
# Stop the beam search and remove all the running sequences from
# the sequence group.
unselected_child_seqs.extend(running_child_seqs)
else:
# Continue the beam search and select the top beam_width sequences
# to continue the beam search.
selected_child_seqs.extend(running_child_seqs[:beam_width])
# The remaining running sequences will not be used in the next
# iteration. Again, if these sequences are continuations of
# parent sequences, we will need to remove the parent sequences
# from the sequence group.
unselected_child_seqs.extend(running_child_seqs[beam_width:])
# For newly created child sequences, add them to the sequence group
# and fork them in block manager if they are not finished.
for seq, parent in selected_child_seqs:
if seq is not parent:
seq_group.add(seq)
if not seq.is_finished():
self.scheduler.fork_seq(parent, seq)
# Free the finished and selected parent sequences' memory in block
# manager. Keep them in the sequence group as candidate output.
for seq, parent in selected_child_seqs:
if seq is parent and seq.is_finished():
self.scheduler.free_seq(seq)
# Remove the unselected parent sequences from the sequence group and
# free their memory in block manager.
for seq, parent in unselected_child_seqs:
if seq is parent:
# Remove the parent sequence if it is not selected for next
# iteration
seq_group.remove(seq.seq_id)
self.scheduler.free_seq(seq)
def _process_model_outputs(
self, output: SamplerOutput,
scheduler_outputs: SchedulerOutputs) -> List[RequestOutput]:
# Update the scheduled sequence groups with the model outputs.
scheduled_seq_groups = scheduler_outputs.scheduled_seq_groups
for seq_group, outputs in zip(scheduled_seq_groups, output):
self._process_sequence_group_outputs(seq_group, outputs)
# Free the finished sequence groups.
self.scheduler.free_finished_seq_groups()
# Create the outputs.
request_outputs: List[RequestOutput] = []
for seq_group in (scheduled_seq_groups +
scheduler_outputs.ignored_seq_groups):
request_output = RequestOutput.from_seq_group(seq_group)
request_outputs.append(request_output)
if self.log_stats:
# Log the system stats.
self._log_system_stats(scheduler_outputs.prompt_run,
scheduler_outputs.num_batched_tokens)
return request_outputs
def step(self) -> List[RequestOutput]:
"""Performs one decoding iteration and returns newly generated results.
This function performs one decoding iteration of the engine. It first
schedules the sequences to be executed in the next iteration and the
token blocks to be swapped in/out/copy. Then, it executes the model
and updates the scheduler with the model outputs. Finally, it decodes
the sequences and returns the newly generated results.
"""
seq_group_metadata_list, scheduler_outputs, ignored = self._schedule()
if scheduler_outputs.is_empty():
return ignored
# Execute the model.
output = self._run_workers(
"execute_model",
seq_group_metadata_list=seq_group_metadata_list,
blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
blocks_to_copy=scheduler_outputs.blocks_to_copy,
)
return self._process_model_outputs(output, scheduler_outputs)
def _log_system_stats(
self,
prompt_run: bool,
num_batched_tokens: int,
) -> None:
now = time.monotonic()
# Log the number of batched input tokens.
if prompt_run:
self.num_prompt_tokens.append((now, num_batched_tokens))
else:
self.num_generation_tokens.append((now, num_batched_tokens))
should_log = now - self.last_logging_time >= _LOGGING_INTERVAL_SEC
if not should_log:
return
# Discard the old stats.
self.num_prompt_tokens = [(t, n) for t, n in self.num_prompt_tokens
if now - t < _LOGGING_INTERVAL_SEC]
self.num_generation_tokens = [(t, n)
for t, n in self.num_generation_tokens
if now - t < _LOGGING_INTERVAL_SEC]
if len(self.num_prompt_tokens) > 1:
total_num_tokens = sum(n for _, n in self.num_prompt_tokens[:-1])
window = now - self.num_prompt_tokens[0][0]
avg_prompt_throughput = total_num_tokens / window
else:
avg_prompt_throughput = 0.0
if len(self.num_generation_tokens) > 1:
total_num_tokens = sum(n
for _, n in self.num_generation_tokens[:-1])
window = now - self.num_generation_tokens[0][0]
avg_generation_throughput = total_num_tokens / window
else:
avg_generation_throughput = 0.0
total_num_gpu_blocks = self.cache_config.num_gpu_blocks
num_free_gpu_blocks = (
self.scheduler.block_manager.get_num_free_gpu_blocks())
num_used_gpu_blocks = total_num_gpu_blocks - num_free_gpu_blocks
gpu_cache_usage = num_used_gpu_blocks / total_num_gpu_blocks
total_num_cpu_blocks = self.cache_config.num_cpu_blocks
if total_num_cpu_blocks > 0:
num_free_cpu_blocks = (
self.scheduler.block_manager.get_num_free_cpu_blocks())
num_used_cpu_blocks = total_num_cpu_blocks - num_free_cpu_blocks
cpu_cache_usage = num_used_cpu_blocks / total_num_cpu_blocks
else:
cpu_cache_usage = 0.0
record_metrics(
avg_prompt_throughput=avg_prompt_throughput,
avg_generation_throughput=avg_generation_throughput,
scheduler_running=len(self.scheduler.running),
scheduler_swapped=len(self.scheduler.swapped),
scheduler_waiting=len(self.scheduler.waiting),
gpu_cache_usage=gpu_cache_usage,
cpu_cache_usage=cpu_cache_usage,
)
logger.info("Avg prompt throughput: "
f"{avg_prompt_throughput:.1f} tokens/s, "
"Avg generation throughput: "
f"{avg_generation_throughput:.1f} tokens/s, "
f"Running: {len(self.scheduler.running)} reqs, "
f"Swapped: {len(self.scheduler.swapped)} reqs, "
f"Pending: {len(self.scheduler.waiting)} reqs, "
f"GPU KV cache usage: {gpu_cache_usage * 100:.1f}%, "
f"CPU KV cache usage: {cpu_cache_usage * 100:.1f}%")
self.last_logging_time = now
def _decode_sequence(self, seq: Sequence, prms: SamplingParams) -> None:
"""Decodes the new token for a sequence."""
(new_tokens, new_output_text, prefix_offset,
read_offset) = detokenize_incrementally(
self.tokenizer,
all_input_ids=seq.get_token_ids(),
prev_tokens=seq.tokens,
prefix_offset=seq.prefix_offset,
read_offset=seq.read_offset,
skip_special_tokens=prms.skip_special_tokens,
spaces_between_special_tokens=prms.spaces_between_special_tokens,
)
if seq.tokens is None:
seq.tokens = new_tokens
else:
seq.tokens.extend(new_tokens)
seq.prefix_offset = prefix_offset
seq.read_offset = read_offset
seq.output_text += new_output_text
def _check_stop(self, seq: Sequence,
sampling_params: SamplingParams) -> None:
"""Stop the finished sequences."""
for stop_str in sampling_params.stop:
if seq.output_text.endswith(stop_str):
if not sampling_params.include_stop_str_in_output:
# Truncate the output text so that the stop string is
# not included in the output.
seq.output_text = seq.output_text[:-len(stop_str)]
seq.status = SequenceStatus.FINISHED_STOPPED
return
if seq.get_last_token_id() in sampling_params.stop_token_ids:
seq.status = SequenceStatus.FINISHED_STOPPED
return
# Check if the sequence has reached max_model_len.
if seq.get_len() > self.scheduler_config.max_model_len:
seq.status = SequenceStatus.FINISHED_LENGTH_CAPPED
return
# Check if the sequence has reached max_tokens.
if seq.get_output_len() == sampling_params.max_tokens:
seq.status = SequenceStatus.FINISHED_LENGTH_CAPPED
return
# Check if the sequence has generated the EOS token.
if ((not sampling_params.ignore_eos)
and seq.get_last_token_id() == self.tokenizer.eos_token_id):
seq.status = SequenceStatus.FINISHED_STOPPED
return
def _run_workers_in_batch(
self,
workers,
method: str,
*args,
**kwargs,
):
all_outputs = []
for worker in workers:
if self.parallel_config.worker_use_ray:
executor = partial(worker.execute_method.remote, method)
else:
executor = getattr(worker, method)
output = executor(*args, **kwargs)
all_outputs.append(output)
if self.parallel_config.worker_use_ray:
all_outputs = ray.get(all_outputs)
return all_outputs
def _run_workers(
self,
method: str,
*args,
get_all_outputs: bool = False,
max_concurrent_workers: Optional[int] = None,
**kwargs,
) -> Any:
"""Runs the given method on all workers."""
all_outputs = []
if max_concurrent_workers:
work_groups = [
self.workers[i:i + max_concurrent_workers]
for i in range(0, len(self.workers), max_concurrent_workers)
]
else:
work_groups = [self.workers]
for workers in work_groups:
all_outputs.extend(
self._run_workers_in_batch(workers, method, *args, **kwargs))
if get_all_outputs:
return all_outputs
# Make sure all workers have the same results.
output = all_outputs[0]
for other_output in all_outputs[1:]:
assert output == other_output
return output
from aioprometheus import Gauge
# The begin-* and end* here are used by the documentation generator
# to extract the metrics definitions.
# begin-metrics-definitions
gauge_avg_prompt_throughput = Gauge("vllm:avg_prompt_throughput_toks_per_s",
"Average prefill throughput in tokens/s.")
gauge_avg_generation_throughput = Gauge(
"vllm:avg_generation_throughput_toks_per_s",
"Average generation throughput in tokens/s.")
gauge_scheduler_running = Gauge(
"vllm:num_requests_running",
"Number of requests that is currently running for inference.")
gauge_scheduler_swapped = Gauge("vllm:num_requests_swapped",
"Number requests swapped to CPU.")
gauge_scheduler_waiting = Gauge("vllm:num_requests_waiting",
"Number of requests waiting to be processed.")
gauge_gpu_cache_usage = Gauge(
"vllm:gpu_cache_usage_perc",
"GPU KV-cache usage. 1 means 100 percent usage.")
gauge_cpu_cache_usage = Gauge(
"vllm:cpu_cache_usage_perc",
"CPU KV-cache usage. 1 means 100 percent usage.")
# end-metrics-definitions
labels = {}
def add_global_metrics_labels(**kwargs):
labels.update(kwargs)
def record_metrics(
avg_prompt_throughput: float,
avg_generation_throughput: float,
scheduler_running: int,
scheduler_swapped: int,
scheduler_waiting: int,
gpu_cache_usage: float,
cpu_cache_usage: float,
):
gauge_avg_prompt_throughput.set(labels, avg_prompt_throughput)
gauge_avg_generation_throughput.set(labels, avg_generation_throughput)
gauge_scheduler_running.set(labels, scheduler_running)
gauge_scheduler_swapped.set(labels, scheduler_swapped)
gauge_scheduler_waiting.set(labels, scheduler_waiting)
gauge_gpu_cache_usage.set(labels, gpu_cache_usage)
gauge_cpu_cache_usage.set(labels, cpu_cache_usage)
from typing import Optional, Tuple, TYPE_CHECKING
from vllm.config import ParallelConfig
from vllm.logger import init_logger
from vllm.utils import get_open_port, is_hip
logger = init_logger(__name__)
try:
import ray
from ray.air.util.torch_dist import TorchDistributedWorker
class RayWorkerVllm(TorchDistributedWorker):
"""Ray wrapper for vllm.worker.Worker, allowing Worker to be
lazliy initialized after Ray sets CUDA_VISIBLE_DEVICES."""
def __init__(self, init_cached_hf_modules=False) -> None:
if init_cached_hf_modules:
from transformers.dynamic_module_utils import init_hf_modules
init_hf_modules()
self.worker = None
def init_worker(self, worker_init_fn):
self.worker = worker_init_fn()
def __getattr__(self, name):
return getattr(self.worker, name)
def execute_method(self, method, *args, **kwargs):
executor = getattr(self, method)
return executor(*args, **kwargs)
except ImportError as e:
logger.warning(f"Failed to import Ray with {e!r}. "
"For distributed inference, please install Ray with "
"`pip install ray pandas pyarrow`.")
ray = None
TorchDistributedWorker = None
RayWorkerVllm = None
if TYPE_CHECKING:
from ray.util.placement_group import PlacementGroup
def initialize_cluster(
parallel_config: ParallelConfig,
engine_use_ray: bool = False,
ray_address: Optional[str] = None,
) -> Tuple[str, Optional["PlacementGroup"]]:
"""Initialize the distributed cluster probably with Ray.
Args:
parallel_config: The configurations for parallel execution.
engine_use_ray: Whether to use Ray for async engine.
ray_address: The address of the Ray cluster. If None, uses
the default Ray cluster address.
Returns:
A tuple of (`distributed_init_method`, `placement_group`). The
`distributed_init_method` is the address for initializing the
distributed backend. `placement_group` includes the specification
of the resources for each distributed worker.
"""
if parallel_config.worker_use_ray or engine_use_ray:
if ray is None:
raise ImportError(
"Ray is not installed. Please install Ray to use distributed "
"serving.")
# Connect to a ray cluster.
if is_hip():
ray.init(address=ray_address,
ignore_reinit_error=True,
num_gpus=parallel_config.world_size)
else:
ray.init(address=ray_address, ignore_reinit_error=True)
if not parallel_config.worker_use_ray:
# Initialize cluster locally.
port = get_open_port()
# We need to setup the distributed init method to make sure
# the distributed megatron code (e.g., get world size) works correctly.
distributed_init_method = f"tcp://localhost:{port}"
return distributed_init_method, None
current_placement_group = ray.util.get_current_placement_group()
if current_placement_group:
# We are in a placement group
bundles = current_placement_group.bundle_specs
# Verify that we can use the placement group.
gpu_bundles = 0
for bundle in bundles:
bundle_gpus = bundle.get("GPU", 0)
if bundle_gpus > 1:
raise ValueError(
"Placement group bundle cannot have more than 1 GPU.")
if bundle_gpus:
gpu_bundles += 1
if parallel_config.world_size > gpu_bundles:
raise ValueError(
"The number of required GPUs exceeds the total number of "
"available GPUs in the placement group.")
else:
num_gpus_in_cluster = ray.cluster_resources().get("GPU", 0)
if parallel_config.world_size > num_gpus_in_cluster:
raise ValueError(
"The number of required GPUs exceeds the total number of "
"available GPUs in the cluster.")
# Create a new placement group
current_placement_group = ray.util.placement_group([{
"GPU": 1
}] * parallel_config.world_size)
# Wait until PG is ready - this will block until all
# requested resources are available, and will timeout
# if they cannot be provisioned.
ray.get(current_placement_group.ready(), timeout=1800)
return None, current_placement_group
import argparse
import json
from typing import AsyncGenerator
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse, Response, StreamingResponse
import uvicorn
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.sampling_params import SamplingParams
from vllm.utils import random_uuid
TIMEOUT_KEEP_ALIVE = 5 # seconds.
TIMEOUT_TO_PREVENT_DEADLOCK = 1 # seconds.
app = FastAPI()
engine = None
@app.get("/health")
async def health() -> Response:
"""Health check."""
return Response(status_code=200)
@app.post("/generate")
async def generate(request: Request) -> Response:
"""Generate completion for the request.
The request should be a JSON object with the following fields:
- prompt: the prompt to use for the generation.
- stream: whether to stream the results or not.
- other fields: the sampling parameters (See `SamplingParams` for details).
"""
request_dict = await request.json()
prompt = request_dict.pop("prompt")
stream = request_dict.pop("stream", False)
sampling_params = SamplingParams(**request_dict)
request_id = random_uuid()
results_generator = engine.generate(prompt, sampling_params, request_id)
# Streaming case
async def stream_results() -> AsyncGenerator[bytes, None]:
async for request_output in results_generator:
prompt = request_output.prompt
text_outputs = [
prompt + output.text for output in request_output.outputs
]
ret = {"text": text_outputs}
yield (json.dumps(ret) + "\0").encode("utf-8")
if stream:
return StreamingResponse(stream_results())
# Non-streaming case
final_output = None
async for request_output in results_generator:
if await request.is_disconnected():
# Abort the request if the client disconnects.
await engine.abort(request_id)
return Response(status_code=499)
final_output = request_output
assert final_output is not None
prompt = final_output.prompt
text_outputs = [prompt + output.text for output in final_output.outputs]
ret = {"text": text_outputs}
return JSONResponse(ret)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default=None)
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--ssl-keyfile", type=str, default=None)
parser.add_argument("--ssl-certfile", type=str, default=None)
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(engine_args)
uvicorn.run(app,
host=args.host,
port=args.port,
log_level="debug",
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
ssl_keyfile=args.ssl_keyfile,
ssl_certfile=args.ssl_certfile)
from typing import List, Optional, Union
from tqdm import tqdm
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
from vllm.engine.arg_utils import EngineArgs
from vllm.engine.llm_engine import LLMEngine
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.utils import Counter
class LLM:
"""An LLM for generating texts from given prompts and sampling parameters.
This class includes a tokenizer, a language model (possibly distributed
across multiple GPUs), and GPU memory space allocated for intermediate
states (aka KV cache). Given a batch of prompts and sampling parameters,
this class generates texts from the model, using an intelligent batching
mechanism and efficient memory management.
NOTE: This class is intended to be used for offline inference. For online
serving, use the `AsyncLLMEngine` class instead.
NOTE: For the comprehensive list of arguments, see `EngineArgs`.
Args:
model: The name or path of a HuggingFace Transformers model.
tokenizer: The name or path of a HuggingFace Transformers tokenizer.
tokenizer_mode: The tokenizer mode. "auto" will use the fast tokenizer
if available, and "slow" will always use the slow tokenizer.
trust_remote_code: Trust remote code (e.g., from HuggingFace) when
downloading the model and tokenizer.
tensor_parallel_size: The number of GPUs to use for distributed
execution with tensor parallelism.
dtype: The data type for the model weights and activations. Currently,
we support `float32`, `float16`, and `bfloat16`. If `auto`, we use
the `torch_dtype` attribute specified in the model config file.
However, if the `torch_dtype` in the config is `float32`, we will
use `float16` instead.
quantization: The method used to quantize the model weights. Currently,
we support "awq", "gptq" and "squeezellm". If None, we first check
the `quantization_config` attribute in the model config file. If
that is None, we assume the model weights are not quantized and use
`dtype` to determine the data type of the weights.
revision: The specific model version to use. It can be a branch name,
a tag name, or a commit id.
tokenizer_revision: The specific tokenizer version to use. It can be a
branch name, a tag name, or a commit id.
seed: The seed to initialize the random number generator for sampling.
gpu_memory_utilization: The ratio (between 0 and 1) of GPU memory to
reserve for the model weights, activations, and KV cache. Higher
values will increase the KV cache size and thus improve the model's
throughput. However, if the value is too high, it may cause out-of-
memory (OOM) errors.
swap_space: The size (GiB) of CPU memory per GPU to use as swap space.
This can be used for temporarily storing the states of the requests
when their `best_of` sampling parameters are larger than 1. If all
requests will have `best_of=1`, you can safely set this to 0.
Otherwise, too small values may cause out-of-memory (OOM) errors.
enforce_eager: Whether to enforce eager execution. If True, we will
disable CUDA graph and always execute the model in eager mode.
If False, we will use CUDA graph and eager execution in hybrid.
max_context_len_to_capture: Maximum context len covered by CUDA graphs.
When a sequence has context length larger than this, we fall back
to eager mode.
"""
def __init__(
self,
model: str,
tokenizer: Optional[str] = None,
tokenizer_mode: str = "auto",
trust_remote_code: bool = False,
tensor_parallel_size: int = 1,
dtype: str = "auto",
quantization: Optional[str] = None,
revision: Optional[str] = None,
tokenizer_revision: Optional[str] = None,
seed: int = 0,
gpu_memory_utilization: float = 0.9,
swap_space: int = 4,
enforce_eager: bool = False,
max_context_len_to_capture: int = 8192,
**kwargs,
) -> None:
if "disable_log_stats" not in kwargs:
kwargs["disable_log_stats"] = True
engine_args = EngineArgs(
model=model,
tokenizer=tokenizer,
tokenizer_mode=tokenizer_mode,
trust_remote_code=trust_remote_code,
tensor_parallel_size=tensor_parallel_size,
dtype=dtype,
quantization=quantization,
revision=revision,
tokenizer_revision=tokenizer_revision,
seed=seed,
gpu_memory_utilization=gpu_memory_utilization,
swap_space=swap_space,
enforce_eager=enforce_eager,
max_context_len_to_capture=max_context_len_to_capture,
**kwargs,
)
self.llm_engine = LLMEngine.from_engine_args(engine_args)
self.request_counter = Counter()
def get_tokenizer(
self) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
return self.llm_engine.tokenizer
def set_tokenizer(
self,
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
) -> None:
self.llm_engine.tokenizer = tokenizer
def generate(
self,
prompts: Optional[Union[str, List[str]]] = None,
sampling_params: Optional[SamplingParams] = None,
prompt_token_ids: Optional[List[List[int]]] = None,
use_tqdm: bool = True,
) -> List[RequestOutput]:
"""Generates the completions for the input prompts.
NOTE: This class automatically batches the given prompts, considering
the memory constraint. For the best performance, put all of your prompts
into a single list and pass it to this method.
Args:
prompts: A list of prompts to generate completions for.
sampling_params: The sampling parameters for text generation. If
None, we use the default sampling parameters.
prompt_token_ids: A list of token IDs for the prompts. If None, we
use the tokenizer to convert the prompts to token IDs.
use_tqdm: Whether to use tqdm to display the progress bar.
Returns:
A list of `RequestOutput` objects containing the generated
completions in the same order as the input prompts.
"""
if prompts is None and prompt_token_ids is None:
raise ValueError("Either prompts or prompt_token_ids must be "
"provided.")
if isinstance(prompts, str):
# Convert a single prompt to a list.
prompts = [prompts]
if (prompts is not None and prompt_token_ids is not None
and len(prompts) != len(prompt_token_ids)):
raise ValueError("The lengths of prompts and prompt_token_ids "
"must be the same.")
if sampling_params is None:
# Use default sampling params.
sampling_params = SamplingParams()
# Add requests to the engine.
num_requests = len(prompts) if prompts is not None else len(
prompt_token_ids)
for i in range(num_requests):
prompt = prompts[i] if prompts is not None else None
token_ids = None if prompt_token_ids is None else prompt_token_ids[
i]
self._add_request(prompt, sampling_params, token_ids)
return self._run_engine(use_tqdm)
def _add_request(
self,
prompt: Optional[str],
sampling_params: SamplingParams,
prompt_token_ids: Optional[List[int]],
) -> None:
request_id = str(next(self.request_counter))
self.llm_engine.add_request(request_id, prompt, sampling_params,
prompt_token_ids)
def _run_engine(self, use_tqdm: bool) -> List[RequestOutput]:
# Initialize tqdm.
if use_tqdm:
num_requests = self.llm_engine.get_num_unfinished_requests()
pbar = tqdm(total=num_requests, desc="Processed prompts")
# Run the engine.
outputs: List[RequestOutput] = []
while self.llm_engine.has_unfinished_requests():
step_outputs = self.llm_engine.step()
for output in step_outputs:
if output.finished:
outputs.append(output)
if use_tqdm:
pbar.update(1)
if use_tqdm:
pbar.close()
# Sort the outputs by request ID.
# This is necessary because some requests may be finished earlier than
# its previous requests.
outputs = sorted(outputs, key=lambda x: int(x.request_id))
return outputs
# Adapted from
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/serve/openai_api_server.py
import argparse
import asyncio
import codecs
import json
import time
from http import HTTPStatus
from typing import AsyncGenerator, Dict, List, Optional, Tuple, Union
from aioprometheus import MetricsMiddleware
from aioprometheus.asgi.starlette import metrics
import fastapi
import uvicorn
from fastapi import Request
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, StreamingResponse, Response
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.engine.metrics import add_global_metrics_labels
from vllm.entrypoints.openai.protocol import (
CompletionRequest, CompletionResponse, CompletionResponseChoice,
CompletionResponseStreamChoice, CompletionStreamResponse,
ChatCompletionRequest, ChatCompletionResponse,
ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse, ChatMessage, DeltaMessage, ErrorResponse,
LogProbs, ModelCard, ModelList, ModelPermission, UsageInfo)
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.utils import random_uuid
TIMEOUT_KEEP_ALIVE = 5 # seconds
logger = init_logger(__name__)
served_model = None
app = fastapi.FastAPI()
engine = None
response_role = None
def parse_args():
parser = argparse.ArgumentParser(
description="vLLM OpenAI-Compatible RESTful API server.")
parser.add_argument("--host", type=str, default=None, help="host name")
parser.add_argument("--port", type=int, default=8000, help="port number")
parser.add_argument("--allow-credentials",
action="store_true",
help="allow credentials")
parser.add_argument("--allowed-origins",
type=json.loads,
default=["*"],
help="allowed origins")
parser.add_argument("--allowed-methods",
type=json.loads,
default=["*"],
help="allowed methods")
parser.add_argument("--allowed-headers",
type=json.loads,
default=["*"],
help="allowed headers")
parser.add_argument("--served-model-name",
type=str,
default=None,
help="The model name used in the API. If not "
"specified, the model name will be the same as "
"the huggingface name.")
parser.add_argument("--chat-template",
type=str,
default=None,
help="The file path to the chat template, "
"or the template in single-line form "
"for the specified model")
parser.add_argument("--response-role",
type=str,
default="assistant",
help="The role name to return if "
"`request.add_generation_prompt=true`.")
parser.add_argument("--ssl-keyfile",
type=str,
default=None,
help="The file path to the SSL key file")
parser.add_argument("--ssl-certfile",
type=str,
default=None,
help="The file path to the SSL cert file")
parser = AsyncEngineArgs.add_cli_args(parser)
return parser.parse_args()
app.add_middleware(MetricsMiddleware) # Trace HTTP server metrics
app.add_route("/metrics", metrics) # Exposes HTTP metrics
def create_error_response(status_code: HTTPStatus,
message: str) -> JSONResponse:
return JSONResponse(ErrorResponse(message=message,
type="invalid_request_error").dict(),
status_code=status_code.value)
def load_chat_template(args, tokenizer):
if args.chat_template is not None:
try:
with open(args.chat_template, "r") as f:
chat_template = f.read()
except OSError:
# If opening a file fails, set chat template to be args to
# ensure we decode so our escape are interpreted correctly
chat_template = codecs.decode(args.chat_template, "unicode_escape")
tokenizer.chat_template = chat_template
logger.info(
f"Using supplied chat template:\n{tokenizer.chat_template}")
elif tokenizer.chat_template is not None:
logger.info(f"Using default chat template:\n{tokenizer.chat_template}")
else:
logger.warning("No chat template provided. Chat API will not work.")
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(_, exc):
return create_error_response(HTTPStatus.BAD_REQUEST, str(exc))
async def check_model(request) -> Optional[JSONResponse]:
if request.model == served_model:
return
ret = create_error_response(
HTTPStatus.NOT_FOUND,
f"The model `{request.model}` does not exist.",
)
return ret
async def check_length(
request: Union[ChatCompletionRequest, CompletionRequest],
prompt: Optional[str] = None,
prompt_ids: Optional[List[int]] = None
) -> Tuple[List[int], Optional[JSONResponse]]:
assert (not (prompt is None and prompt_ids is None)
and not (prompt is not None and prompt_ids is not None)
), "Either prompt or prompt_ids should be provided."
input_ids = prompt_ids if prompt_ids is not None else tokenizer(
prompt).input_ids
token_num = len(input_ids)
if request.max_tokens is None:
request.max_tokens = max_model_len - token_num
if token_num + request.max_tokens > max_model_len:
return input_ids, create_error_response(
HTTPStatus.BAD_REQUEST,
f"This model's maximum context length is {max_model_len} tokens. "
f"However, you requested {request.max_tokens + token_num} tokens "
f"({token_num} in the messages, "
f"{request.max_tokens} in the completion). "
f"Please reduce the length of the messages or completion.",
)
else:
return input_ids, None
@app.get("/health")
async def health() -> Response:
"""Health check."""
return Response(status_code=200)
@app.get("/v1/models")
async def show_available_models():
"""Show available models. Right now we only have one model."""
model_cards = [
ModelCard(id=served_model,
root=served_model,
permission=[ModelPermission()])
]
return ModelList(data=model_cards)
def create_logprobs(
token_ids: List[int],
top_logprobs: Optional[List[Optional[Dict[int, float]]]] = None,
num_output_top_logprobs: Optional[int] = None,
initial_text_offset: int = 0,
) -> LogProbs:
"""Create OpenAI-style logprobs."""
logprobs = LogProbs()
last_token_len = 0
if num_output_top_logprobs:
logprobs.top_logprobs = []
for i, token_id in enumerate(token_ids):
step_top_logprobs = top_logprobs[i]
if step_top_logprobs is not None:
token_logprob = step_top_logprobs[token_id]
else:
token_logprob = None
token = tokenizer.convert_ids_to_tokens(token_id)
logprobs.tokens.append(token)
logprobs.token_logprobs.append(token_logprob)
if len(logprobs.text_offset) == 0:
logprobs.text_offset.append(initial_text_offset)
else:
logprobs.text_offset.append(logprobs.text_offset[-1] +
last_token_len)
last_token_len = len(token)
if num_output_top_logprobs:
logprobs.top_logprobs.append({
tokenizer.convert_ids_to_tokens(i): p
for i, p in step_top_logprobs.items()
} if step_top_logprobs else None)
return logprobs
@app.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest,
raw_request: Request):
"""Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/chat/create
for the API specification. This API mimics the OpenAI ChatCompletion API.
NOTE: Currently we do not support the following features:
- function_call (Users should implement this by themselves)
- logit_bias (to be supported by vLLM engine)
"""
error_check_ret = await check_model(request)
if error_check_ret is not None:
return error_check_ret
if request.logit_bias is not None and len(request.logit_bias) > 0:
# TODO: support logit_bias in vLLM engine.
return create_error_response(HTTPStatus.BAD_REQUEST,
"logit_bias is not currently supported")
try:
prompt = tokenizer.apply_chat_template(
conversation=request.messages,
tokenize=False,
add_generation_prompt=request.add_generation_prompt)
except Exception as e:
logger.error(f"Error in applying chat template from request: {str(e)}")
return create_error_response(HTTPStatus.BAD_REQUEST, str(e))
token_ids, error_check_ret = await check_length(request, prompt=prompt)
if error_check_ret is not None:
return error_check_ret
model_name = request.model
request_id = f"cmpl-{random_uuid()}"
created_time = int(time.monotonic())
chunk_object_type = "chat.completion.chunk"
try:
spaces_between_special_tokens = request.spaces_between_special_tokens
sampling_params = SamplingParams(
n=request.n,
presence_penalty=request.presence_penalty,
frequency_penalty=request.frequency_penalty,
repetition_penalty=request.repetition_penalty,
temperature=request.temperature,
top_p=request.top_p,
min_p=request.min_p,
stop=request.stop,
stop_token_ids=request.stop_token_ids,
max_tokens=request.max_tokens,
best_of=request.best_of,
top_k=request.top_k,
ignore_eos=request.ignore_eos,
use_beam_search=request.use_beam_search,
skip_special_tokens=request.skip_special_tokens,
spaces_between_special_tokens=spaces_between_special_tokens,
)
except ValueError as e:
return create_error_response(HTTPStatus.BAD_REQUEST, str(e))
result_generator = engine.generate(prompt, sampling_params, request_id,
token_ids)
def get_role() -> str:
if request.add_generation_prompt:
return response_role
else:
return request.messages[-1]["role"]
async def completion_stream_generator() -> AsyncGenerator[str, None]:
# Send first response for each request.n (index) with the role
role = get_role()
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i, delta=DeltaMessage(role=role), finish_reason=None)
chunk = ChatCompletionStreamResponse(id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.json(exclude_unset=True, ensure_ascii=False)
yield f"data: {data}\n\n"
# Send response to echo the input portion of the last message
if request.echo:
last_msg_content = ""
if request.messages and isinstance(
request.messages, list) and request.messages[-1].get(
"content") and request.messages[-1].get(
"role") == role:
last_msg_content = request.messages[-1]["content"]
if last_msg_content:
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=last_msg_content),
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.json(exclude_unset=True, ensure_ascii=False)
yield f"data: {data}\n\n"
# Send response for each token for each request.n (index)
previous_texts = [""] * request.n
previous_num_tokens = [0] * request.n
finish_reason_sent = [False] * request.n
async for res in result_generator:
res: RequestOutput
for output in res.outputs:
i = output.index
if finish_reason_sent[i]:
continue
if output.finish_reason is None:
# Send token-by-token response for each request.n
delta_text = output.text[len(previous_texts[i]):]
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.json(exclude_unset=True, ensure_ascii=False)
yield f"data: {data}\n\n"
else:
# Send the finish response for each request.n only once
prompt_tokens = len(res.prompt_token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=previous_num_tokens[i],
total_tokens=prompt_tokens + previous_num_tokens[i],
)
choice_data = ChatCompletionResponseStreamChoice(
index=i, delta=[], finish_reason=output.finish_reason)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
if final_usage is not None:
chunk.usage = final_usage
data = chunk.json(exclude_unset=True,
exclude_none=True,
ensure_ascii=False)
yield f"data: {data}\n\n"
finish_reason_sent[i] = True
# Send the final done message after all response.n are finished
yield "data: [DONE]\n\n"
async def completion_full_generator():
final_res: RequestOutput = None
async for res in result_generator:
if await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await engine.abort(request_id)
return create_error_response(HTTPStatus.BAD_REQUEST,
"Client disconnected")
final_res = res
assert final_res is not None
choices = []
role = get_role()
for output in final_res.outputs:
choice_data = ChatCompletionResponseChoice(
index=output.index,
message=ChatMessage(role=role, content=output.text),
finish_reason=output.finish_reason,
)
choices.append(choice_data)
if request.echo:
last_msg_content = ""
if request.messages and isinstance(
request.messages, list) and request.messages[-1].get(
"content") and request.messages[-1].get(
"role") == role:
last_msg_content = request.messages[-1]["content"]
for choice in choices:
full_message = last_msg_content + choice.message.content
choice.message.content = full_message
num_prompt_tokens = len(final_res.prompt_token_ids)
num_generated_tokens = sum(
len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
response = ChatCompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
return response
# Streaming response
if request.stream:
return StreamingResponse(completion_stream_generator(),
media_type="text/event-stream")
else:
return await completion_full_generator()
@app.post("/v1/completions")
async def create_completion(request: CompletionRequest, raw_request: Request):
"""Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/completions/create
for the API specification. This API mimics the OpenAI Completion API.
NOTE: Currently we do not support the following features:
- suffix (the language models we currently support do not support
suffix)
- logit_bias (to be supported by vLLM engine)
"""
error_check_ret = await check_model(request)
if error_check_ret is not None:
return error_check_ret
# OpenAI API supports echoing the prompt when max_tokens is 0.
echo_without_generation = request.echo and request.max_tokens == 0
if request.suffix is not None:
# The language models we currently support do not support suffix.
return create_error_response(HTTPStatus.BAD_REQUEST,
"suffix is not currently supported")
if request.logit_bias is not None and len(request.logit_bias) > 0:
# TODO: support logit_bias in vLLM engine.
return create_error_response(HTTPStatus.BAD_REQUEST,
"logit_bias is not currently supported")
model_name = request.model
request_id = f"cmpl-{random_uuid()}"
use_token_ids = False
if isinstance(request.prompt, list):
if len(request.prompt) == 0:
return create_error_response(HTTPStatus.BAD_REQUEST,
"please provide at least one prompt")
first_element = request.prompt[0]
if isinstance(first_element, int):
use_token_ids = True
prompt = request.prompt
elif isinstance(first_element, (str, list)):
# TODO: handles multiple prompt case in list[list[int]]
if len(request.prompt) > 1:
return create_error_response(
HTTPStatus.BAD_REQUEST,
"multiple prompts in a batch is not currently supported")
use_token_ids = not isinstance(first_element, str)
prompt = request.prompt[0]
else:
prompt = request.prompt
if use_token_ids:
_, error_check_ret = await check_length(request, prompt_ids=prompt)
else:
token_ids, error_check_ret = await check_length(request, prompt=prompt)
if error_check_ret is not None:
return error_check_ret
created_time = int(time.monotonic())
try:
spaces_between_special_tokens = request.spaces_between_special_tokens
sampling_params = SamplingParams(
n=request.n,
best_of=request.best_of,
presence_penalty=request.presence_penalty,
frequency_penalty=request.frequency_penalty,
repetition_penalty=request.repetition_penalty,
temperature=request.temperature,
top_p=request.top_p,
top_k=request.top_k,
min_p=request.min_p,
stop=request.stop,
stop_token_ids=request.stop_token_ids,
ignore_eos=request.ignore_eos,
max_tokens=request.max_tokens
if not echo_without_generation else 1,
logprobs=request.logprobs,
use_beam_search=request.use_beam_search,
prompt_logprobs=request.logprobs if request.echo else None,
skip_special_tokens=request.skip_special_tokens,
spaces_between_special_tokens=spaces_between_special_tokens,
)
except ValueError as e:
return create_error_response(HTTPStatus.BAD_REQUEST, str(e))
if use_token_ids:
result_generator = engine.generate(None,
sampling_params,
request_id,
prompt_token_ids=prompt)
else:
result_generator = engine.generate(prompt, sampling_params, request_id,
token_ids)
# Similar to the OpenAI API, when n != best_of, we do not stream the
# results. In addition, we do not stream the results when use beam search.
stream = (request.stream
and (request.best_of is None or request.n == request.best_of)
and not request.use_beam_search)
def create_stream_response_json(
index: int,
text: str,
logprobs: Optional[LogProbs] = None,
finish_reason: Optional[str] = None,
usage: Optional[UsageInfo] = None,
) -> str:
choice_data = CompletionResponseStreamChoice(
index=index,
text=text,
logprobs=logprobs,
finish_reason=finish_reason,
)
response = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[choice_data],
)
if usage is not None:
response.usage = usage
response_json = response.json(exclude_unset=True, ensure_ascii=False)
return response_json
async def completion_stream_generator() -> AsyncGenerator[str, None]:
previous_texts = [""] * request.n
previous_num_tokens = [0] * request.n
has_echoed = [False] * request.n
async for res in result_generator:
res: RequestOutput
for output in res.outputs:
i = output.index
delta_text = output.text[len(previous_texts[i]):]
token_ids = output.token_ids[previous_num_tokens[i]:]
if request.logprobs is not None:
top_logprobs = output.logprobs[previous_num_tokens[i]:]
else:
top_logprobs = None
offsets = len(previous_texts[i])
if request.echo and not has_echoed[i]:
if not echo_without_generation:
delta_text = res.prompt + delta_text
token_ids = res.prompt_token_ids + token_ids
if top_logprobs:
top_logprobs = res.prompt_logprobs + top_logprobs
else: # only just return the prompt
delta_text = res.prompt
token_ids = res.prompt_token_ids
if top_logprobs:
top_logprobs = res.prompt_logprobs
has_echoed[i] = True
if request.logprobs is not None:
logprobs = create_logprobs(
token_ids=token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
initial_text_offset=offsets,
)
else:
logprobs = None
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
finish_reason = output.finish_reason
response_json = create_stream_response_json(
index=i,
text=delta_text,
logprobs=logprobs,
finish_reason=finish_reason,
)
yield f"data: {response_json}\n\n"
if output.finish_reason is not None:
logprobs = (LogProbs()
if request.logprobs is not None else None)
prompt_tokens = len(res.prompt_token_ids)
completion_tokens = len(output.token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
response_json = create_stream_response_json(
index=i,
text="",
logprobs=logprobs,
finish_reason=output.finish_reason,
usage=final_usage,
)
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
# Streaming response
if stream:
return StreamingResponse(completion_stream_generator(),
media_type="text/event-stream")
# Non-streaming response
final_res: RequestOutput = None
async for res in result_generator:
if await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await engine.abort(request_id)
return create_error_response(HTTPStatus.BAD_REQUEST,
"Client disconnected")
final_res = res
assert final_res is not None
choices = []
prompt_token_ids = final_res.prompt_token_ids
prompt_logprobs = final_res.prompt_logprobs
prompt_text = final_res.prompt
for output in final_res.outputs:
if request.logprobs is not None:
if not echo_without_generation:
token_ids = output.token_ids
top_logprobs = output.logprobs
if request.echo:
token_ids = prompt_token_ids + token_ids
top_logprobs = prompt_logprobs + top_logprobs
else:
token_ids = prompt_token_ids
top_logprobs = prompt_logprobs
logprobs = create_logprobs(
token_ids=token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
)
else:
logprobs = None
if not echo_without_generation:
output_text = output.text
if request.echo:
output_text = prompt_text + output_text
else:
output_text = prompt_text
choice_data = CompletionResponseChoice(
index=output.index,
text=output_text,
logprobs=logprobs,
finish_reason=output.finish_reason,
)
choices.append(choice_data)
num_prompt_tokens = len(final_res.prompt_token_ids)
num_generated_tokens = sum(
len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
response = CompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
if request.stream:
# When user requests streaming but we don't stream, we still need to
# return a streaming response with a single event.
response_json = response.json(ensure_ascii=False)
async def fake_stream_generator() -> AsyncGenerator[str, None]:
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(fake_stream_generator(),
media_type="text/event-stream")
return response
if __name__ == "__main__":
args = parse_args()
app.add_middleware(
CORSMiddleware,
allow_origins=args.allowed_origins,
allow_credentials=args.allow_credentials,
allow_methods=args.allowed_methods,
allow_headers=args.allowed_headers,
)
logger.info(f"args: {args}")
if args.served_model_name is not None:
served_model = args.served_model_name
else:
served_model = args.model
response_role = args.response_role
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(engine_args)
engine_model_config = asyncio.run(engine.get_model_config())
max_model_len = engine_model_config.max_model_len
# A separate tokenizer to map token IDs to strings.
tokenizer = get_tokenizer(
engine_model_config.tokenizer,
tokenizer_mode=engine_model_config.tokenizer_mode,
trust_remote_code=engine_model_config.trust_remote_code)
load_chat_template(args, tokenizer)
# Register labels for metrics
add_global_metrics_labels(model_name=engine_args.model)
uvicorn.run(app,
host=args.host,
port=args.port,
log_level="info",
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
ssl_keyfile=args.ssl_keyfile,
ssl_certfile=args.ssl_certfile)
# Adapted from
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
import time
from typing import Dict, List, Literal, Optional, Union
from pydantic import BaseModel, Field
from vllm.utils import random_uuid
class ErrorResponse(BaseModel):
object: str = "error"
message: str
type: str
param: Optional[str] = None
code: Optional[str] = None
class ModelPermission(BaseModel):
id: str = Field(default_factory=lambda: f"modelperm-{random_uuid()}")
object: str = "model_permission"
created: int = Field(default_factory=lambda: int(time.time()))
allow_create_engine: bool = False
allow_sampling: bool = True
allow_logprobs: bool = True
allow_search_indices: bool = False
allow_view: bool = True
allow_fine_tuning: bool = False
organization: str = "*"
group: Optional[str] = None
is_blocking: str = False
class ModelCard(BaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "vllm"
root: Optional[str] = None
parent: Optional[str] = None
permission: List[ModelPermission] = Field(default_factory=list)
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = Field(default_factory=list)
class UsageInfo(BaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
class ChatCompletionRequest(BaseModel):
model: str
messages: Union[str, List[Dict[str, str]]]
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
n: Optional[int] = 1
max_tokens: Optional[int] = None
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
presence_penalty: Optional[float] = 0.0
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[Dict[str, float]] = None
user: Optional[str] = None
# Additional parameters supported by vLLM
best_of: Optional[int] = None
top_k: Optional[int] = -1
ignore_eos: Optional[bool] = False
use_beam_search: Optional[bool] = False
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
skip_special_tokens: Optional[bool] = True
spaces_between_special_tokens: Optional[bool] = True
add_generation_prompt: Optional[bool] = True
echo: Optional[bool] = False
repetition_penalty: Optional[float] = 1.0
min_p: Optional[float] = 0.0
class CompletionRequest(BaseModel):
model: str
# a string, array of strings, array of tokens, or array of token arrays
prompt: Union[List[int], List[List[int]], str, List[str]]
suffix: Optional[str] = None
max_tokens: Optional[int] = 16
temperature: Optional[float] = 1.0
top_p: Optional[float] = 1.0
n: Optional[int] = 1
stream: Optional[bool] = False
logprobs: Optional[int] = None
echo: Optional[bool] = False
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
presence_penalty: Optional[float] = 0.0
frequency_penalty: Optional[float] = 0.0
best_of: Optional[int] = None
logit_bias: Optional[Dict[str, float]] = None
user: Optional[str] = None
# Additional parameters supported by vLLM
top_k: Optional[int] = -1
ignore_eos: Optional[bool] = False
use_beam_search: Optional[bool] = False
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
skip_special_tokens: Optional[bool] = True
spaces_between_special_tokens: Optional[bool] = True
repetition_penalty: Optional[float] = 1.0
min_p: Optional[float] = 0.0
class LogProbs(BaseModel):
text_offset: List[int] = Field(default_factory=list)
token_logprobs: List[Optional[float]] = Field(default_factory=list)
tokens: List[str] = Field(default_factory=list)
top_logprobs: Optional[List[Optional[Dict[int, float]]]] = None
class CompletionResponseChoice(BaseModel):
index: int
text: str
logprobs: Optional[LogProbs] = None
finish_reason: Optional[Literal["stop", "length"]] = None
class CompletionResponse(BaseModel):
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
object: str = "text_completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[CompletionResponseChoice]
usage: UsageInfo
class CompletionResponseStreamChoice(BaseModel):
index: int
text: str
logprobs: Optional[LogProbs] = None
finish_reason: Optional[Literal["stop", "length"]] = None
class CompletionStreamResponse(BaseModel):
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
object: str = "text_completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[CompletionResponseStreamChoice]
usage: Optional[UsageInfo]
class ChatMessage(BaseModel):
role: str
content: str
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
finish_reason: Optional[Literal["stop", "length"]] = None
class ChatCompletionResponse(BaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
object: str = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: UsageInfo
class DeltaMessage(BaseModel):
role: Optional[str] = None
content: Optional[str] = None
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length"]] = None
class ChatCompletionStreamResponse(BaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
object: str = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]
usage: Optional[UsageInfo] = Field(
default=None, description="data about request and response")
# Adapted from
# https://github.com/skypilot-org/skypilot/blob/86dc0f6283a335e4aa37b3c10716f90999f48ab6/sky/sky_logging.py
"""Logging configuration for vLLM."""
import logging
import sys
_FORMAT = "%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s"
_DATE_FORMAT = "%m-%d %H:%M:%S"
class NewLineFormatter(logging.Formatter):
"""Adds logging prefix to newlines to align multi-line messages."""
def __init__(self, fmt, datefmt=None):
logging.Formatter.__init__(self, fmt, datefmt)
def format(self, record):
msg = logging.Formatter.format(self, record)
if record.message != "":
parts = msg.split(record.message)
msg = msg.replace("\n", "\r\n" + parts[0])
return msg
_root_logger = logging.getLogger("vllm")
_default_handler = None
def _setup_logger():
_root_logger.setLevel(logging.DEBUG)
global _default_handler
if _default_handler is None:
_default_handler = logging.StreamHandler(sys.stdout)
_default_handler.flush = sys.stdout.flush # type: ignore
_default_handler.setLevel(logging.INFO)
_root_logger.addHandler(_default_handler)
fmt = NewLineFormatter(_FORMAT, datefmt=_DATE_FORMAT)
_default_handler.setFormatter(fmt)
# Setting this will avoid the message
# being propagated to the parent logger.
_root_logger.propagate = False
# The logger is initialized when the module is imported.
# This is thread-safe as the module is only imported once,
# guaranteed by the Python GIL.
_setup_logger()
def init_logger(name: str):
# Use the same settings as above for root logger
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
logger.addHandler(_default_handler)
logger.propagate = False
return logger
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.model_loader import get_model
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.utils import set_random_seed
__all__ = [
"InputMetadata",
"get_model",
"SamplingMetadata",
"set_random_seed",
]
from typing import List, Optional
import torch
class InputMetadata:
"""Metadata for input sequences. Used in PagedAttention.
Args:
prompt_lens: Lengths of prompts.
slot_mapping: The address to write the new KV to of each token.
max_context_len: The maximum context length.
context_lens: the length of attention context for each sequence.
block_tables: The block tables. (Seq id -> list of physical block)
"""
def __init__(
self,
prompt_lens: List[int],
slot_mapping: torch.Tensor,
max_context_len: Optional[int],
context_lens: Optional[torch.Tensor],
block_tables: Optional[torch.Tensor],
use_cuda_graph: bool,
) -> None:
self.prompt_lens = prompt_lens
self.max_context_len = max_context_len
self.slot_mapping = slot_mapping
self.context_lens = context_lens
self.block_tables = block_tables
self.use_cuda_graph = use_cuda_graph
self.is_prompt = len(prompt_lens) > 0
# Set during the execution of the first attention op.
# FIXME(woosuk): This is a hack.
self.attn_bias = None
def __repr__(self) -> str:
return ("InputMetadata("
f"prompt_lens={self.prompt_lens}, "
f"max_context_len={self.max_context_len}, "
f"slot_mapping={self.slot_mapping}, "
f"context_lens={self.context_lens}, "
f"block_tables={self.block_tables}, "
f"use_cuda_graph={self.use_cuda_graph})")
"""Custom activation functions."""
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from vllm._C import ops
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.utils import divide
from vllm.model_executor.utils import set_weight_attrs
class SiluAndMul(nn.Module):
"""An activation function for SwiGLU.
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
Shapes:
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
return: (batch_size, seq_len, d) or (num_tokens, d)
"""
def _forward(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
d = x.shape[-1] // 2
return F.silu(x[..., :d]) * x[..., d:]
def forward(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
ops.silu_and_mul(out, x)
return out
class NewGELU(nn.Module):
def _forward(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
c = math.sqrt(2.0 / math.pi)
return 0.5 * x * (1.0 + torch.tanh(c *
(x + 0.044715 * torch.pow(x, 3.0))))
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = torch.empty_like(x)
ops.gelu_new(out, x)
return out
class FastGELU(nn.Module):
def _forward(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 *
(1.0 + 0.044715 * x * x)))
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = torch.empty_like(x)
ops.gelu_fast(out, x)
return out
class ScaledActivation(nn.Module):
"""An activation function with post-scale parameters.
This is used for some quantization methods like AWQ.
"""
def __init__(
self,
act_module: nn.Module,
intermediate_size: int,
input_is_parallel: bool = True,
params_dtype: Optional[torch.dtype] = None,
):
super().__init__()
self.act = act_module
self.input_is_parallel = input_is_parallel
if input_is_parallel:
tp_size = get_tensor_model_parallel_world_size()
intermediate_size_per_partition = divide(intermediate_size,
tp_size)
else:
intermediate_size_per_partition = intermediate_size
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.scales = nn.Parameter(
torch.empty(intermediate_size_per_partition,
dtype=params_dtype,
device="cuda"))
set_weight_attrs(self.scales, {"weight_loader": self.weight_loader})
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.act(x) / self.scales
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor):
param_data = param.data
if self.input_is_parallel:
tp_rank = get_tensor_model_parallel_rank()
shard_size = param_data.shape[0]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(0, start_idx, shard_size)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
_ACTIVATION_REGISTRY = {
"gelu": nn.GELU(),
"gelu_fast": FastGELU(),
"gelu_new": NewGELU(),
"gelu_pytorch_tanh": nn.GELU(approximate="tanh"),
"relu": nn.ReLU(),
}
def get_act_fn(
act_fn_name: str,
quant_config: Optional[QuantizationConfig] = None,
intermediate_size: Optional[int] = None,
input_is_parallel: bool = True,
params_dtype: Optional[torch.dtype] = None,
) -> nn.Module:
"""Get an activation function by name."""
act_fn_name = act_fn_name.lower()
if act_fn_name not in _ACTIVATION_REGISTRY:
raise ValueError(
f"Activation function {act_fn_name!r} is not supported.")
act_fn = _ACTIVATION_REGISTRY[act_fn_name]
if (quant_config is not None
and act_fn_name in quant_config.get_scaled_act_names()):
if intermediate_size is None:
raise ValueError("intermediate_size must be specified for scaled "
"activation functions.")
return ScaledActivation(act_fn, intermediate_size, input_is_parallel,
params_dtype)
return act_fn
"""Multi-head attention."""
from typing import List, Optional
import torch
import torch.nn as nn
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import (BlockDiagonalCausalMask,
LowerTriangularMaskWithTensorBias)
from vllm._C import ops
from vllm._C import cache_ops
from vllm.model_executor.input_metadata import InputMetadata
from vllm.utils import is_hip
_SUPPORTED_HEAD_SIZES = [64, 80, 96, 112, 128, 256]
# Should be the same as PARTITION_SIZE in `paged_attention_v2_launcher`.
_PARTITION_SIZE = 512
class PagedAttention(nn.Module):
"""MHA/MQA/GQA layer with PagedAttention.
This class takes query, key, and value tensors as input. The input tensors
can either contain prompt tokens or generation tokens.
The class does the following:
1. Reshape and store the input key and value tensors in the KV cache.
2. Perform (multi-head/multi-query/grouped-query) attention using either
xformers or the PagedAttention custom op.
3. Return the output tensor.
"""
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: Optional[int] = None,
alibi_slopes: Optional[List[float]] = None,
sliding_window: Optional[int] = None,
) -> None:
super().__init__()
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
self.sliding_window = sliding_window
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
if self.head_size not in _SUPPORTED_HEAD_SIZES:
raise ValueError(f"head_size ({self.head_size}) is not supported. "
f"Supported head sizes: {_SUPPORTED_HEAD_SIZES}.")
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
key_cache: Optional[torch.Tensor],
value_cache: Optional[torch.Tensor],
input_metadata: InputMetadata,
) -> torch.Tensor:
"""PagedAttention forward pass.
Args:
query: shape = [batch_size, seq_len, num_heads * head_size]
key: shape = [batch_size, seq_len, num_kv_heads * head_size]
value: shape = [batch_size, seq_len, num_kv_heads * head_size]
key_cache: shape = [num_blocks, num_kv_heads, head_size/x,
block_size, x]
value_cache: shape = [num_blocks, num_kv_heads, head_size,
block_size]
input_metadata: metadata for the inputs.
Returns:
shape = [batch_size, seq_len, num_heads * head_size]
"""
batch_size, seq_len, hidden_size = query.shape
# Reshape the query, key, and value tensors.
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
# Reshape the keys and values and store them in the cache.
# If key_cache and value_cache are not provided, the new key and value
# vectors will not be cached. This happens during the initial memory
# profiling run.
if key_cache is not None and value_cache is not None:
cache_ops.reshape_and_cache(
key,
value,
key_cache,
value_cache,
input_metadata.slot_mapping.flatten(),
)
if input_metadata.is_prompt:
# Prompt run.
if self.num_kv_heads != self.num_heads:
# As of Nov 2023, xformers only supports MHA. For MQA/GQA,
# project the key and value tensors to the desired number of
# heads.
# TODO(woosuk): Use MQA/GQA kernels for higher performance.
query = query.view(query.shape[0], self.num_kv_heads,
self.num_queries_per_kv, query.shape[-1])
key = key[:, :,
None, :].expand(key.shape[0], self.num_kv_heads,
self.num_queries_per_kv,
key.shape[-1])
value = value[:, :, None, :].expand(value.shape[0],
self.num_kv_heads,
self.num_queries_per_kv,
value.shape[-1])
# Set attention bias if not provided. This typically happens at the
# very attention layer of every iteration.
# FIXME(woosuk): This is a hack.
if input_metadata.attn_bias is None:
if self.alibi_slopes is None:
attn_bias = BlockDiagonalCausalMask.from_seqlens(
[seq_len] * batch_size)
if self.sliding_window is not None:
attn_bias = attn_bias.make_local_attention(
self.sliding_window)
input_metadata.attn_bias = attn_bias
else:
input_metadata.attn_bias = _make_alibi_bias(
self.alibi_slopes, self.num_kv_heads, batch_size,
seq_len, query.dtype)
# TODO(woosuk): Too many view operations. Let's try to reduce them
# in the future for code readability.
if self.alibi_slopes is None:
query = query.unsqueeze(0)
key = key.unsqueeze(0)
value = value.unsqueeze(0)
else:
query = query.unflatten(0, (batch_size, seq_len))
key = key.unflatten(0, (batch_size, seq_len))
value = value.unflatten(0, (batch_size, seq_len))
out = xops.memory_efficient_attention_forward(
query,
key,
value,
attn_bias=input_metadata.attn_bias,
p=0.0,
scale=self.scale,
op=xops.fmha.MemoryEfficientAttentionFlashAttentionOp[0] if
(is_hip()) else None,
)
output = out.view_as(query)
else:
# Decoding run.
if key_cache is not None and value_cache is not None:
output = _paged_attention(
query,
key_cache,
value_cache,
input_metadata,
self.num_kv_heads,
self.scale,
self.alibi_slopes,
)
else:
# This happens during the initial memory profiling run for
# CUDA graphs.
output = torch.zeros_like(query)
# Reshape the output tensor.
return output.view(batch_size, seq_len, hidden_size)
def _make_alibi_bias(
alibi_slopes: torch.Tensor,
num_kv_heads: int,
batch_size: int,
seq_len: int,
dtype: torch.dtype,
) -> LowerTriangularMaskWithTensorBias:
bias = torch.arange(seq_len, dtype=dtype, device="cuda")
# NOTE(zhuohan): HF uses
# `bias = bias[None, :].repeat(prompt_len, 1)`
# here. We find that both biases give the same results, but
# the bias below more accurately follows the original ALiBi
# paper.
bias = bias[None, :] - bias[:, None]
# When using custom attention bias, xformers requires the bias to
# be sliced from a tensor whose length is a multiple of 8.
padded_len = (seq_len + 7) // 8 * 8
num_heads = alibi_slopes.shape[0]
bias = torch.empty(
batch_size,
num_heads,
seq_len,
padded_len,
device=alibi_slopes.device,
dtype=dtype,
)[:, :, :, :seq_len].copy_(bias)
bias.mul_(alibi_slopes[:, None, None])
if num_heads != num_kv_heads:
bias = bias.unflatten(1, (num_kv_heads, num_heads // num_kv_heads))
attn_bias = LowerTriangularMaskWithTensorBias(bias)
return attn_bias
def _paged_attention(
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
input_metadata: InputMetadata,
num_kv_heads: int,
scale: float,
alibi_slopes: Optional[torch.Tensor],
) -> torch.Tensor:
output = torch.empty_like(query)
block_size = value_cache.shape[3]
num_seqs, num_heads, head_size = query.shape
max_num_partitions = (
(input_metadata.max_context_len + _PARTITION_SIZE - 1) //
_PARTITION_SIZE)
# NOTE(woosuk): We use a simple heuristic to decide whether to use
# PagedAttention V1 or V2. If the number of partitions is 1, we use
# V1 to avoid the overhead of reduction. Also, if the number of
# sequences or heads is large, we use V1 since there is enough work
# to parallelize.
# TODO(woosuk): Tune this heuristic.
# For context len > 8192, use V2 kernel to avoid shared memory shortage.
use_v1 = input_metadata.max_context_len <= 8192 and (
max_num_partitions == 1 or num_seqs * num_heads > 512)
if use_v1:
# Run PagedAttention V1.
ops.paged_attention_v1(
output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
input_metadata.block_tables,
input_metadata.context_lens,
block_size,
input_metadata.max_context_len,
alibi_slopes,
)
else:
# Run PagedAttention V2.
assert _PARTITION_SIZE % block_size == 0
tmp_output = torch.empty(
size=(num_seqs, num_heads, max_num_partitions, head_size),
dtype=output.dtype,
device=output.device,
)
exp_sums = torch.empty(
size=(num_seqs, num_heads, max_num_partitions),
dtype=torch.float32,
device=output.device,
)
max_logits = torch.empty_like(exp_sums)
ops.paged_attention_v2(
output,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
input_metadata.block_tables,
input_metadata.context_lens,
block_size,
input_metadata.max_context_len,
alibi_slopes,
)
return output
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment