Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
norm
vllm
Commits
0f4b3219
Unverified
Commit
0f4b3219
authored
Apr 15, 2023
by
Woosuk Kwon
Committed by
GitHub
Apr 15, 2023
Browse files
Support various block sizes & Change default block size to 16 (#38)
parent
84eee24e
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
602 additions
and
619 deletions
+602
-619
benchmark/benchmark_text_completion.py
benchmark/benchmark_text_completion.py
+1
-0
cacheflow/master/block_manager.py
cacheflow/master/block_manager.py
+0
-3
cacheflow/master/scheduler.py
cacheflow/master/scheduler.py
+2
-1
cacheflow/master/server.py
cacheflow/master/server.py
+2
-2
csrc/attention.cpp
csrc/attention.cpp
+0
-16
csrc/attention_kernels.cu
csrc/attention_kernels.cu
+557
-579
csrc/cuda_primitives.h
csrc/cuda_primitives.h
+40
-18
No files found.
benchmark/benchmark_text_completion.py
View file @
0f4b3219
...
...
@@ -268,6 +268,7 @@ if __name__ == '__main__':
f
'
{
model_name
}
-tp
{
args
.
tensor_parallel_size
}
'
,
sample_dir
,
'cacheflow'
,
f
'block
{
args
.
block_size
}
'
,
f
'req-rate-
{
args
.
request_rate
}
'
,
f
'seed
{
args
.
seed
}
'
,
f
'duration-
{
args
.
duration
}
'
,
...
...
cacheflow/master/block_manager.py
View file @
0f4b3219
...
...
@@ -15,9 +15,6 @@ class BlockAllocator:
block_size
:
int
,
num_blocks
:
int
,
)
->
None
:
if
block_size
not
in
[
8
,
16
,
32
]:
raise
ValueError
(
f
'Unsupported block size:
{
block_size
}
'
'The block size must be one of {8, 16, 32}.'
)
self
.
device
=
device
self
.
block_size
=
block_size
self
.
num_blocks
=
num_blocks
...
...
cacheflow/master/scheduler.py
View file @
0f4b3219
...
...
@@ -125,7 +125,8 @@ class Scheduler:
# Swap in the sequence groups in the SWAPPED state if possible.
self
.
swapped
=
self
.
policy
.
sort_by_priority
(
now
,
self
.
swapped
)
while
self
.
swapped
:
# FCFS
while
self
.
swapped
and
not
blocks_to_swap_out
:
seq_group
=
self
.
swapped
[
0
]
# If the sequence group has been preempted in this step, stop.
if
seq_group
in
preempted
:
...
...
cacheflow/master/server.py
View file @
0f4b3219
...
...
@@ -180,9 +180,9 @@ def add_server_arguments(parser: argparse.ArgumentParser):
parser
.
add_argument
(
'--pipeline-parallel-size'
,
'-pp'
,
type
=
int
,
default
=
1
,
help
=
'number of pipeline stages'
)
parser
.
add_argument
(
'--tensor-parallel-size'
,
'-tp'
,
type
=
int
,
default
=
1
,
help
=
'number of tensor parallel replicas'
)
# KV cache arguments
parser
.
add_argument
(
'--block-size'
,
type
=
int
,
default
=
8
,
choices
=
[
8
,
16
,
32
],
help
=
'token block size'
)
parser
.
add_argument
(
'--block-size'
,
type
=
int
,
default
=
16
,
choices
=
[
1
,
2
,
4
,
8
,
16
,
32
,
64
,
128
,
256
],
help
=
'token block size'
)
# NOTE(woosuk): If FlashAttention is used, the float data type is not supported.
parser
.
add_argument
(
'--dtype'
,
type
=
str
,
default
=
'half'
,
choices
=
[
'half'
,
'float'
],
help
=
'data type'
)
parser
.
add_argument
(
'--dtype'
,
type
=
str
,
default
=
'half'
,
choices
=
[
'half'
],
help
=
'data type'
)
# TODO(woosuk): Support fine-grained seeds (e.g., seed per request).
parser
.
add_argument
(
'--seed'
,
type
=
int
,
default
=
0
,
help
=
'random seed'
)
parser
.
add_argument
(
'--swap-space'
,
type
=
int
,
default
=
20
,
help
=
'CPU swap space size (GiB) per GPU'
)
...
...
csrc/attention.cpp
View file @
0f4b3219
...
...
@@ -11,25 +11,9 @@ void single_query_cached_kv_attention(
int
block_size
,
int
max_context_len
);
void
multi_query_cached_kv_attention
(
torch
::
Tensor
&
cu_query_lens
,
torch
::
Tensor
&
out
,
torch
::
Tensor
&
query
,
torch
::
Tensor
&
key_cache
,
torch
::
Tensor
&
value_cache
,
float
scale
,
torch
::
Tensor
&
block_tables
,
torch
::
Tensor
&
context_lens
,
int
block_size
,
int
max_context_len
);
PYBIND11_MODULE
(
TORCH_EXTENSION_NAME
,
m
)
{
m
.
def
(
"single_query_cached_kv_attention"
,
&
single_query_cached_kv_attention
,
"Compute the attention between an input query and the cached key/value tensors"
);
m
.
def
(
"multi_query_cached_kv_attention"
,
&
multi_query_cached_kv_attention
,
"Compute the attention between multiple input queries and the cached key/value tensors"
);
}
csrc/attention_kernels.cu
View file @
0f4b3219
...
...
@@ -8,6 +8,8 @@
#include <algorithm>
#define WARP_SIZE 32
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
namespace
cacheflow
{
...
...
@@ -27,7 +29,8 @@ __global__ void single_query_cached_kv_attention_kernel(
const
int
*
__restrict__
context_lens
,
// [num_seqs]
const
int
max_num_blocks_per_seq
,
const
int
q_stride
)
{
constexpr
int
THREAD_GROUP_SIZE
=
WARP_SIZE
/
BLOCK_SIZE
;
constexpr
int
THREAD_GROUP_SIZE
=
MAX
(
WARP_SIZE
/
BLOCK_SIZE
,
1
);
constexpr
int
NUM_TOKENS_PER_THREAD_GROUP
=
(
BLOCK_SIZE
+
WARP_SIZE
-
1
)
/
WARP_SIZE
;
constexpr
int
NUM_WARPS
=
NUM_THREADS
/
WARP_SIZE
;
const
int
thread_idx
=
threadIdx
.
x
;
const
int
warp_idx
=
thread_idx
/
WARP_SIZE
;
...
...
@@ -39,10 +42,10 @@ __global__ void single_query_cached_kv_attention_kernel(
// A vector type to store a part of a key or a query.
// The vector size is configured in such a way that the threads in a thread group
// fetch or comput 16 bytes at a time.
// fetch or comput
e
16 bytes at a time.
// For example, if the size of a thread group is 4 and the data type is half,
// then the vector size is 16 / (4 * sizeof(half)) == 2.
constexpr
int
VEC_SIZE
=
16
/
(
THREAD_GROUP_SIZE
*
sizeof
(
scalar_t
));
constexpr
int
VEC_SIZE
=
MAX
(
16
/
(
THREAD_GROUP_SIZE
*
sizeof
(
scalar_t
))
,
1
)
;
using
K_vec
=
typename
Vec
<
scalar_t
,
VEC_SIZE
>::
Type
;
using
Q_vec
=
typename
Vec
<
scalar_t
,
VEC_SIZE
>::
Type
;
...
...
@@ -88,284 +91,42 @@ __global__ void single_query_cached_kv_attention_kernel(
// dot product with the query.
for
(
int
block_idx
=
warp_idx
;
block_idx
<
num_blocks
;
block_idx
+=
NUM_WARPS
)
{
const
int
physical_block_number
=
block_table
[
block_idx
];
const
int
physical_block_offset
=
thread_group_idx
%
BLOCK_SIZE
;
const
int
token_idx
=
block_idx
*
BLOCK_SIZE
+
physical_block_offset
;
// Load a key to registers.
// Each thread in a thread group has a different part of the key.
// For example, if the the thread group size is 4, then the first thread in the group
// has 0, 4, 8, ... th vectors of the key, and the second thread has 1, 5, 9, ... th
// vectors of the key, and so on.
K_vec
k_vecs
[
NUM_VECS_PER_THREAD
];
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_VECS_PER_THREAD
;
i
++
)
{
const
scalar_t
*
k_ptr
=
k_cache
+
physical_block_number
*
num_heads
*
HEAD_SIZE
*
BLOCK_SIZE
+
head_idx
*
HEAD_SIZE
*
BLOCK_SIZE
+
physical_block_offset
*
x
;
const
int
vec_idx
=
thread_group_offset
+
i
*
THREAD_GROUP_SIZE
;
const
int
offset1
=
(
vec_idx
*
VEC_SIZE
)
/
x
;
const
int
offset2
=
(
vec_idx
*
VEC_SIZE
)
%
x
;
k_vecs
[
i
]
=
*
reinterpret_cast
<
const
K_vec
*>
(
k_ptr
+
offset1
*
BLOCK_SIZE
*
x
+
offset2
);
}
// Compute dot product.
// This includes a reduction across the threads in the same thread group.
const
float
qk
=
scale
*
Qk_dot
<
scalar_t
,
THREAD_GROUP_SIZE
>::
dot
(
q_vecs
,
k_vecs
);
const
bool
mask
=
token_idx
>=
context_len
;
if
(
thread_group_offset
==
0
)
{
// Store the partial reductions to shared memory.
// NOTE(woosuk): It is required to zero out the masked logits.
logits
[
token_idx
]
=
mask
?
0.
f
:
qk
;
// Update the max value.
qk_max
=
mask
?
qk_max
:
fmaxf
(
qk_max
,
qk
);
}
}
// Perform reduction across the threads in the same warp to get the
// max qk value for each "warp" (not across the thread block yet).
// The 0-th thread of each thread group already has its max qk value.
#pragma unroll
for
(
int
mask
=
WARP_SIZE
/
2
;
mask
>=
THREAD_GROUP_SIZE
;
mask
/=
2
)
{
qk_max
=
fmaxf
(
qk_max
,
__shfl_xor_sync
(
uint32_t
(
-
1
),
qk_max
,
mask
));
}
if
(
lane
==
0
)
{
red_smem
[
warp_idx
]
=
qk_max
;
}
__syncthreads
();
// TODO(woosuk): Refactor this part.
// Get the max qk value for the sequence.
qk_max
=
lane
<
NUM_WARPS
?
red_smem
[
lane
]
:
-
FLT_MAX
;
#pragma unroll
for
(
int
mask
=
NUM_WARPS
/
2
;
mask
>=
1
;
mask
/=
2
)
{
qk_max
=
fmaxf
(
qk_max
,
__shfl_xor_sync
(
uint32_t
(
-
1
),
qk_max
,
mask
));
}
// Broadcast the max qk value to all threads.
qk_max
=
__shfl_sync
(
uint32_t
(
-
1
),
qk_max
,
0
);
// Get the sum of the exp values.
float
exp_sum
=
0.
f
;
for
(
int
i
=
thread_idx
;
i
<
context_len
;
i
+=
NUM_THREADS
)
{
float
val
=
__expf
(
logits
[
i
]
-
qk_max
);
logits
[
i
]
=
val
;
exp_sum
+=
val
;
}
exp_sum
=
block_sum
<
NUM_WARPS
>
(
&
red_smem
[
NUM_WARPS
],
exp_sum
);
// Compute softmax.
const
float
inv_sum
=
__fdividef
(
1.
f
,
exp_sum
+
1e-6
f
);
for
(
int
i
=
thread_idx
;
i
<
context_len
;
i
+=
NUM_THREADS
)
{
logits
[
i
]
*=
inv_sum
;
}
__syncthreads
();
// Each thread will fetch 16 bytes from the value cache at a time.
constexpr
int
V_VEC_SIZE
=
16
/
sizeof
(
scalar_t
);
using
V_vec
=
typename
Vec
<
scalar_t
,
V_VEC_SIZE
>::
Type
;
using
L_vec
=
typename
FloatVec
<
V_vec
>::
Type
;
constexpr
int
NUM_V_VECS_PER_ROW
=
BLOCK_SIZE
/
V_VEC_SIZE
;
constexpr
int
NUM_ROWS_PER_ITER
=
WARP_SIZE
/
NUM_V_VECS_PER_ROW
;
constexpr
int
NUM_ROWS_PER_THREAD
=
(
HEAD_SIZE
+
NUM_ROWS_PER_ITER
-
1
)
/
NUM_ROWS_PER_ITER
;
float
accs
[
NUM_ROWS_PER_THREAD
];
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_ROWS_PER_THREAD
;
i
++
)
{
accs
[
i
]
=
0.
f
;
}
for
(
int
block_idx
=
warp_idx
;
block_idx
<
num_blocks
;
block_idx
+=
NUM_WARPS
)
{
const
int
physical_block_number
=
block_table
[
block_idx
];
const
int
physical_block_offset
=
(
lane
%
NUM_V_VECS_PER_ROW
)
*
V_VEC_SIZE
;
const
int
token_idx
=
block_idx
*
BLOCK_SIZE
+
physical_block_offset
;
L_vec
logits_vec
=
*
reinterpret_cast
<
L_vec
*>
(
logits
+
token_idx
);
const
scalar_t
*
v_ptr
=
v_cache
+
physical_block_number
*
num_heads
*
HEAD_SIZE
*
BLOCK_SIZE
+
head_idx
*
HEAD_SIZE
*
BLOCK_SIZE
;
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_ROWS_PER_THREAD
;
i
++
)
{
const
int
row_idx
=
lane
/
NUM_V_VECS_PER_ROW
+
i
*
NUM_ROWS_PER_ITER
;
if
(
row_idx
<
HEAD_SIZE
)
{
const
int
offset
=
row_idx
*
BLOCK_SIZE
+
physical_block_offset
;
V_vec
v_vec
=
*
reinterpret_cast
<
const
V_vec
*>
(
v_ptr
+
offset
);
accs
[
i
]
+=
dot
(
logits_vec
,
cast_to_float
(
v_vec
));
}
}
}
// Perform reduction within each warp.
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_ROWS_PER_THREAD
;
i
++
)
{
float
acc
=
accs
[
i
];
#pragma unroll
for
(
int
mask
=
NUM_V_VECS_PER_ROW
/
2
;
mask
>=
1
;
mask
/=
2
)
{
acc
+=
__shfl_xor_sync
(
uint32_t
(
-
1
),
acc
,
mask
);
}
accs
[
i
]
=
acc
;
}
for
(
int
i
=
0
;
i
<
NUM_TOKENS_PER_THREAD_GROUP
;
i
++
)
{
const
int
physical_block_offset
=
(
thread_group_idx
+
i
*
WARP_SIZE
)
%
BLOCK_SIZE
;
const
int
token_idx
=
block_idx
*
BLOCK_SIZE
+
physical_block_offset
;
K_vec
k_vecs
[
NUM_VECS_PER_THREAD
];
// NOTE(woosuk): A barrier is required because the shared memory space for logits
// is reused for the output.
__syncthreads
();
// Perform reduction across warps.
float
*
out_smem
=
reinterpret_cast
<
float
*>
(
shared_mem
);
#pragma unroll
for
(
int
i
=
NUM_WARPS
;
i
>
1
;
i
/=
2
)
{
int
mid
=
i
/
2
;
// Upper warps write to shared memory.
if
(
warp_idx
>=
mid
&&
warp_idx
<
i
)
{
float
*
dst
=
&
out_smem
[(
warp_idx
-
mid
)
*
HEAD_SIZE
];
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_ROWS_PER_THREAD
;
i
++
)
{
const
int
row_idx
=
lane
/
NUM_V_VECS_PER_ROW
+
i
*
NUM_ROWS_PER_ITER
;
if
(
row_idx
<
HEAD_SIZE
&&
lane
%
NUM_V_VECS_PER_ROW
==
0
)
{
dst
[
row_idx
]
=
accs
[
i
];
}
for
(
int
j
=
0
;
j
<
NUM_VECS_PER_THREAD
;
j
++
)
{
const
scalar_t
*
k_ptr
=
k_cache
+
physical_block_number
*
num_heads
*
HEAD_SIZE
*
BLOCK_SIZE
+
head_idx
*
HEAD_SIZE
*
BLOCK_SIZE
+
physical_block_offset
*
x
;
const
int
vec_idx
=
thread_group_offset
+
j
*
THREAD_GROUP_SIZE
;
const
int
offset1
=
(
vec_idx
*
VEC_SIZE
)
/
x
;
const
int
offset2
=
(
vec_idx
*
VEC_SIZE
)
%
x
;
k_vecs
[
j
]
=
*
reinterpret_cast
<
const
K_vec
*>
(
k_ptr
+
offset1
*
BLOCK_SIZE
*
x
+
offset2
);
}
}
__syncthreads
();
// Lower warps update the output.
if
(
warp_idx
<
mid
)
{
const
float
*
src
=
&
out_smem
[
warp_idx
*
HEAD_SIZE
];
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_ROWS_PER_THREAD
;
i
++
)
{
const
int
row_idx
=
lane
/
NUM_V_VECS_PER_ROW
+
i
*
NUM_ROWS_PER_ITER
;
if
(
row_idx
<
HEAD_SIZE
&&
lane
%
NUM_V_VECS_PER_ROW
==
0
)
{
accs
[
i
]
+=
src
[
row_idx
];
}
}
}
__syncthreads
();
}
// Write the final output.
if
(
warp_idx
==
0
)
{
scalar_t
*
out_ptr
=
out
+
seq_idx
*
num_heads
*
HEAD_SIZE
+
head_idx
*
HEAD_SIZE
;
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_ROWS_PER_THREAD
;
i
++
)
{
const
int
row_idx
=
lane
/
NUM_V_VECS_PER_ROW
+
i
*
NUM_ROWS_PER_ITER
;
if
(
row_idx
<
HEAD_SIZE
&&
lane
%
NUM_V_VECS_PER_ROW
==
0
)
{
convert_from_float
(
*
(
out_ptr
+
row_idx
),
accs
[
i
]);
// Compute dot product.
// This includes a reduction across the threads in the same thread group.
const
float
qk
=
scale
*
Qk_dot
<
scalar_t
,
THREAD_GROUP_SIZE
>::
dot
(
q_vecs
,
k_vecs
);
const
bool
mask
=
token_idx
>=
context_len
;
if
(
thread_group_offset
==
0
)
{
// Store the partial reductions to shared memory.
// NOTE(woosuk): It is required to zero out the masked logits.
logits
[
token_idx
]
=
mask
?
0.
f
:
qk
;
// Update the max value.
qk_max
=
mask
?
qk_max
:
fmaxf
(
qk_max
,
qk
);
}
}
}
}
// Grid: (num_heads, num_query_tokens).
template
<
typename
scalar_t
,
int
HEAD_SIZE
,
int
BLOCK_SIZE
,
int
NUM_THREADS
>
__device__
void
multi_query_cached_kv_attention_kernel_unoptimized_
(
scalar_t
*
__restrict__
out
,
// [num_seqs, num_heads, head_size]
const
scalar_t
*
__restrict__
q
,
// [num_seqs, num_heads, head_size]
const
int
seq_start_idx
,
const
int
seq_len
,
const
scalar_t
*
__restrict__
k_cache
,
// [num_blocks, num_heads, head_size/x, block_size, x]
const
scalar_t
*
__restrict__
v_cache
,
// [num_blocks, num_heads, head_size, block_size]
const
float
scale
,
const
int
*
__restrict__
block_table
,
// [num_seqs, max_num_blocks_per_seq]
const
int
context_len
,
const
int
max_num_blocks_per_seq
,
const
int
q_stride
)
{
constexpr
int
THREAD_GROUP_SIZE
=
WARP_SIZE
/
BLOCK_SIZE
;
constexpr
int
NUM_WARPS
=
NUM_THREADS
/
WARP_SIZE
;
const
int
thread_idx
=
threadIdx
.
x
;
const
int
warp_idx
=
thread_idx
/
WARP_SIZE
;
const
int
lane
=
thread_idx
%
WARP_SIZE
;
const
int
head_idx
=
blockIdx
.
x
;
const
int
num_heads
=
gridDim
.
x
;
const
int
seq_idx
=
blockIdx
.
y
;
// A vector type to store a part of a key or a query.
// The vector size is configured in such a way that the threads in a thread group
// fetch or comput 16 bytes at a time.
// For example, if the size of a thread group is 4 and the data type is half,
// then the vector size is 16 / (4 * sizeof(half)) == 2.
constexpr
int
VEC_SIZE
=
16
/
(
THREAD_GROUP_SIZE
*
sizeof
(
scalar_t
));
using
K_vec
=
typename
Vec
<
scalar_t
,
VEC_SIZE
>::
Type
;
using
Q_vec
=
typename
Vec
<
scalar_t
,
VEC_SIZE
>::
Type
;
constexpr
int
NUM_ELEMS_PER_THREAD
=
HEAD_SIZE
/
THREAD_GROUP_SIZE
;
constexpr
int
NUM_VECS_PER_THREAD
=
NUM_ELEMS_PER_THREAD
/
VEC_SIZE
;
const
int
thread_group_idx
=
thread_idx
/
THREAD_GROUP_SIZE
;
const
int
thread_group_offset
=
thread_idx
%
THREAD_GROUP_SIZE
;
// Load the query to registers.
// Each thread in a thread group has a different part of the query.
// For example, if the the thread group size is 4, then the first thread in the group
// has 0, 4, 8, ... th vectors of the query, and the second thread has 1, 5, 9, ...
// th vectors of the query, and so on.
// NOTE(woosuk): Because q is split from a qkv tensor, it may not be contiguous.
const
scalar_t
*
q_ptr
=
q
+
seq_idx
*
q_stride
+
head_idx
*
HEAD_SIZE
;
Q_vec
q_vecs
[
NUM_VECS_PER_THREAD
];
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_VECS_PER_THREAD
;
i
++
)
{
const
int
vec_idx
=
thread_group_offset
+
i
*
THREAD_GROUP_SIZE
;
q_vecs
[
i
]
=
*
reinterpret_cast
<
const
Q_vec
*>
(
q_ptr
+
vec_idx
*
VEC_SIZE
);
}
// Memory planning.
extern
__shared__
char
shared_mem
[];
// NOTE(woosuk): We use FP32 logits and accumulation.
float
*
logits
=
reinterpret_cast
<
float
*>
(
shared_mem
);
// Workspace for reduction.
__shared__
float
red_smem
[
2
*
NUM_WARPS
];
// x == THREAD_GROUP_SIZE * VEC_SIZE
// Each thread group fetches x elements from the key at a time.
constexpr
int
x
=
16
/
sizeof
(
scalar_t
);
float
qk_max
=
-
FLT_MAX
;
const
int
num_blocks
=
(
context_len
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
;
const
int
mask_boundary
=
context_len
-
seq_len
+
1
+
(
seq_idx
-
seq_start_idx
);
// Iterate over the key blocks.
// Each warp fetches a block of keys for each iteration.
// Each thread group in a warp fetches a key from the block, and computes
// dot product with the query.
for
(
int
block_idx
=
warp_idx
;
block_idx
<
num_blocks
;
block_idx
+=
NUM_WARPS
)
{
const
int
physical_block_number
=
block_table
[
block_idx
];
const
int
physical_block_offset
=
thread_group_idx
%
BLOCK_SIZE
;
const
int
token_idx
=
block_idx
*
BLOCK_SIZE
+
physical_block_offset
;
// Load a key to registers.
// Each thread in a thread group has a different part of the key.
// For example, if the the thread group size is 4, then the first thread in the group
// has 0, 4, 8, ... th vectors of the key, and the second thread has 1, 5, 9, ... th
// vectors of the key, and so on.
K_vec
k_vecs
[
NUM_VECS_PER_THREAD
];
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_VECS_PER_THREAD
;
i
++
)
{
const
scalar_t
*
k_ptr
=
k_cache
+
physical_block_number
*
num_heads
*
HEAD_SIZE
*
BLOCK_SIZE
+
head_idx
*
HEAD_SIZE
*
BLOCK_SIZE
+
physical_block_offset
*
x
;
const
int
vec_idx
=
thread_group_offset
+
i
*
THREAD_GROUP_SIZE
;
const
int
offset1
=
(
vec_idx
*
VEC_SIZE
)
/
x
;
const
int
offset2
=
(
vec_idx
*
VEC_SIZE
)
%
x
;
k_vecs
[
i
]
=
*
reinterpret_cast
<
const
K_vec
*>
(
k_ptr
+
offset1
*
BLOCK_SIZE
*
x
+
offset2
);
}
// Compute dot product.
// This includes a reduction across the threads in the same thread group.
const
float
qk
=
scale
*
Qk_dot
<
scalar_t
,
THREAD_GROUP_SIZE
>::
dot
(
q_vecs
,
k_vecs
);
const
bool
mask
=
token_idx
>=
mask_boundary
;
if
(
thread_group_offset
==
0
)
{
// Store the partial reductions to shared memory.
// NOTE(woosuk): It is required to zero out the masked logits.
logits
[
token_idx
]
=
mask
?
0.
f
:
qk
;
// Update the max value.
qk_max
=
mask
?
qk_max
:
fmaxf
(
qk_max
,
qk
);
}
}
// Perform reduction across the threads in the same warp to get the
// max qk value for each "warp" (not across the thread block yet).
...
...
@@ -391,7 +152,7 @@ __device__ void multi_query_cached_kv_attention_kernel_unoptimized_(
// Get the sum of the exp values.
float
exp_sum
=
0.
f
;
for
(
int
i
=
thread_idx
;
i
<
mask_boundary
;
i
+=
NUM_THREADS
)
{
for
(
int
i
=
thread_idx
;
i
<
context_len
;
i
+=
NUM_THREADS
)
{
float
val
=
__expf
(
logits
[
i
]
-
qk_max
);
logits
[
i
]
=
val
;
exp_sum
+=
val
;
...
...
@@ -406,7 +167,7 @@ __device__ void multi_query_cached_kv_attention_kernel_unoptimized_(
__syncthreads
();
// Each thread will fetch 16 bytes from the value cache at a time.
constexpr
int
V_VEC_SIZE
=
16
/
sizeof
(
scalar_t
);
constexpr
int
V_VEC_SIZE
=
MIN
(
16
/
sizeof
(
scalar_t
)
,
BLOCK_SIZE
)
;
using
V_vec
=
typename
Vec
<
scalar_t
,
V_VEC_SIZE
>::
Type
;
using
L_vec
=
typename
FloatVec
<
V_vec
>::
Type
;
...
...
@@ -499,46 +260,6 @@ __device__ void multi_query_cached_kv_attention_kernel_unoptimized_(
}
}
// Grid: (num_heads, num_query_tokens).
template
<
typename
scalar_t
,
int
HEAD_SIZE
,
int
BLOCK_SIZE
,
int
NUM_THREADS
>
__global__
void
multi_query_cached_kv_attention_kernel
(
const
int
*
cu_query_lens
,
// [num_prompts+1]
const
int
*
seq_prompt_mapping
,
// [num_seqs] mapping from seq_idx to prompt_idx
scalar_t
*
__restrict__
out
,
// [num_seqs, num_heads, head_size]
const
scalar_t
*
__restrict__
q
,
// [num_seqs, num_heads, head_size]
const
scalar_t
*
__restrict__
k_cache
,
// [num_blocks, num_heads, head_size/x, block_size, x]
const
scalar_t
*
__restrict__
v_cache
,
// [num_blocks, num_heads, head_size, block_size]
const
float
scale
,
const
int
*
__restrict__
block_tables
,
// [num_prompts, max_num_blocks_per_seq]
const
int
*
__restrict__
context_lens
,
// [num_prompts]
const
int
max_num_blocks_per_seq
,
const
int
q_stride
)
{
const
int
seq_idx
=
blockIdx
.
y
;
const
int
prompt_idx
=
seq_prompt_mapping
[
seq_idx
];
const
int
seq_start_idx
=
cu_query_lens
[
prompt_idx
];
const
int
seq_len
=
cu_query_lens
[
prompt_idx
+
1
]
-
seq_start_idx
;
const
int
*
block_table
=
block_tables
+
prompt_idx
*
max_num_blocks_per_seq
;
const
int
context_len
=
context_lens
[
prompt_idx
];
multi_query_cached_kv_attention_kernel_unoptimized_
<
scalar_t
,
HEAD_SIZE
,
BLOCK_SIZE
,
NUM_THREADS
>
(
out
,
q
,
seq_start_idx
,
seq_len
,
k_cache
,
v_cache
,
scale
,
block_table
,
context_len
,
max_num_blocks_per_seq
,
q_stride
);
}
}
// namespace cacheflow
#define LAUNCH_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS) \
...
...
@@ -574,6 +295,9 @@ void single_query_cached_kv_attention_launcher(
int
max_num_blocks_per_seq
=
block_tables
.
size
(
1
);
int
query_stride
=
query
.
stride
(
0
);
int
thread_group_size
=
MAX
(
WARP_SIZE
/
BLOCK_SIZE
,
1
);
assert
(
head_size
%
thread_group_size
==
0
);
T
*
out_ptr
=
reinterpret_cast
<
T
*>
(
out
.
data_ptr
());
T
*
query_ptr
=
reinterpret_cast
<
T
*>
(
query
.
data_ptr
());
T
*
key_cache_ptr
=
reinterpret_cast
<
T
*>
(
key_cache
.
data_ptr
());
...
...
@@ -621,6 +345,17 @@ void single_query_cached_kv_attention_launcher(
}
}
#define CALL_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
single_query_cached_kv_attention_launcher<T, BLOCK_SIZE>( \
out
,
\
query
,
\
key_cache
,
\
value_cache
,
\
scale
,
\
block_tables
,
\
context_lens
,
\
max_context_len
);
void
single_query_cached_kv_attention
(
torch
::
Tensor
&
out
,
// [num_seqs, num_heads, head_size]
torch
::
Tensor
&
query
,
// [num_seqs, num_heads, head_size]
...
...
@@ -634,285 +369,528 @@ void single_query_cached_kv_attention(
// TODO(woosuk): Support BF16.
if
(
query
.
element_size
()
==
2
)
{
// Half.
if
(
block_size
==
8
)
{
single_query_cached_kv_attention_launcher
<
uint16_t
,
8
>
(
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
}
else
if
(
block_size
==
16
)
{
single_query_cached_kv_attention_launcher
<
uint16_t
,
16
>
(
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
}
else
if
(
block_size
==
32
)
{
single_query_cached_kv_attention_launcher
<
uint16_t
,
32
>
(
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
}
else
{
assert
(
false
);
}
}
else
if
(
query
.
element_size
()
==
4
)
{
// Float.
if
(
block_size
==
8
)
{
single_query_cached_kv_attention_launcher
<
float
,
8
>
(
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
if
(
block_size
==
1
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
1
);
}
else
if
(
block_size
==
2
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
2
);
}
else
if
(
block_size
==
4
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
4
);
}
else
if
(
block_size
==
8
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
8
);
}
else
if
(
block_size
==
16
)
{
single_query_cached_kv_attention_launcher
<
float
,
16
>
(
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
CALL_KERNEL_LAUNCHER
(
uint16_t
,
16
);
}
else
if
(
block_size
==
32
)
{
single_query_cached_kv_attention_launcher
<
float
,
32
>
(
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
CALL_KERNEL_LAUNCHER
(
uint16_t
,
32
);
}
else
if
(
block_size
==
64
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
64
);
}
else
if
(
block_size
==
128
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
128
);
}
else
if
(
block_size
==
256
)
{
CALL_KERNEL_LAUNCHER
(
uint16_t
,
256
);
}
else
{
assert
(
false
);
}
}
else
{
// Float.
assert
(
false
);
}
}
#define LAUNCH_MULTI_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS) \
cacheflow::multi_query_cached_kv_attention_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS> \
<<<grid, block, shared_mem_size, stream>>>( \
cu_query_lens_ptr, \
seq_prompt_mapping_ptr, \
out_ptr, \
query_ptr, \
key_cache_ptr, \
value_cache_ptr, \
scale, \
block_tables_ptr, \
context_lens_ptr, \
max_num_blocks_per_seq, \
query_stride);
// TODO(woosuk): Tune NUM_THREADS.
template
<
typename
T
,
int
BLOCK_SIZE
,
int
NUM_THREADS
=
128
>
void
multi_query_cached_kv_attention_launcher
(
torch
::
Tensor
&
cu_query_lens
,
torch
::
Tensor
&
seq_prompt_mapping
,
torch
::
Tensor
&
out
,
torch
::
Tensor
&
query
,
torch
::
Tensor
&
key_cache
,
torch
::
Tensor
&
value_cache
,
float
scale
,
torch
::
Tensor
&
block_tables
,
torch
::
Tensor
&
context_lens
,
int
max_context_len
)
{
int
num_seqs
=
query
.
size
(
0
);
int
num_heads
=
query
.
size
(
1
);
int
head_size
=
query
.
size
(
2
);
int
max_num_blocks_per_seq
=
block_tables
.
size
(
1
);
int
query_stride
=
query
.
stride
(
0
);
int
*
cu_query_lens_ptr
=
cu_query_lens
.
data_ptr
<
int
>
();
int
*
seq_prompt_mapping_ptr
=
seq_prompt_mapping
.
data_ptr
<
int
>
();
T
*
out_ptr
=
reinterpret_cast
<
T
*>
(
out
.
data_ptr
());
T
*
query_ptr
=
reinterpret_cast
<
T
*>
(
query
.
data_ptr
());
T
*
key_cache_ptr
=
reinterpret_cast
<
T
*>
(
key_cache
.
data_ptr
());
T
*
value_cache_ptr
=
reinterpret_cast
<
T
*>
(
value_cache
.
data_ptr
());
int
*
block_tables_ptr
=
block_tables
.
data_ptr
<
int
>
();
int
*
context_lens_ptr
=
context_lens
.
data_ptr
<
int
>
();
constexpr
int
NUM_WARPS
=
NUM_THREADS
/
WARP_SIZE
;
int
padded_max_context_len
=
((
max_context_len
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
)
*
BLOCK_SIZE
;
int
logits_size
=
padded_max_context_len
*
sizeof
(
float
);
int
outputs_size
=
(
NUM_WARPS
/
2
)
*
head_size
*
sizeof
(
float
);
int
shared_mem_size
=
std
::
max
(
logits_size
,
outputs_size
);
dim3
grid
(
num_heads
,
num_seqs
);
dim3
block
(
NUM_THREADS
);
const
cudaStream_t
stream
=
at
::
cuda
::
getCurrentCUDAStream
();
switch
(
head_size
)
{
case
32
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
32
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
case
64
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
64
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
case
80
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
80
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
case
96
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
96
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
case
128
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
128
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
case
160
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
160
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
case
192
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
192
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
case
256
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
256
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
default:
assert
(
false
);
break
;
}
}
void
multi_query_cached_kv_attention
(
torch
::
Tensor
&
cu_query_lens
,
torch
::
Tensor
&
out
,
torch
::
Tensor
&
query
,
torch
::
Tensor
&
key_cache
,
torch
::
Tensor
&
value_cache
,
float
scale
,
torch
::
Tensor
&
block_tables
,
torch
::
Tensor
&
context_lens
,
int
block_size
,
int
max_context_len
)
{
torch
::
Tensor
query_lens
=
cu_query_lens
.
to
(
torch
::
kCPU
);
// namespace cacheflow {
// // Grid: (num_heads, num_query_tokens).
// template<
// typename scalar_t,
// int HEAD_SIZE,
// int BLOCK_SIZE,
// int NUM_THREADS>
// __device__ void multi_query_cached_kv_attention_kernel_unoptimized_(
// scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
// const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
// const int seq_start_idx,
// const int seq_len,
// const scalar_t* __restrict__ k_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
// const scalar_t* __restrict__ v_cache, // [num_blocks, num_heads, head_size, block_size]
// const float scale,
// const int* __restrict__ block_table, // [num_seqs, max_num_blocks_per_seq]
// const int context_len,
// const int max_num_blocks_per_seq,
// const int q_stride) {
// constexpr int THREAD_GROUP_SIZE = WARP_SIZE / BLOCK_SIZE;
// constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
// const int thread_idx = threadIdx.x;
// const int warp_idx = thread_idx / WARP_SIZE;
// const int lane = thread_idx % WARP_SIZE;
// const int head_idx = blockIdx.x;
// const int num_heads = gridDim.x;
// const int seq_idx = blockIdx.y;
// // A vector type to store a part of a key or a query.
// // The vector size is configured in such a way that the threads in a thread group
// // fetch or comput 16 bytes at a time.
// // For example, if the size of a thread group is 4 and the data type is half,
// // then the vector size is 16 / (4 * sizeof(half)) == 2.
// constexpr int VEC_SIZE = 16 / (THREAD_GROUP_SIZE * sizeof(scalar_t));
// using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
// using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
// constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
// constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;
// const int thread_group_idx = thread_idx / THREAD_GROUP_SIZE;
// const int thread_group_offset = thread_idx % THREAD_GROUP_SIZE;
// // Load the query to registers.
// // Each thread in a thread group has a different part of the query.
// // For example, if the the thread group size is 4, then the first thread in the group
// // has 0, 4, 8, ... th vectors of the query, and the second thread has 1, 5, 9, ...
// // th vectors of the query, and so on.
// // NOTE(woosuk): Because q is split from a qkv tensor, it may not be contiguous.
// const scalar_t* q_ptr = q + seq_idx * q_stride + head_idx * HEAD_SIZE;
// Q_vec q_vecs[NUM_VECS_PER_THREAD];
// #pragma unroll
// for (int i = 0; i < NUM_VECS_PER_THREAD; i++) {
// const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
// q_vecs[i] = *reinterpret_cast<const Q_vec*>(q_ptr + vec_idx * VEC_SIZE);
// }
// // Memory planning.
// extern __shared__ char shared_mem[];
// // NOTE(woosuk): We use FP32 logits and accumulation.
// float *logits = reinterpret_cast<float*>(shared_mem);
// // Workspace for reduction.
// __shared__ float red_smem[2 * NUM_WARPS];
// // x == THREAD_GROUP_SIZE * VEC_SIZE
// // Each thread group fetches x elements from the key at a time.
// constexpr int x = 16 / sizeof(scalar_t);
// float qk_max = -FLT_MAX;
// const int num_blocks = (context_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
// const int mask_boundary = context_len - seq_len + 1 + (seq_idx - seq_start_idx);
// // Iterate over the key blocks.
// // Each warp fetches a block of keys for each iteration.
// // Each thread group in a warp fetches a key from the block, and computes
// // dot product with the query.
// for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
// const int physical_block_number = block_table[block_idx];
// const int physical_block_offset = thread_group_idx % BLOCK_SIZE;
// const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
// // Load a key to registers.
// // Each thread in a thread group has a different part of the key.
// // For example, if the the thread group size is 4, then the first thread in the group
// // has 0, 4, 8, ... th vectors of the key, and the second thread has 1, 5, 9, ... th
// // vectors of the key, and so on.
// K_vec k_vecs[NUM_VECS_PER_THREAD];
// #pragma unroll
// for (int i = 0; i < NUM_VECS_PER_THREAD; i++) {
// const scalar_t* k_ptr = k_cache + physical_block_number * num_heads * HEAD_SIZE * BLOCK_SIZE
// + head_idx * HEAD_SIZE * BLOCK_SIZE
// + physical_block_offset * x;
// const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
// const int offset1 = (vec_idx * VEC_SIZE) / x;
// const int offset2 = (vec_idx * VEC_SIZE) % x;
// k_vecs[i] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
// }
// // Compute dot product.
// // This includes a reduction across the threads in the same thread group.
// const float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(q_vecs, k_vecs);
// const bool mask = token_idx >= mask_boundary;
// if (thread_group_offset == 0) {
// // Store the partial reductions to shared memory.
// // NOTE(woosuk): It is required to zero out the masked logits.
// logits[token_idx] = mask ? 0.f : qk;
// // Update the max value.
// qk_max = mask ? qk_max : fmaxf(qk_max, qk);
// }
// }
// // Perform reduction across the threads in the same warp to get the
// // max qk value for each "warp" (not across the thread block yet).
// // The 0-th thread of each thread group already has its max qk value.
// #pragma unroll
// for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
// qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
// }
// if (lane == 0) {
// red_smem[warp_idx] = qk_max;
// }
// __syncthreads();
// // TODO(woosuk): Refactor this part.
// // Get the max qk value for the sequence.
// qk_max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
// #pragma unroll
// for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
// qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
// }
// // Broadcast the max qk value to all threads.
// qk_max = __shfl_sync(uint32_t(-1), qk_max, 0);
// // Get the sum of the exp values.
// float exp_sum = 0.f;
// for (int i = thread_idx; i < mask_boundary; i += NUM_THREADS) {
// float val = __expf(logits[i] - qk_max);
// logits[i] = val;
// exp_sum += val;
// }
// exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], exp_sum);
// // Compute softmax.
// const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
// for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
// logits[i] *= inv_sum;
// }
// __syncthreads();
// // Each thread will fetch 16 bytes from the value cache at a time.
// constexpr int V_VEC_SIZE = 16 / sizeof(scalar_t);
// using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
// using L_vec = typename FloatVec<V_vec>::Type;
// constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
// constexpr int NUM_ROWS_PER_ITER = WARP_SIZE / NUM_V_VECS_PER_ROW;
// constexpr int NUM_ROWS_PER_THREAD = (HEAD_SIZE + NUM_ROWS_PER_ITER - 1) / NUM_ROWS_PER_ITER;
// float accs[NUM_ROWS_PER_THREAD];
// #pragma unroll
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
// accs[i] = 0.f;
// }
// for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
// const int physical_block_number = block_table[block_idx];
// const int physical_block_offset = (lane % NUM_V_VECS_PER_ROW) * V_VEC_SIZE;
// const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
// L_vec logits_vec = *reinterpret_cast<L_vec*>(logits + token_idx);
// const scalar_t* v_ptr = v_cache + physical_block_number * num_heads * HEAD_SIZE * BLOCK_SIZE
// + head_idx * HEAD_SIZE * BLOCK_SIZE;
// #pragma unroll
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
// const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
// if (row_idx < HEAD_SIZE) {
// const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
// V_vec v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
// accs[i] += dot(logits_vec, cast_to_float(v_vec));
// }
// }
// }
// // Perform reduction within each warp.
// #pragma unroll
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
// float acc = accs[i];
// #pragma unroll
// for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
// acc += __shfl_xor_sync(uint32_t(-1), acc, mask);
// }
// accs[i] = acc;
// }
// // NOTE(woosuk): A barrier is required because the shared memory space for logits
// // is reused for the output.
// __syncthreads();
// // Perform reduction across warps.
// float* out_smem = reinterpret_cast<float*>(shared_mem);
// #pragma unroll
// for (int i = NUM_WARPS; i > 1; i /= 2) {
// int mid = i / 2;
// // Upper warps write to shared memory.
// if (warp_idx >= mid && warp_idx < i) {
// float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
// #pragma unroll
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
// const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
// if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
// dst[row_idx] = accs[i];
// }
// }
// }
// __syncthreads();
// // Lower warps update the output.
// if (warp_idx < mid) {
// const float* src = &out_smem[warp_idx * HEAD_SIZE];
// #pragma unroll
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
// const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
// if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
// accs[i] += src[row_idx];
// }
// }
// }
// __syncthreads();
// }
// // Write the final output.
// if (warp_idx == 0) {
// scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
// #pragma unroll
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
// const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
// if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
// convert_from_float(*(out_ptr + row_idx), accs[i]);
// }
// }
// }
// }
// // Grid: (num_heads, num_query_tokens).
// template<
// typename scalar_t,
// int HEAD_SIZE,
// int BLOCK_SIZE,
// int NUM_THREADS>
// __global__ void multi_query_cached_kv_attention_kernel(
// const int* cu_query_lens, // [num_prompts+1]
// const int* seq_prompt_mapping, // [num_seqs] mapping from seq_idx to prompt_idx
// scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
// const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
// const scalar_t* __restrict__ k_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
// const scalar_t* __restrict__ v_cache, // [num_blocks, num_heads, head_size, block_size]
// const float scale,
// const int* __restrict__ block_tables, // [num_prompts, max_num_blocks_per_seq]
// const int* __restrict__ context_lens, // [num_prompts]
// const int max_num_blocks_per_seq,
// const int q_stride) {
// const int seq_idx = blockIdx.y;
// const int prompt_idx = seq_prompt_mapping[seq_idx];
// const int seq_start_idx = cu_query_lens[prompt_idx];
// const int seq_len = cu_query_lens[prompt_idx + 1] - seq_start_idx;
// const int* block_table = block_tables + prompt_idx * max_num_blocks_per_seq;
// const int context_len = context_lens[prompt_idx];
// multi_query_cached_kv_attention_kernel_unoptimized_<
// scalar_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>(
// out,
// q,
// seq_start_idx,
// seq_len,
// k_cache,
// v_cache,
// scale,
// block_table,
// context_len,
// max_num_blocks_per_seq,
// q_stride);
// }
// } // namespace cacheflow
// #define LAUNCH_MULTI_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS) \
// cacheflow::multi_query_cached_kv_attention_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS> \
// <<<grid, block, shared_mem_size, stream>>>( \
// cu_query_lens_ptr, \
// seq_prompt_mapping_ptr, \
// out_ptr, \
// query_ptr, \
// key_cache_ptr, \
// value_cache_ptr, \
// scale, \
// block_tables_ptr, \
// context_lens_ptr, \
// max_num_blocks_per_seq, \
// query_stride);
// // TODO(woosuk): Tune NUM_THREADS.
// template<
// typename T,
// int BLOCK_SIZE,
// int NUM_THREADS = 128>
// void multi_query_cached_kv_attention_launcher(
// torch::Tensor& cu_query_lens,
// torch::Tensor& seq_prompt_mapping,
// torch::Tensor& out,
// torch::Tensor& query,
// torch::Tensor& key_cache,
// torch::Tensor& value_cache,
// float scale,
// torch::Tensor& block_tables,
// torch::Tensor& context_lens,
// int max_context_len) {
// int num_seqs = query.size(0);
// int num_heads = query.size(1);
// int head_size = query.size(2);
// int max_num_blocks_per_seq = block_tables.size(1);
// int query_stride = query.stride(0);
// int* cu_query_lens_ptr = cu_query_lens.data_ptr<int>();
// int* seq_prompt_mapping_ptr = seq_prompt_mapping.data_ptr<int>();
// T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
// T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
// T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
// T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
// int* block_tables_ptr = block_tables.data_ptr<int>();
// int* context_lens_ptr = context_lens.data_ptr<int>();
// constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
// int padded_max_context_len = ((max_context_len + BLOCK_SIZE - 1) / BLOCK_SIZE) * BLOCK_SIZE;
// int logits_size = padded_max_context_len * sizeof(float);
// int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
// int shared_mem_size = std::max(logits_size, outputs_size);
// dim3 grid(num_heads, num_seqs);
// dim3 block(NUM_THREADS);
// const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// switch (head_size) {
// case 32:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 32, BLOCK_SIZE, NUM_THREADS);
// break;
// case 64:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 64, BLOCK_SIZE, NUM_THREADS);
// break;
// case 80:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 80, BLOCK_SIZE, NUM_THREADS);
// break;
// case 96:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 96, BLOCK_SIZE, NUM_THREADS);
// break;
// case 128:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 128, BLOCK_SIZE, NUM_THREADS);
// break;
// case 160:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 160, BLOCK_SIZE, NUM_THREADS);
// break;
// case 192:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 192, BLOCK_SIZE, NUM_THREADS);
// break;
// case 256:
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 256, BLOCK_SIZE, NUM_THREADS);
// break;
// default:
// assert(false);
// break;
// }
// }
// void multi_query_cached_kv_attention(
// torch::Tensor& cu_query_lens,
// torch::Tensor& out,
// torch::Tensor& query,
// torch::Tensor& key_cache,
// torch::Tensor& value_cache,
// float scale,
// torch::Tensor& block_tables,
// torch::Tensor& context_lens,
// int block_size,
// int max_context_len) {
// torch::Tensor query_lens = cu_query_lens.to(torch::kCPU);
int
num_queries
=
query_lens
.
size
(
0
)
-
1
;
const
int
*
query_lens_ptr
=
query_lens
.
data_ptr
<
int
>
();
int
num_seqs
=
query
.
size
(
0
);
torch
::
Tensor
cpu_tensor
=
torch
::
empty
({
num_seqs
},
torch
::
dtype
(
torch
::
kInt32
));
auto
accessor
=
cpu_tensor
.
accessor
<
int32_t
,
1
>
();
for
(
int
i
=
0
,
query_cursor
=
0
;
i
<
num_seqs
;
++
i
)
{
if
(
i
>=
query_lens_ptr
[
query_cursor
+
1
])
{
++
query_cursor
;
}
accessor
[
i
]
=
query_cursor
;
}
// TODO(suquark): This can be slow, as it to(torch::kCPU) and to(torch::kCUDA)
// implicitly synchronizes the CPU and GPU. And we can avoid this issue by giving
// the mapping as an input parameter. Let's do this optimization in a later PR.
torch
::
Tensor
seq_prompt_mapping
=
cpu_tensor
.
to
(
torch
::
kCUDA
);
// TODO(woosuk): Support BF16.
if
(
query
.
element_size
()
==
2
)
{
// Half.
if
(
block_size
==
8
)
{
multi_query_cached_kv_attention_launcher
<
uint16_t
,
8
>
(
cu_query_lens
,
seq_prompt_mapping
,
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
}
else
if
(
block_size
==
16
)
{
multi_query_cached_kv_attention_launcher
<
uint16_t
,
16
>
(
cu_query_lens
,
seq_prompt_mapping
,
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
}
else
if
(
block_size
==
32
)
{
multi_query_cached_kv_attention_launcher
<
uint16_t
,
32
>
(
cu_query_lens
,
seq_prompt_mapping
,
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
}
else
{
assert
(
false
);
}
}
else
if
(
query
.
element_size
()
==
4
)
{
// Float.
if
(
block_size
==
8
)
{
multi_query_cached_kv_attention_launcher
<
float
,
8
>
(
cu_query_lens
,
seq_prompt_mapping
,
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
}
else
if
(
block_size
==
16
)
{
multi_query_cached_kv_attention_launcher
<
float
,
16
>
(
cu_query_lens
,
seq_prompt_mapping
,
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
}
else
if
(
block_size
==
32
)
{
multi_query_cached_kv_attention_launcher
<
float
,
32
>
(
cu_query_lens
,
seq_prompt_mapping
,
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
}
else
{
assert
(
false
);
}
}
else
{
assert
(
false
);
}
}
//
int num_queries = query_lens.size(0) - 1;
//
const int* query_lens_ptr = query_lens.data_ptr<int>();
//
int num_seqs = query.size(0);
//
torch::Tensor cpu_tensor = torch::empty({num_seqs}, torch::dtype(torch::kInt32));
//
auto accessor = cpu_tensor.accessor<int32_t, 1>();
//
for (int i = 0, query_cursor = 0; i < num_seqs; ++i) {
//
if (i >= query_lens_ptr[query_cursor + 1]) {
//
++query_cursor;
//
}
//
accessor[i] = query_cursor;
//
}
//
// TODO(suquark): This can be slow, as it to(torch::kCPU) and to(torch::kCUDA)
//
// implicitly synchronizes the CPU and GPU. And we can avoid this issue by giving
//
// the mapping as an input parameter. Let's do this optimization in a later PR.
//
torch::Tensor seq_prompt_mapping = cpu_tensor.to(torch::kCUDA);
//
// TODO(woosuk): Support BF16.
//
if (query.element_size() == 2) {
//
// Half.
//
if (block_size == 8) {
//
multi_query_cached_kv_attention_launcher<uint16_t, 8>(
//
cu_query_lens,
//
seq_prompt_mapping,
//
out,
//
query,
//
key_cache,
//
value_cache,
//
scale,
//
block_tables,
//
context_lens,
//
max_context_len);
//
} else if (block_size == 16) {
//
multi_query_cached_kv_attention_launcher<uint16_t, 16>(
//
cu_query_lens,
//
seq_prompt_mapping,
//
out,
//
query,
//
key_cache,
//
value_cache,
//
scale,
//
block_tables,
//
context_lens,
//
max_context_len);
//
} else if (block_size == 32) {
//
multi_query_cached_kv_attention_launcher<uint16_t, 32>(
//
cu_query_lens,
//
seq_prompt_mapping,
//
out,
//
query,
//
key_cache,
//
value_cache,
//
scale,
//
block_tables,
//
context_lens,
//
max_context_len);
//
} else {
//
assert(false);
//
}
//
} else if (query.element_size() == 4) {
//
// Float.
//
if (block_size == 8) {
//
multi_query_cached_kv_attention_launcher<float, 8>(
//
cu_query_lens,
//
seq_prompt_mapping,
//
out,
//
query,
//
key_cache,
//
value_cache,
//
scale,
//
block_tables,
//
context_lens,
//
max_context_len);
//
} else if (block_size == 16) {
//
multi_query_cached_kv_attention_launcher<float, 16>(
//
cu_query_lens,
//
seq_prompt_mapping,
//
out,
//
query,
//
key_cache,
//
value_cache,
//
scale,
//
block_tables,
//
context_lens,
//
max_context_len);
//
} else if (block_size == 32) {
//
multi_query_cached_kv_attention_launcher<float, 32>(
//
cu_query_lens,
//
seq_prompt_mapping,
//
out,
//
query,
//
key_cache,
//
value_cache,
//
scale,
//
block_tables,
//
context_lens,
//
max_context_len);
//
} else {
//
assert(false);
//
}
//
} else {
//
assert(false);
//
}
//
}
#undef WARP_SIZE
#undef MAX
#undef MIN
csrc/cuda_primitives.h
View file @
0f4b3219
...
...
@@ -1074,6 +1074,21 @@ inline __device__ float sum(Float8_ v)
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
dot
(
float
a
,
float
b
)
{
return
a
*
b
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
dot
(
float2
a
,
float2
b
)
{
float2
c
=
mul
<
float2
,
float2
,
float2
>
(
a
,
b
);
return
c
.
x
+
c
.
y
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
dot
(
Float4_
a
,
Float4_
b
)
{
float2
acc
=
mul
<
float2
,
float2
,
float2
>
(
a
.
x
,
b
.
x
);
...
...
@@ -1253,37 +1268,44 @@ inline __device__ float convert_to_float(uint4 u)
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float
cast_to_float
(
float
u
)
{
return
u
;
}
//
inline __device__ float cast_to_float(float u)
//
{
//
return u;
//
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float2
cast_to_float
(
float2
u
)
{
return
u
;
}
//
inline __device__ float2 cast_to_float(float2 u)
//
{
//
return u;
//
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
float4
cast_to_float
(
float4
u
)
{
return
u
;
}
//
inline __device__ float4 cast_to_float(float4 u)
//
{
//
return u;
//
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
Float4_
cast_to_float
(
Float4_
u
)
{
return
u
;
}
// inline __device__ Float4_ cast_to_float(Float4_ u)
// {
// return u;
// }
////////////////////////////////////////////////////////////////////////////////////////////////////
// inline __device__ Float8_ cast_to_float(Float8_ u)
// {
// return u;
// }
////////////////////////////////////////////////////////////////////////////////////////////////////
inline
__device__
F
loat
8_
cast_to_float
(
Float8_
u
)
inline
__device__
f
loat
cast_to_float
(
uint16_t
u
)
{
return
u
;
return
half_to_float
(
u
)
;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment