Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
norm
vllm
Commits
06e9ebeb
Unverified
Commit
06e9ebeb
authored
Nov 18, 2023
by
Woosuk Kwon
Committed by
GitHub
Nov 18, 2023
Browse files
Add instructions to install vLLM+cu118 (#1717)
parent
c5f7740d
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
19 additions
and
5 deletions
+19
-5
docs/source/getting_started/installation.rst
docs/source/getting_started/installation.rst
+19
-5
No files found.
docs/source/getting_started/installation.rst
View file @
06e9ebeb
...
@@ -3,14 +3,14 @@
...
@@ -3,14 +3,14 @@
Installation
Installation
============
============
vLLM is a Python library that also contains pre-compiled C++ and CUDA (1
1.8
) binaries.
vLLM is a Python library that also contains pre-compiled C++ and CUDA (1
2.1
) binaries.
Requirements
Requirements
------------
------------
* OS: Linux
* OS: Linux
* Python: 3.8 -- 3.11
* Python: 3.8 -- 3.11
* GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, etc.)
* GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4,
H100,
etc.)
Install with pip
Install with pip
----------------
----------------
...
@@ -23,9 +23,24 @@ You can install vLLM using pip:
...
@@ -23,9 +23,24 @@ You can install vLLM using pip:
$ conda create -n myenv python=3.8 -y
$ conda create -n myenv python=3.8 -y
$ conda activate myenv
$ conda activate myenv
$ # Install vLLM.
$ # Install vLLM
with CUDA 12.1
.
$ pip install vllm
$ pip install vllm
.. note::
As of now, vLLM's binaries are compiled on CUDA 12.1 by default.
However, you can install vLLM with CUDA 11.8 by running:
.. code-block:: console
$ # Install vLLM with CUDA 11.8.
$ # Replace `cp310` with your Python version (e.g., `cp38`, `cp39`, `cp311`).
$ pip install https://github.com/vllm-project/vllm/releases/download/v0.2.2/vllm-0.2.2+cu118-cp310-cp310-manylinux1_x86_64.whl
$ # Re-install PyTorch with CUDA 11.8.
$ pip uninstall torch -y
$ pip install torch --upgrade --index-url https://download.pytorch.org/whl/cu118
.. _build_from_source:
.. _build_from_source:
...
@@ -45,6 +60,5 @@ You can also build and install vLLM from source:
...
@@ -45,6 +60,5 @@ You can also build and install vLLM from source:
.. code-block:: console
.. code-block:: console
$ # Pull the Docker image with CUDA 11.8.
$ # Use `--ipc=host` to make sure the shared memory is large enough.
$ # Use `--ipc=host` to make sure the shared memory is large enough.
$ docker run --gpus all -it --rm --ipc=host nvcr.io/nvidia/pytorch:2
2
.1
2
-py3
$ docker run --gpus all -it --rm --ipc=host nvcr.io/nvidia/pytorch:2
3
.1
0
-py3
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment