# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Sample Generate Yuan""" import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) import socket from megatron import get_args from megatron import print_rank_0 from megatron.core import mpu from megatron.checkpointing import load_checkpoint from megatron.initialize import initialize_megatron, _set_random_seed from megatron.model import YuanModel from megatron.training import get_model from megatron.arguments import core_transformer_config_from_args from megatron.text_generation_server import MegatronServer from megatron.text_generation import generate_and_post_process from megatron.text_generation import beam_search_and_post_process from megatron.core.parallel_state import get_tensor_model_parallel_group import torch from megatron import get_tokenizer import time import math def model_provider(pre_process=True, post_process=True): """Build the model.""" config = core_transformer_config_from_args(get_args()) print_rank_0('building Yuan model ...') model = YuanModel(config, num_tokentypes=0, parallel_output=False, pre_process=pre_process, post_process=post_process) return model def add_text_generate_args(parser): group = parser.add_argument_group(title='text generation') group.add_argument("--temperature", type=float, default=1.0, help='Sampling temperature.') group.add_argument("--top_p", type=float, default=0.0, help='Top p sampling.') group.add_argument("--top_k", type=int, default=0, help='Top k sampling.') group.add_argument('--top_p_decay', type=float, default=0.0) group.add_argument('--top_p_bound', type=float, default=0.0) group.add_argument("--out-seq-length", type=int, default=1024, help='Size of the output generated text.') group.add_argument('--min_length', type=int, default=0) group.add_argument('--random_seed', type=int, default=1234) group.add_argument('--beam_width', type=int, default=None) group.add_argument('--length_penalty', type=int, default=1) group.add_argument('--prevent_newline_after_colon', type=bool, default=False) return parser if __name__ == "__main__": t = time.time() seed = int(1000 * (math.ceil(t) - t)) initialize_megatron(extra_args_provider=add_text_generate_args, args_defaults={'tokenizer_type': 'YuanTokenizer', 'no_load_rng': True, 'no_load_optim': True}) args = get_args() _set_random_seed(abs(seed)) #add random seed if args.num_layers_per_virtual_pipeline_stage is not None: print("Interleaved pipeline schedule is not yet supported for text generation.") exit() print_rank_0("WARNING: Forcing exit_on_missing_checkpoint to True for text generation.") args.exit_on_missing_checkpoint = True # Set up model and load checkpoint model = get_model(model_provider, wrap_with_ddp=False) if args.load is not None: _ = load_checkpoint(model, None, None) assert len(model) == 1, "Above condition should have caught this" model = model[0] # add a new pad token tokenizer = get_tokenizer() tokenizer.add_eos_token = False tokenizer.add_bos_token = False tokenizer.eod = tokenizer.convert_tokens_to_ids(tokenizer.eos_token) stop_token = tokenizer.convert_tokens_to_ids(tokenizer.eos_token) # pdb.set_trace() tokenizer.add_special_tokens({'pad_token': ''}) torch.distributed.barrier() # new add model.eval() if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0: server = MegatronServer(model) server.run("0.0.0.0", port=int(os.environ.get("PORT", 8900))) while True: choice = torch.cuda.LongTensor(1) torch.distributed.broadcast(choice, 0) if choice[0].item() == 0: try: generate_and_post_process(model) except ValueError as ve: pass elif choice[0].item() == 1: try: beam_search_and_post_process(model) except ValueError as ve: pass