Yuan2-M32基于AutoGPTQ的量化和推理
## 0. 模型下载
**我们提供了模型的多种下载源:**
| 模型 | 序列长度 | 模型格式 | 下载链接 |
| :----------: | :------: | :-------: |:---------------------------: |
| Yuan2.0-M32-HF-INT4 | 16K | HuggingFace | [ModelScope](https://modelscope.cn/models/YuanLLM/Yuan2-M32-HF-INT4/summary) \| [HuggingFace](https://huggingface.co/IEITYuan/Yuan2-M32-hf-int4) \| [百度网盘](https://pan.baidu.com/s/1zacOAxCne9U99LdgMbjfFQ?pwd=kkww ) \| [始智AI](https://www.wisemodel.cn/models/IEIT-Yuan/Yuan2-M32-hf-int4/)
| Yuan2.0-M32-HF-INT8 | 16K | HuggingFace | [ModelScope](https://modelscope.cn/models/YuanLLM/Yuan2-M32-hf-int8/) \| [HuggingFace](https://huggingface.co/IEITYuan/Yuan2-M32-hf-int8/) \| [百度网盘](https://pan.baidu.com/s/1hq9l6eYY_cRuBlQMRV6Lcg?pwd=b56k) \| [始智AI](https://www.wisemodel.cn/models/IEIT-Yuan/Yuan2-M32-hf-int8/)
## 1. 配置AutoGPTQ环境
- AutoGPTQ环境配置要求:CUDA版本高于11.8
- 容器:使用[vllm](https://github.com/IEI-mjx/Yuan2.0-M32/blob/main/vllm/README_Yuan_vllm.md)项目提供的镜像创建容器
```shell
# 进入容器
docker exec -it vllm_yuan bash
# 进入你的工作目录
cd /mnt
# 拉取我们的项目
git clone https://github.com/IEIT-Yuan/Yuan2.0-M32.git
# 进入autogptq项目
cd Yuan2.0-M32/3rd_party/AutoGPTQ
# 安装autogptq
pip install auto-gptq --no-build-isolation
```
## 2. 量化Yuan2-M32-HF模型
量化Yuan2-M32模型主要分为三步:1.下载Yuan2-M32-HF模型 2.下载数据集 3.设置量化参数,量化Yuan2-M32-HF模型
- 1.下载Yuan2-M32 hugging face模型并移动到指定路径(/mnt/beegfs2/Yuan2-M32-HF),可参考[vllm](https://github.com/IEI-mjx/Yuan2.0-M32/blob/main/vllm/README_Yuan_vllm.md),模型下载地址:https://huggingface.co/IEIT-Yuan/Yuan2-M32-hf
- 2.数据集下载点击[这里](https://huggingface.co/datasets/hakurei/open-instruct-v1),下载后移动到指定路径如:/mnt/beegfs2/
- 3.按照以下步骤调整量化参数进行量化操作
```shell
# 编辑Yuan2-M32-int4.py
cd /mnt/beegfs2/Yuan2.0-M32/3rd_party/AutoGPTQ
vim Yuan2-M32-int4.py
'''
pretrained_model_dir = "/mnt/beegfs2/Yuan2-M32-HF"
quantized_model_dir = "/mnt/beegfs2/Yuan2-M32-GPTQ-int4"
tokenizer = LlamaTokenizer.from_pretrained("/mnt/beegfs2/Yuan2-M32-HF", add_eos_token=False, add_bos_token=False, eos_token='', use_fast=True)
examples = []
with open("/mnt/beegfs2/instruct_data.json", 'r', encoding='utf-8') as file: # 数据集路径
data = json.load(file)
for i, item in enumerate(data):
if i >= 2000:
break
instruction = item.get('instruction', '')
output = item.get('output', '')
combined_text = instruction + " " + output
examples.append(tokenizer(combined_text))
max_memory = {0: "80GIB", 1: "80GIB", 2: "80GIB", 3: "80GIB", 4: "80GIB", 5: "80GIB", 6: "80GIB", 7: "80GIB"}
quantize_config = BaseQuantizeConfig(
bits=4, # quantize model to 4-bit
group_size=128, # it is recommended to set the value to 128
desc_act=False, # set to False can significantly speed up inference but the perplexity may slightly bad
)
'''
# 1.修改pretrained_model_dir,指定量化后的quantized_model_dir
# 2.修改数据集路径
# 3.max_memory可以指定要使用的GPUs
# 4.修改量化参数,若要int4精度bits=4,若要int8精度bits=8,其他参数可以参考默认值
# 运行此脚本
python Yuan2-M32-int4.py
# 模型量化和packing过程耗时约8h,可以指定不同的GPU同时分别量化int4和int8
```
## 3. GPTQ量化模型的推理
量化完成后,目标路径文件夹中会生成.safetensors后缀的ckpt文件以及config.json、quantize_config.json文件,需要先从Yuan2-M32-HF路径中拷贝tokenizer相关的文件
```shell
# 进入Yuan2-M32-HF路径
cd /mnt/beegfs2/Yuan2-M32-HF
# 拷贝tokenizer相关文件至Yuan2-M32-GPTQ-int4
cp special_tokens_map.json tokenizer* /mnt/beegfs2/Yuan2-M32-GPTQ-int4
# 编辑inference.py
cd /mnt/beegfs2/Yuan2.0-M32/3rd_party/AutoGPTQ
vim inference.py
'''
quantized_model_dir = "/mnt/beegfs2/Yuan2-M32-GPTQ-int4"
tokenizer = LlamaTokenizer.from_pretrained('/mnt/beegfs2/Yuan2-M32-GPTQ-int4', add_eos_token=False, add_bos_token=False, eos_token='')
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0", trust_remote_code=True)
'''
# 修改quantized_model_dir和tokenizer路径
# 运行inference.py
python inference.py
```
## 4. 推理精度测试
> HumanEval测试参数如下:
> generation_params = {
"max_new_tokens": 512,
"top_k": 1,
"top_p": 0,
"temperature": 1.0,
}
> Yuan-M32-HF推理使用2张80GB GPUs; Yuan2-M32-GPTQ-int4和Yuan2-M32-GPTQ-int8推理使用单张80GB GPU
> 测试结果:
| Model | Accuracy Type | HumanEval | Inference Speed | Inference Memory Usage |
|---------------------|---------------|------------|-----------------|-------------------------|
| Yuan2-M32-HF | BF16 | 73.17% | 13.16 token/s |76.34 GB |
| Yuan2-M32-GPTQ-int8 | INT8 | 72.56% | 9.05 token/s |39.81 GB |
| Yuan2-M32-GPTQ-int4 | INT4 | 66.46% | 9.24 token/s |23.27GB |