Commit d3dd8642 authored by Rayyyyy's avatar Rayyyyy
Browse files

First add

parents
Pipeline #1259 failed with stages
in 0 seconds
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
CHECKPOINT_PATH=<Specify path>
VOCAB_FILE=<Specify path to file>/bert-vocab.txt
DATA_PATH=<Specify path and file prefix>_text_sentence
BERT_ARGS="
--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--seq-length 512 \
--max-position-embeddings 512 \
--micro-batch-size 4 \
--global-batch-size 8 \
--lr 0.0001 \
--train-iters 2000000 \
--lr-decay-iters 990000 \
--lr-decay-style linear \
--min-lr 0.00001 \
--weight-decay 1e-2 \
--lr-warmup-fraction .01 \
--clip-grad 1.0 \
--fp16
"
DATA_ARGS="
--data-path $DATA_PATH \
--vocab-file $VOCAB_FILE \
--data-impl mmap \
--split 949,50,1
"
OUTPUT_ARGS="
--log-interval 100 \
--save-interval 10000 \
--eval-interval 1000 \
--eval-iters 10
"
torchrun pretrain_bert.py \
$BERT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
CHECKPOINT_PATH=<Specify path>
VOCAB_FILE=<Specify path to file>/bert-vocab.txt
DATA_PATH=<Specify path and file prefix>_text_sentence
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
BERT_ARGS="
--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--seq-length 512 \
--max-position-embeddings 512 \
--micro-batch-size 4 \
--global-batch-size 32 \
--lr 0.0001 \
--train-iters 1000000 \
--lr-decay-iters 990000 \
--lr-decay-style linear \
--min-lr 1.0e-5 \
--weight-decay 1e-2 \
--lr-warmup-fraction .01 \
--clip-grad 1.0 \
--fp16
"
DATA_ARGS="
--data-path $DATA_PATH \
--vocab-file $VOCAB_FILE \
--data-impl mmap \
--split 949,50,1
"
OUTPUT_ARGS="
--log-interval 100 \
--save-interval 10000 \
--eval-interval 1000 \
--eval-iters 10
"
torchrun $DISTRIBUTED_ARGS pretrain_bert.py \
$BERT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
--distributed-backend nccl \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
CHECKPOINT_PATH=<Specify path>
VOCAB_FILE=<Specify path to file>/bert-vocab.txt
DATA_PATH=<Specify path and file prefix>_text_sentence
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
BERT_ARGS="
--tensor-model-parallel-size 2 \
--pipeline-model-parallel-size 2 \
--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--seq-length 512 \
--max-position-embeddings 512 \
--micro-batch-size 2 \
--global-batch-size 16 \
--lr 0.0001 \
--train-iters 1000000 \
--lr-decay-iters 990000 \
--lr-decay-style linear \
--min-lr 1.0e-5 \
--weight-decay 1e-2 \
--lr-warmup-fraction .01 \
--clip-grad 1.0 \
--fp16
"
DATA_ARGS="
--data-path $DATA_PATH \
--vocab-file $VOCAB_FILE \
--data-impl mmap \
--split 949,50,1
"
OUTPUT_ARGS="
--log-interval 100 \
--save-interval 10000 \
--eval-interval 1000 \
--eval-iters 10
"
torchrun $DISTRIBUTED_ARGS pretrain_bert.py \
$BERT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
--distributed-backend nccl \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
# Runs the "345M" parameter model
export CUDA_DEVICE_MAX_CONNECTIONS=1
CHECKPOINT_PATH=<Specify path>
VOCAB_FILE=<Specify path to file>/gpt2-vocab.json
MERGE_FILE=<Specify path to file>/gpt2-merges.txt
DATA_PATH=<Specify path and file prefix>_text_document
GPT_ARGS="
--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--seq-length 1024 \
--max-position-embeddings 1024 \
--micro-batch-size 4 \
--global-batch-size 8 \
--lr 0.00015 \
--train-iters 500000 \
--lr-decay-iters 320000 \
--lr-decay-style cosine \
--min-lr 1.0e-5 \
--weight-decay 1e-2 \
--lr-warmup-fraction .01 \
--clip-grad 1.0 \
--fp16
"
DATA_ARGS="
--data-path $DATA_PATH \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--data-impl mmap \
--split 949,50,1
"
OUTPUT_ARGS="
--log-interval 100 \
--save-interval 10000 \
--eval-interval 1000 \
--eval-iters 10
"
torchrun pretrain_gpt.py \
$GPT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
#SBATCH <SLURM OPTIONS> --nodes=128 --exclusive --ntasks-per-node=8 --job-name=megatron_gpt3_175b
DIR=`pwd`
DATETIME=`date +'date_%y-%m-%d_time_%H-%M-%S'`
mkdir -p $DIR/logs
DATASET_1="<PATH TO THE FIRST DATASET>"
DATASET_2="<PATH TO THE SECOND DATASET>"
DATASET_3="<PATH TO THE THIRD DATASET>"
DATASET="0.2 ${DATASET_1} 0.3 ${DATASET_2} 0.5 ${DATASET_3}"
options=" \
--tensor-model-parallel-size 8 \
--pipeline-model-parallel-size 16 \
--num-layers 96 \
--hidden-size 12288 \
--num-attention-heads 96 \
--seq-length 2048 \
--max-position-embeddings 2048 \
--micro-batch-size 1 \
--global-batch-size 1536 \
--rampup-batch-size 16 16 5859375 \
--train-samples 146484375 \
--lr-decay-samples 126953125 \
--lr-warmup-samples 183105 \
--lr 6.0e-5 \
--min-lr 6.0e-6 \
--lr-decay-style cosine \
--log-interval 10 \
--eval-iters 40 \
--eval-interval 1000 \
--data-path ${DATASET} \
--vocab-file <PATH TO gpt-vocab.json> \
--merge-file <PATH TO gpt-merges.txt> \
--save-interval 1000 \
--save <PATH TO CHECKPOINTS DIRECTORY> \
--load <PATH TO CHECKPOINTS DIRECTORY> \
--split 98,2,0 \
--clip-grad 1.0 \
--weight-decay 0.1 \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--init-method-std 0.006 \
--tensorboard-dir <TENSORBOARD DIRECTORY> \
--fp16 "
run_cmd="python -u ${DIR}/pretrain_gpt.py $@ ${options}"
srun -l \
--container-image "nvcr.io/nvidia/pytorch:20.12-py3" \
--container-mounts "<DIRECTORIES TO MOUNT>" \
--output=$DIR/logs/%x_%j_$DATETIME.log sh -c "${run_cmd}"
set +x
#!/bin/bash
# Runs the "345M" parameter model
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
CHECKPOINT_PATH=<Specify path>
VOCAB_FILE=<Specify path to file>/gpt2-vocab.json
MERGE_FILE=<Specify path to file>/gpt2-merges.txt
DATA_PATH=<Specify path and file prefix>_text_document
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
GPT_ARGS="
--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--seq-length 1024 \
--max-position-embeddings 1024 \
--micro-batch-size 8 \
--global-batch-size 64 \
--lr 0.00015 \
--train-iters 500000 \
--lr-decay-iters 320000 \
--lr-decay-style cosine \
--min-lr 1.0e-5 \
--weight-decay 1e-2 \
--lr-warmup-fraction .01 \
--clip-grad 1.0 \
--fp16
"
DATA_ARGS="
--data-path $DATA_PATH \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--data-impl mmap \
--split 949,50,1
"
OUTPUT_ARGS="
--log-interval 100 \
--save-interval 10000 \
--eval-interval 1000 \
--eval-iters 10
"
torchrun $DISTRIBUTED_ARGS pretrain_gpt.py \
$GPT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
--distributed-backend nccl \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
# Runs the "345M" parameter model
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
CHECKPOINT_PATH=<Specify path>
VOCAB_FILE=<Specify path to file>/gpt2-vocab.json
MERGE_FILE=<Specify path to file>/gpt2-merges.txt
DATA_PATH=<Specify path and file prefix>_text_document
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
GPT_ARGS="
--tensor-model-parallel-size 2 \
--pipeline-model-parallel-size 2 \
--sequence-parallel \
--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--seq-length 1024 \
--max-position-embeddings 1024 \
--micro-batch-size 4 \
--global-batch-size 16 \
--lr 0.00015 \
--train-iters 500000 \
--lr-decay-iters 320000 \
--lr-decay-style cosine \
--min-lr 1.0e-5 \
--weight-decay 1e-2 \
--lr-warmup-fraction .01 \
--clip-grad 1.0 \
--fp16
"
DATA_ARGS="
--data-path $DATA_PATH \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--data-impl mmap \
--split 949,50,1
"
OUTPUT_ARGS="
--log-interval 100 \
--save-interval 10000 \
--eval-interval 1000 \
--eval-iters 10
"
torchrun $DISTRIBUTED_ARGS pretrain_gpt.py \
$GPT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
--distributed-backend nccl \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#! /bin/bash
# Runs the "217M" parameter biencoder model for ICT retriever
RANK=0
WORLD_SIZE=1
PRETRAINED_BERT_PATH=<Specify path of pretrained BERT model>
TEXT_DATA_PATH=<Specify path and file prefix of the text data>
TITLE_DATA_PATH=<Specify path and file prefix od the titles>
CHECKPOINT_PATH=<Specify path>
python pretrain_ict.py \
--num-layers 12 \
--hidden-size 768 \
--num-attention-heads 12 \
--tensor-model-parallel-size 1 \
--micro-batch-size 32 \
--seq-length 256 \
--max-position-embeddings 512 \
--train-iters 100000 \
--vocab-file bert-vocab.txt \
--tokenizer-type BertWordPieceLowerCase \
--DDP-impl torch \
--bert-load ${PRETRAINED_BERT_PATH} \
--log-interval 100 \
--eval-interval 1000 \
--eval-iters 10 \
--retriever-report-topk-accuracies 1 5 10 20 100 \
--retriever-score-scaling \
--load $CHECKPOINT_PATH \
--save $CHECKPOINT_PATH \
--data-path ${TEXT_DATA_PATH} \
--titles-data-path ${TITLE_DATA_PATH} \
--lr 0.0001 \
--lr-decay-style linear \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--lr-warmup-fraction 0.01 \
--save-interval 4000 \
--exit-interval 8000 \
--query-in-block-prob 0.1 \
--fp16
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
CHECKPOINT_PATH=<Specify path>
VOCAB_FILE=<Specify path to file>/t5-vocab.txt
DATA_PATH=<Specify path and file prefix>_text_sentence
T5_ARGS="
--num-layers 12 \
--hidden-size 768 \
--num-attention-heads 12 \
--kv-channels 64 \
--ffn-hidden-size 3072 \
--encoder-seq-length 512 \
--decoder-seq-length 128 \
--max-position-embeddings 512 \
--micro-batch-size 16 \
--global-batch-size 16 \
--lr 0.0001 \
--train-iters 1000000 \
--lr-decay-iters 1000000 \
--lr-decay-style linear \
--min-lr 0.00001 \
--weight-decay 1e-2 \
--lr-warmup-fraction .01 \
--clip-grad 1.0 \
--fp16 \
--vocab-extra-ids 100
"
DATA_ARGS="
--data-path $DATA_PATH \
--vocab-file $VOCAB_FILE \
--data-impl mmap \
--split 949,50,1
"
OUTPUT_ARGS="
--log-interval 100 \
--save-interval 10000 \
--eval-interval 1000 \
--eval-iters 10
"
torchrun pretrain_t5.py \
$T5_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
CHECKPOINT_PATH=<Specify path>
VOCAB_FILE=<Specify path to file>/t5-vocab.txt
DATA_PATH=<Specify path and file prefix>_text_sentence
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
T5_ARGS="
--num-layers 12 \
--hidden-size 768 \
--num-attention-heads 12 \
--kv-channels 64 \
--ffn-hidden-size 3072 \
--encoder-seq-length 512 \
--decoder-seq-length 128 \
--max-position-embeddings 512 \
--micro-batch-size 16 \
--global-batch-size 128 \
--lr 0.0001 \
--train-iters 1000000 \
--lr-decay-iters 1000000 \
--lr-decay-style linear \
--min-lr 0.00001 \
--weight-decay 1e-2 \
--lr-warmup-fraction .01 \
--clip-grad 1.0 \
--fp16 \
--vocab-extra-ids 100
"
DATA_ARGS="
--data-path $DATA_PATH \
--vocab-file $VOCAB_FILE \
--data-impl mmap \
--split 949,50,1
"
OUTPUT_ARGS="
--log-interval 100 \
--save-interval 10000 \
--eval-interval 1000 \
--eval-iters 10
"
torchrun $DISTRIBUTED_ARGS pretrain_t5.py \
$T5_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
--distributed-backend nccl \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
CHECKPOINT_PATH=<Specify path>
VOCAB_FILE=<Specify path to file>/t5-vocab.txt
DATA_PATH=<Specify path and file prefix>_text_sentence
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
T5_ARGS="
--tensor-model-parallel-size 2 \
--num-layers 12 \
--hidden-size 768 \
--num-attention-heads 12 \
--kv-channels 64 \
--ffn-hidden-size 3072 \
--encoder-seq-length 512 \
--decoder-seq-length 128 \
--max-position-embeddings 512 \
--micro-batch-size 16 \
--global-batch-size 128 \
--lr 0.0001 \
--train-iters 1000000 \
--lr-decay-iters 1000000 \
--lr-decay-style linear \
--min-lr 0.00001 \
--weight-decay 1e-2 \
--lr-warmup-fraction .01 \
--clip-grad 1.0 \
--fp16 \
--vocab-extra-ids 100
"
DATA_ARGS="
--data-path $DATA_PATH \
--vocab-file $VOCAB_FILE \
--data-impl mmap \
--split 949,50,1
"
OUTPUT_ARGS="
--log-interval 100 \
--save-interval 10000 \
--eval-interval 1000 \
--eval-iters 10
"
torchrun $DISTRIBUTED_ARGS pretrain_t5.py \
$T5_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
--distributed-backend nccl \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
# Runs the "Yuan-102B" parameter model
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
CHECKPOINT_PATH=<Specify path>
DATA_PATH=<Specify path and file prefix>_text_document
TOKENIZER_MODEL_PATH=<Specify path to file>
TENSORBOARD_PATH=<Specify path to file>
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
GPT_ARGS="
--tensor-model-parallel-size 1 \
--pipeline-model-parallel-size 32 \
--pipeline-model-parallel-method block \
--pipeline-model-parallel-blocks 2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,2 \
--timing-log-level 2 \
--num-workers 2 \
--num-layers 84 \
--hidden-size 8192 \
--num-attention-heads 64 \
--use-lf-gate \
--lf-conv2d-group 1 \
--lf-conv2d-num-pad 1 \
--position-embedding-type rope \
--no-embedding-dropout \
--flash-attn-drop 0.1 \
--fim-rate 0.5 \
--fim-spm-rate 0.5 \
--norm-dtype RMSNorm \
--attention-dropout 0 \
--hidden-dropout 0 \
--disable-bias-linear \
--reset-position-ids \
--use-flash-attn \
--swiglu \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--seq-length 4096 \
--max-position-embeddings 4096 \
--micro-batch-size 1 \
--global-batch-size 1152 \
--lr 0.00003 \
--train-iters 63578 \
--lr-decay-iters 63578 \
--lr-decay-style cosine \
--min-lr 0.3e-5 \
--weight-decay 1e-1 \
--use-distributed-optimizer \
--lr-warmup-iters 1300 \
--clip-grad 1.0 \
--recompute-method block \
--recompute-granularity full \
--recompute-num-layers 2 \
--bf16
"
DATA_ARGS="
--data-path $DATA_PATH \
--tokenizer-type YuanTokenizer \
--tokenizer-model-path $TOKENIZER_MODEL_PATH \
--data-impl mmap \
--split 10,0,0
"
OUTPUT_ARGS="
--log-interval 1 \
--save-interval 10000 \
--eval-interval 1000000 \
--eval-iters 10
"
LOG_ARGS="
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-log-interval 1 \
--tensorboard-queue-size 1000 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-memory-to-tensorboard \
--log-world-size-to-tensorboard
"
torchrun $DISTRIBUTED_ARGS pretrain_yuan.py \
$GPT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
$LOG_ARGS \
--distributed-backend nccl \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
# Runs the "Yuan-102B" parameter model
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
CHECKPOINT_PATH=<Specify path>
DATA_PATH=<Specify path and file prefix>_text_document
TOKENIZER_MODEL_PATH=<Specify path to file>
TENSORBOARD_PATH=<Specify path to file>
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
GPT_ARGS="
--tensor-model-parallel-size 1 \
--pipeline-model-parallel-size 32 \
--pipeline-model-parallel-method block \
--pipeline-model-parallel-blocks 2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,2 \
--timing-log-level 2 \
--num-workers 2 \
--num-layers 84 \
--hidden-size 8192 \
--num-attention-heads 64 \
--use-lf-gate \
--lf-conv2d-group 1 \
--lf-conv2d-num-pad 1 \
--position-embedding-type rope \
--no-embedding-dropout \
--flash-attn-drop 0.1 \
--fim-rate 0.5 \
--fim-spm-rate 0.5 \
--norm-dtype RMSNorm \
--attention-dropout 0 \
--hidden-dropout 0 \
--disable-bias-linear \
--reset-position-ids \
--use-flash-attn \
--swiglu \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--seq-length 4096 \
--max-position-embeddings 4096 \
--micro-batch-size 1 \
--global-batch-size 1152 \
--lr 0.00003 \
--train-iters 63578 \
--lr-decay-iters 63578 \
--lr-decay-style cosine \
--min-lr 0.3e-5 \
--weight-decay 1e-1 \
--use-distributed-optimizer \
--lr-warmup-iters 1300 \
--clip-grad 1.0 \
--recompute-method block \
--recompute-granularity full \
--recompute-num-layers 2 \
--bf16 \
--sft-stage \
--override-opt-param-scheduler \
--train-reset \
--finetune
"
DATA_ARGS="
--data-path $DATA_PATH \
--tokenizer-type YuanTokenizer \
--tokenizer-model-path $TOKENIZER_MODEL_PATH \
--data-impl mmap \
--split 10,0,0
"
OUTPUT_ARGS="
--log-interval 1 \
--save-interval 10000 \
--eval-interval 1000000 \
--eval-iters 10
"
LOG_ARGS="
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-log-interval 1 \
--tensorboard-queue-size 1000 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-memory-to-tensorboard \
--log-world-size-to-tensorboard
"
torchrun $DISTRIBUTED_ARGS pretrain_yuan.py \
$GPT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
$LOG_ARGS \
--distributed-backend nccl \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
# Runs the "Yuan-2.1B" parameter model
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
CHECKPOINT_PATH=<Specify path>
DATA_PATH=<Specify path and file prefix>_text_document
TOKENIZER_MODEL_PATH=<Specify path to file>
TENSORBOARD_PATH=<Specify path to file>
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
GPT_ARGS="
--tensor-model-parallel-size 1 \
--pipeline-model-parallel-size 1 \
--timing-log-level 2 \
--num-workers 2 \
--num-layers 24 \
--hidden-size 2048 \
--num-attention-heads 32 \
--use-lf-gate \
--lf-conv2d-group 1 \
--lf-conv2d-num-pad 1 \
--position-embedding-type rope \
--no-embedding-dropout \
--flash-attn-drop 0.1 \
--fim-rate 0.5 \
--fim-spm-rate 0.5 \
--norm-dtype RMSNorm \
--attention-dropout 0 \
--hidden-dropout 0 \
--disable-bias-linear \
--reset-position-ids \
--use-flash-attn \
--swiglu \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--seq-length 8192 \
--max-position-embeddings 8192 \
--micro-batch-size 2 \
--global-batch-size 384 \
--lr 0.0002 \
--train-iters 95367 \
--lr-decay-iters 95367 \
--lr-decay-style cosine \
--min-lr 2.0e-5 \
--weight-decay 1e-1 \
--lr-warmup-iters 1900 \
--clip-grad 1.0 \
--recompute-method uniform \
--recompute-granularity full \
--recompute-num-layers 1 \
--bf16
"
DATA_ARGS="
--data-path $DATA_PATH \
--tokenizer-type YuanTokenizer \
--tokenizer-model-path $TOKENIZER_MODEL_PATH \
--data-impl mmap \
--split 10,0,0
"
OUTPUT_ARGS="
--log-interval 1 \
--save-interval 10000 \
--eval-interval 1000000 \
--eval-iters 10
"
LOG_ARGS="
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-log-interval 1 \
--tensorboard-queue-size 1000 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-memory-to-tensorboard \
--log-world-size-to-tensorboard
"
torchrun $DISTRIBUTED_ARGS pretrain_yuan.py \
$GPT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
$LOG_ARGS \
--distributed-backend nccl \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
# Runs the "Yuan-2.1B" parameter model
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
CHECKPOINT_PATH=<Specify path>
DATA_PATH=<Specify path and file prefix>_text_document
TOKENIZER_MODEL_PATH=<Specify path to file>
TENSORBOARD_PATH=<Specify path to file>
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
GPT_ARGS="
--tensor-model-parallel-size 1 \
--pipeline-model-parallel-size 1 \
--timing-log-level 2 \
--num-workers 2 \
--num-layers 24 \
--hidden-size 2048 \
--num-attention-heads 32 \
--use-lf-gate \
--lf-conv2d-group 1 \
--lf-conv2d-num-pad 1 \
--position-embedding-type rope \
--no-embedding-dropout \
--flash-attn-drop 0.1 \
--fim-rate 0.5 \
--fim-spm-rate 0.5 \
--norm-dtype RMSNorm \
--attention-dropout 0 \
--hidden-dropout 0 \
--disable-bias-linear \
--reset-position-ids \
--use-flash-attn \
--swiglu \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--seq-length 8192 \
--max-position-embeddings 8192 \
--micro-batch-size 2 \
--global-batch-size 384 \
--lr 0.0002 \
--train-iters 95367 \
--lr-decay-iters 95367 \
--lr-decay-style cosine \
--min-lr 2.0e-5 \
--weight-decay 1e-1 \
--lr-warmup-iters 1900 \
--clip-grad 1.0 \
--recompute-method uniform \
--recompute-granularity full \
--recompute-num-layers 1 \
--bf16 \
--sft-stage \
--override-opt-param-scheduler \
--train-reset \
--finetune
"
DATA_ARGS="
--data-path $DATA_PATH \
--tokenizer-type YuanTokenizer \
--tokenizer-model-path $TOKENIZER_MODEL_PATH \
--data-impl mmap \
--split 10,0,0
"
OUTPUT_ARGS="
--log-interval 1 \
--save-interval 10000 \
--eval-interval 1000000 \
--eval-iters 10
"
LOG_ARGS="
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-log-interval 1 \
--tensorboard-queue-size 1000 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-memory-to-tensorboard \
--log-world-size-to-tensorboard
"
torchrun $DISTRIBUTED_ARGS pretrain_yuan.py \
$GPT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
$LOG_ARGS \
--distributed-backend nccl \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
# Runs the "Yuan-51B" parameter model
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
CHECKPOINT_PATH=<Specify path>
DATA_PATH=<Specify path and file prefix>_text_document
TOKENIZER_MODEL_PATH=<Specify path to file>
TENSORBOARD_PATH=<Specify path to file>
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
GPT_ARGS="
--tensor-model-parallel-size 1 \
--pipeline-model-parallel-size 16 \
--pipeline-model-parallel-method block \
--pipeline-model-parallel-blocks 2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,2 \
--timing-log-level 2 \
--num-workers 2 \
--num-layers 42 \
--hidden-size 8192 \
--num-attention-heads 64 \
--use-lf-gate \
--lf-conv2d-group 1 \
--lf-conv2d-num-pad 1 \
--position-embedding-type rope \
--no-embedding-dropout \
--flash-attn-drop 0.1 \
--fim-rate 0.5 \
--fim-spm-rate 0.5 \
--norm-dtype RMSNorm \
--attention-dropout 0 \
--hidden-dropout 0 \
--disable-bias-linear \
--reset-position-ids \
--use-flash-attn \
--swiglu \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--seq-length 4096 \
--max-position-embeddings 4096 \
--micro-batch-size 1 \
--global-batch-size 1152 \
--lr 0.00009 \
--train-iters 63578 \
--lr-decay-iters 63578 \
--lr-decay-style cosine \
--min-lr 0.9e-5 \
--weight-decay 1e-1 \
--use-distributed-optimizer \
--lr-warmup-iters 1300 \
--clip-grad 1.0 \
--recompute-method block \
--recompute-granularity full \
--recompute-num-layers 1 \
--bf16
"
DATA_ARGS="
--data-path $DATA_PATH \
--tokenizer-type YuanTokenizer \
--tokenizer-model-path $TOKENIZER_MODEL_PATH \
--data-impl mmap \
--split 10,0,0
"
OUTPUT_ARGS="
--log-interval 1 \
--save-interval 10000 \
--eval-interval 1000000 \
--eval-iters 10
"
LOG_ARGS="
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-log-interval 1 \
--tensorboard-queue-size 1000 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-memory-to-tensorboard \
--log-world-size-to-tensorboard
"
torchrun $DISTRIBUTED_ARGS pretrain_yuan.py \
$GPT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
$LOG_ARGS \
--distributed-backend nccl \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
# Runs the "Yuan-51B" parameter model
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
CHECKPOINT_PATH=<Specify path>
DATA_PATH=<Specify path and file prefix>_text_document
TOKENIZER_MODEL_PATH=<Specify path to file>
TENSORBOARD_PATH=<Specify path to file>
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
GPT_ARGS="
--tensor-model-parallel-size 1 \
--pipeline-model-parallel-size 16 \
--pipeline-model-parallel-method block \
--pipeline-model-parallel-blocks 2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,2 \
--timing-log-level 2 \
--num-workers 2 \
--num-layers 42 \
--hidden-size 8192 \
--num-attention-heads 64 \
--use-lf-gate \
--lf-conv2d-group 1 \
--lf-conv2d-num-pad 1 \
--position-embedding-type rope \
--no-embedding-dropout \
--flash-attn-drop 0.1 \
--fim-rate 0.5 \
--fim-spm-rate 0.5 \
--norm-dtype RMSNorm \
--attention-dropout 0 \
--hidden-dropout 0 \
--disable-bias-linear \
--reset-position-ids \
--use-flash-attn \
--swiglu \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--seq-length 4096 \
--max-position-embeddings 4096 \
--micro-batch-size 1 \
--global-batch-size 1152 \
--lr 0.00009 \
--train-iters 63578 \
--lr-decay-iters 63578 \
--lr-decay-style cosine \
--min-lr 0.9e-5 \
--weight-decay 1e-1 \
--use-distributed-optimizer \
--lr-warmup-iters 1300 \
--clip-grad 1.0 \
--recompute-method block \
--recompute-granularity full \
--recompute-num-layers 1 \
--bf16 \
--sft-stage \
--override-opt-param-scheduler \
--train-reset \
--finetune
"
DATA_ARGS="
--data-path $DATA_PATH \
--tokenizer-type YuanTokenizer \
--tokenizer-model-path $TOKENIZER_MODEL_PATH \
--data-impl mmap \
--split 10,0,0
"
OUTPUT_ARGS="
--log-interval 1 \
--save-interval 10000 \
--eval-interval 1000000 \
--eval-iters 10
"
LOG_ARGS="
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-log-interval 1 \
--tensorboard-queue-size 1000 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-memory-to-tensorboard \
--log-world-size-to-tensorboard
"
torchrun $DISTRIBUTED_ARGS pretrain_yuan.py \
$GPT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
$LOG_ARGS \
--distributed-backend nccl \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
# Runs the "Yuan-2.1B" parameter model
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
CHECKPOINT_PATH=<Specify path>
DATA_PATH=<Specify path and file prefix>_text_document
TOKENIZER_MODEL_PATH=<Specify path to file>
TENSORBOARD_PATH=<Specify path to file>
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
GPT_ARGS="
--tensor-model-parallel-size 1 \
--pipeline-model-parallel-size 8 \
--timing-log-level 2 \
--num-workers 2 \
--num-layers 24 \
--hidden-size 2048 \
--num-attention-heads 16 \
--kv-channels 256 \
--use-lf-gate \
--lf-conv2d-group 1 \
--lf-conv2d-num-pad 1 \
--position-embedding-type rope \
--no-embedding-dropout \
--flash-attn-drop 0.1 \
--fim-rate 0.5 \
--fim-spm-rate 0.5 \
--norm-dtype RMSNorm \
--attention-dropout 0 \
--hidden-dropout 0 \
--disable-bias-linear \
--reset-position-ids \
--use-flash-attn \
--swiglu \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--seq-length 4096 \
--max-position-embeddings 4096 \
--micro-batch-size 2 \
--global-batch-size 1536 \
--lr 0.0001 \
--train-iters 318000 \
--lr-decay-iters 318000 \
--lr-decay-style cosine \
--min-lr 1.0e-5 \
--weight-decay 1e-1 \
--lr-warmup-iters 6400 \
--clip-grad 1.0 \
--recompute-method block \
--recompute-granularity full \
--recompute-num-layers 1 \
--bf16 \
--rotary-percent 0.5 \
--use-attention-router \
--no-masked-softmax-fusion \
--use-fp32-router \
--num-experts 32 \
--moe-router-load-balancing-type none \
--moe-router-topk 2 \
--moe-grouped-gemm \
"
DATA_ARGS="
--data-path $DATA_PATH \
--tokenizer-type YuanTokenizer \
--tokenizer-model-path $TOKENIZER_MODEL_PATH \
--data-impl mmap \
--split 10,0,0
"
OUTPUT_ARGS="
--log-interval 1 \
--save-interval 10000 \
--eval-interval 1000000 \
--eval-iters 10
"
LOG_ARGS="
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-log-interval 1 \
--tensorboard-queue-size 1000 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-memory-to-tensorboard \
--log-world-size-to-tensorboard
"
torchrun $DISTRIBUTED_ARGS pretrain_yuan.py \
$GPT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
$LOG_ARGS \
--distributed-backend nccl \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
# Runs the "Yuan-2.1B" parameter model
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
CHECKPOINT_PATH=<Specify path>
DATA_PATH=<Specify path and file prefix>_text_document
TOKENIZER_MODEL_PATH=<Specify path to file>
TENSORBOARD_PATH=<Specify path to file>
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
GPT_ARGS="
--tensor-model-parallel-size 1 \
--pipeline-model-parallel-size 8 \
--timing-log-level 2 \
--num-workers 2 \
--num-layers 24 \
--hidden-size 2048 \
--num-attention-heads 16 \
--kv-channels 256 \
--use-lf-gate \
--lf-conv2d-group 1 \
--lf-conv2d-num-pad 1 \
--rotary-base 40890 \
--position-embedding-type rope \
--no-embedding-dropout \
--flash-attn-drop 0.1 \
--fim-rate 0.0 \
--fim-spm-rate 0.0 \
--norm-dtype RMSNorm \
--attention-dropout 0 \
--hidden-dropout 0 \
--disable-bias-linear \
--reset-position-ids \
--use-flash-attn \
--swiglu \
--use-distributed-optimizer \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--seq-length 16384 \
--max-position-embeddings 16384 \
--micro-batch-size 1 \
--global-batch-size 1152 \
--lr 8.0e-5 \
--train-iters 4220 \
--lr-decay-style constant \
--min-lr 8.0e-5 \
--weight-decay 1e-1 \
--clip-grad 1.0 \
--recompute-method uniform \
--recompute-granularity full \
--recompute-num-layers 1 \
--bf16 \
--rotary-percent 0.5 \
--use-attention-router \
--num-attention-router-heads 16384 \
--num-experts 32 \
--no-masked-softmax-fusion \
--use-fp32-router \
--moe-router-load-balancing-type none \
--moe-router-topk 2 \
--moe-grouped-gemm \
--sft-stage \
--override-opt-param-scheduler \
--train-reset \
"
DATA_ARGS="
--data-path $DATA_PATH \
--tokenizer-type YuanTokenizer \
--tokenizer-model-path $TOKENIZER_MODEL_PATH \
--data-impl mmap \
--split 10,0,0
"
OUTPUT_ARGS="
--log-interval 1 \
--save-interval 10000 \
--eval-interval 1000000 \
--eval-iters 10
"
LOG_ARGS="
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-log-interval 1 \
--tensorboard-queue-size 1000 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-memory-to-tensorboard \
--log-world-size-to-tensorboard
"
torchrun $DISTRIBUTED_ARGS pretrain_yuan.py \
$GPT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
$LOG_ARGS \
--distributed-backend nccl \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH
#!/bin/bash
# Runs the "Yuan-102B" parameter model
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
MASTER_ADDR=localhost
MASTER_PORT=6074
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
if [ "$TEMP" == "" ]; then
TEMP=1
fi
if [ "$TOP_P" == "" ]; then
TOP_P=0.0
fi
if [ "$TOP_K" == "" ]; then
TOP_K=1
fi
TOKENIZER_MODEL_PATH=./tokenizer
CHECKPOINT_PATH=<Specify path>
GPT_ARGS="
--micro-batch-size 1 \
--tensor-model-parallel-size 8 \
--pipeline-model-parallel-size 1 \
--num-layers 84 \
--distributed-timeout-minutes 120 \
--hidden-size 8192 \
--use-lf-gate \
--lf-conv2d-group 1 \
--lf-conv2d-num-pad 0 \
--position-embedding-type rope \
--no-embedding-dropout \
--use-flash-attn \
--flash-attn-drop 0.0 \
--attention-dropout 0 \
--fim-rate 0.0 \
--hidden-dropout 0 \
--norm-dtype RMSNorm \
--disable-bias-linear \
--reset-position-ids \
--swiglu \
--num-attention-heads 64 \
--seq-length 4096 \
--max-position-embeddings 4096 \
--bf16 \
--temperature $TEMP \
--top_p $TOP_P \
--top_k $TOP_K \
--seed $RANDOM
"
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 PORT=8000 NCCL_IB_TIMEOUT=22 NCCL_TIMEOUT=60000000000 torchrun $DISTRIBUTED_ARGS tools/run_text_generation_server.py \
$GPT_ARGS \
--tokenizer-type "YuanTokenizer" \
--inference-server \
--tokenizer-model-path $TOKENIZER_MODEL_PATH \
--distributed-backend nccl \
--load $CHECKPOINT_PATH
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment