# YOLOv7
## 论文
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
- https://arxiv.org/pdf/2207.02696.pdf
## 模型结构
YOLOV7是2022年最新出现的一种YOLO系列目标检测模型,该模型的网络结构包括三个部分:input、backbone和head。
## 算法原理
YOLOv7的作者提出了 Extended-ELAN (E-ELAN)结构。E-ELAN采用了ELAN类似的特征聚合和特征转移流程,仅在计算模块中采用了类似ShuffleNet的分组卷积、扩张模块和混洗模块,最终通过聚合模块融合特征。通过采用这种方法可以获得更加多样的特征,同时提高参数的计算和利用效率。
## 环境配置
### Docker(方法一)
拉取镜像:
```plaintext
docker pull image.sourcefind.cn:5000/dcu/admin/base/migraphx:4.3.0-ubuntu20.04-dtk24.04.1-py3.10
```
创建并启动容器:
```plaintext
docker run --shm-size 16g --network=host --name=yolov7_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro -v $PWD/yolov7_migraphx:/home/yolov7_migraphx -it /bin/bash
# 激活dtk
source /opt/dtk/env.sh
```
### Dockerfile(方法二)
```
cd ./docker
docker build --no-cache -t yolov7_migraphx:2.0 .
docker run --shm-size 16g --network=host --name=yolov7_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro -v $PWD/yolov7_migraphx:/home/yolov7_migraphx -it /bin/bash
# 激活dtk
source /opt/dtk/env.sh
```
## 数据集
根据提供的样本数据,进行目标检测。
## 推理
### Python版本推理
下面介绍如何运行Python代码示例,Python示例的详细说明见Doc目录下的Tutorial_Python.md。
#### 设置环境变量
```
export PYTHONPATH=/opt/dtk/lib:$PYTHONPATH
```
#### 安装依赖
```
# 进入python示例目录
cd /Python
# 安装依赖
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
```
#### 运行示例
YoloV7模型的推理示例程序是YoloV7_infer_migraphx.py,在Python目录下使用如下命令运行该推理示例:
```
python YoloV7_infer_migraphx.py \
--imgpath 测试图像路径 \
--modelpath onnx模型路径 \
--objectThreshold 判断是否有物体阈值,默认0.5 \
--confThreshold 置信度阈值,默认0.25 \
--nmsThreshold nms阈值,默认0.5 \
```
### C++版本推理
注意:当使用操作系统不一样时,CMakeList需要做相应的修改:
```
# ubuntu操作系统
${CMAKE_CURRENT_SOURCE_DIR}/depend/lib64/ 修改为 ${CMAKE_CURRENT_SOURCE_DIR}/depend/lib/
# centos操作系统
${CMAKE_CURRENT_SOURCE_DIR}/depend/lib/ 修改为 ${CMAKE_CURRENT_SOURCE_DIR}/depend/lib64/
```
下面介绍如何运行C++代码示例,C++示例的详细说明见Doc目录下的Tutorial_Cpp.md。
#### 构建工程
```
rbuild build -d depend
```
#### 设置环境变量
将依赖库依赖加入环境变量LD_LIBRARY_PATH,在~/.bashrc中添加如下语句:
当操作系统是ubuntu系统时:
```shell
export LD_LIBRARY_PATH=/depend/lib/:$LD_LIBRARY_PATH
```
当操作系统是centos系统时:
```shell
export LD_LIBRARY_PATH=/depend/lib64/:$LD_LIBRARY_PATH
```
然后执行:
```
source ~/.bashrc
```
#### 运行示例
成功编译YoloV7工程后,执行如下命令运行该示例:
```
# 进入yolov7 migraphx工程根目录
cd
# 进入build目录
cd ./build/
# 执行示例程序
./YoloV7
```
## result
### Python版本
python程序运行结束后,会在当前目录生成目标检测图像。
### C++版本
C++程序运行结束后,会在build目录生成目标检测图像。
### 精度
无
## 应用场景
### 算法类别
`目标检测`
### 热点应用行业
`交通`,`教育`,`化工`
## 源码仓库及问题反馈
https://developer.sourcefind.cn/codes/modelzoo/yolov7_migraphx
## 参考资料
https://github.com/WongKinYiu/yolov7