#!/usr/bin/env python3 # Copyright 2021-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse import sys from functools import partial import numpy as np if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-v", "--verbose", action="store_true", required=False, default=False, help="Enable verbose output", ) parser.add_argument( "-i", "--protocol", type=str, required=False, default="HTTP", help="Protocol (HTTP/gRPC) used to communicate with " + "the inference service. Default is HTTP.", ) parser.add_argument( "-r", "--repetitions", type=int, required=False, default=100, help="Number of inferences to run. Default is 100.", ) FLAGS = parser.parse_args() model_name = "custom_identity_int32" # Create the data for the input tensor. input0_data = np.arange(start=0, stop=16, dtype=np.int32) input0_data = np.expand_dims(input0_data, axis=0) if FLAGS.protocol.lower() == "grpc": import tritonclient.grpc as grpcclient create_client = partial( grpcclient.InferenceServerClient, url="localhost:8001", verbose=FLAGS.verbose, ) create_input = partial(grpcclient.InferInput) create_output = partial(grpcclient.InferRequestedOutput) else: import tritonclient.http as httpclient create_client = partial( httpclient.InferenceServerClient, url="localhost:8000", verbose=FLAGS.verbose, ) create_input = partial(httpclient.InferInput) create_output = partial(httpclient.InferRequestedOutput) for i in range(FLAGS.repetitions): triton_client = create_client() # Infer inputs = [] outputs = [] inputs.append(create_input("INPUT0", [1, 16], "INT32")) inputs[0].set_data_from_numpy(input0_data) outputs.append(create_output("OUTPUT0")) results = triton_client.infer( model_name=model_name, inputs=inputs, outputs=outputs ) # Get the output arrays from the results and verify output0_data = results.as_numpy("OUTPUT0") if ( (output0_data.dtype != input0_data.dtype) or (output0_data.shape != input0_data.shape) or not (np.array_equal(output0_data, input0_data)) ): print("incorrect output") sys.exit(1)