Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
yolov5_pytorch
Commits
97157175
Commit
97157175
authored
Oct 24, 2023
by
Sugon_ldc
Browse files
add file train_fp32.py
parent
7d2baa55
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
621 additions
and
0 deletions
+621
-0
train_fp32.py
train_fp32.py
+621
-0
No files found.
train_fp32.py
0 → 100644
View file @
97157175
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Train a YOLOv5 model on a custom dataset
Usage:
$ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
"""
import
argparse
import
logging
import
math
import
os
import
random
import
sys
import
time
from
copy
import
deepcopy
from
pathlib
import
Path
import
numpy
as
np
import
torch
import
torch.distributed
as
dist
import
torch.nn
as
nn
import
yaml
from
torch.cuda
import
amp
from
torch.nn.parallel
import
DistributedDataParallel
as
DDP
from
torch.optim
import
Adam
,
SGD
,
lr_scheduler
from
tqdm
import
tqdm
FILE
=
Path
(
__file__
).
resolve
()
ROOT
=
FILE
.
parents
[
0
]
# YOLOv5 root directory
if
str
(
ROOT
)
not
in
sys
.
path
:
sys
.
path
.
append
(
str
(
ROOT
))
# add ROOT to PATH
ROOT
=
Path
(
os
.
path
.
relpath
(
ROOT
,
Path
.
cwd
()))
# relative
import
val
# for end-of-epoch mAP
from
models.experimental
import
attempt_load
from
models.yolo
import
Model
from
utils.autoanchor
import
check_anchors
from
utils.datasets
import
create_dataloader
from
utils.general
import
labels_to_class_weights
,
increment_path
,
labels_to_image_weights
,
init_seeds
,
\
strip_optimizer
,
get_latest_run
,
check_dataset
,
check_git_status
,
check_img_size
,
check_requirements
,
\
check_file
,
check_yaml
,
check_suffix
,
print_args
,
print_mutation
,
set_logging
,
one_cycle
,
colorstr
,
methods
from
utils.downloads
import
attempt_download
from
utils.loss
import
ComputeLoss
from
utils.plots
import
plot_labels
,
plot_evolve
from
utils.torch_utils
import
EarlyStopping
,
ModelEMA
,
de_parallel
,
intersect_dicts
,
select_device
,
\
torch_distributed_zero_first
from
utils.loggers.wandb.wandb_utils
import
check_wandb_resume
from
utils.metrics
import
fitness
from
utils.loggers
import
Loggers
from
utils.callbacks
import
Callbacks
LOGGER
=
logging
.
getLogger
(
__name__
)
LOCAL_RANK
=
int
(
os
.
getenv
(
'LOCAL_RANK'
,
-
1
))
# https://pytorch.org/docs/stable/elastic/run.html
RANK
=
int
(
os
.
getenv
(
'RANK'
,
-
1
))
WORLD_SIZE
=
int
(
os
.
getenv
(
'WORLD_SIZE'
,
1
))
def
train
(
hyp
,
# path/to/hyp.yaml or hyp dictionary
opt
,
device
,
callbacks
):
save_dir
,
epochs
,
batch_size
,
weights
,
single_cls
,
evolve
,
data
,
cfg
,
resume
,
noval
,
nosave
,
workers
,
freeze
,
=
\
Path
(
opt
.
save_dir
),
opt
.
epochs
,
opt
.
batch_size
,
opt
.
weights
,
opt
.
single_cls
,
opt
.
evolve
,
opt
.
data
,
opt
.
cfg
,
\
opt
.
resume
,
opt
.
noval
,
opt
.
nosave
,
opt
.
workers
,
opt
.
freeze
# Directories
w
=
save_dir
/
'weights'
# weights dir
(
w
.
parent
if
evolve
else
w
).
mkdir
(
parents
=
True
,
exist_ok
=
True
)
# make dir
last
,
best
=
w
/
'last.pt'
,
w
/
'best.pt'
# Hyperparameters
if
isinstance
(
hyp
,
str
):
with
open
(
hyp
,
errors
=
'ignore'
)
as
f
:
hyp
=
yaml
.
safe_load
(
f
)
# load hyps dict
LOGGER
.
info
(
colorstr
(
'hyperparameters: '
)
+
', '
.
join
(
f
'
{
k
}
=
{
v
}
'
for
k
,
v
in
hyp
.
items
()))
# Save run settings
with
open
(
save_dir
/
'hyp.yaml'
,
'w'
)
as
f
:
yaml
.
safe_dump
(
hyp
,
f
,
sort_keys
=
False
)
with
open
(
save_dir
/
'opt.yaml'
,
'w'
)
as
f
:
yaml
.
safe_dump
(
vars
(
opt
),
f
,
sort_keys
=
False
)
data_dict
=
None
# Loggers
if
RANK
in
[
-
1
,
0
]:
loggers
=
Loggers
(
save_dir
,
weights
,
opt
,
hyp
,
LOGGER
)
# loggers instance
if
loggers
.
wandb
:
data_dict
=
loggers
.
wandb
.
data_dict
if
resume
:
weights
,
epochs
,
hyp
=
opt
.
weights
,
opt
.
epochs
,
opt
.
hyp
# Register actions
for
k
in
methods
(
loggers
):
callbacks
.
register_action
(
k
,
callback
=
getattr
(
loggers
,
k
))
# Config
plots
=
not
evolve
# create plots
cuda
=
device
.
type
!=
'cpu'
init_seeds
(
1
+
RANK
)
with
torch_distributed_zero_first
(
LOCAL_RANK
):
data_dict
=
data_dict
or
check_dataset
(
data
)
# check if None
train_path
,
val_path
=
data_dict
[
'train'
],
data_dict
[
'val'
]
nc
=
1
if
single_cls
else
int
(
data_dict
[
'nc'
])
# number of classes
names
=
[
'item'
]
if
single_cls
and
len
(
data_dict
[
'names'
])
!=
1
else
data_dict
[
'names'
]
# class names
assert
len
(
names
)
==
nc
,
f
'
{
len
(
names
)
}
names found for nc=
{
nc
}
dataset in
{
data
}
'
# check
is_coco
=
data
.
endswith
(
'coco.yaml'
)
and
nc
==
80
# COCO dataset
# Model
check_suffix
(
weights
,
'.pt'
)
# check weights
pretrained
=
weights
.
endswith
(
'.pt'
)
if
pretrained
:
with
torch_distributed_zero_first
(
LOCAL_RANK
):
weights
=
attempt_download
(
weights
)
# download if not found locally
ckpt
=
torch
.
load
(
weights
,
map_location
=
device
)
# load checkpoint
model
=
Model
(
cfg
or
ckpt
[
'model'
].
yaml
,
ch
=
3
,
nc
=
nc
,
anchors
=
hyp
.
get
(
'anchors'
)).
to
(
device
)
# create
exclude
=
[
'anchor'
]
if
(
cfg
or
hyp
.
get
(
'anchors'
))
and
not
resume
else
[]
# exclude keys
csd
=
ckpt
[
'model'
].
float
().
state_dict
()
# checkpoint state_dict as FP32
csd
=
intersect_dicts
(
csd
,
model
.
state_dict
(),
exclude
=
exclude
)
# intersect
model
.
load_state_dict
(
csd
,
strict
=
False
)
# load
LOGGER
.
info
(
f
'Transferred
{
len
(
csd
)
}
/
{
len
(
model
.
state_dict
())
}
items from
{
weights
}
'
)
# report
else
:
model
=
Model
(
cfg
,
ch
=
3
,
nc
=
nc
,
anchors
=
hyp
.
get
(
'anchors'
)).
to
(
device
)
# create
# Freeze
freeze
=
[
f
'model.
{
x
}
.'
for
x
in
range
(
freeze
)]
# layers to freeze
for
k
,
v
in
model
.
named_parameters
():
v
.
requires_grad
=
True
# train all layers
if
any
(
x
in
k
for
x
in
freeze
):
print
(
f
'freezing
{
k
}
'
)
v
.
requires_grad
=
False
# Optimizer
nbs
=
64
# nominal batch size
accumulate
=
max
(
round
(
nbs
/
batch_size
),
1
)
# accumulate loss before optimizing
hyp
[
'weight_decay'
]
*=
batch_size
*
accumulate
/
nbs
# scale weight_decay
LOGGER
.
info
(
f
"Scaled weight_decay =
{
hyp
[
'weight_decay'
]
}
"
)
g0
,
g1
,
g2
=
[],
[],
[]
# optimizer parameter groups
for
v
in
model
.
modules
():
if
hasattr
(
v
,
'bias'
)
and
isinstance
(
v
.
bias
,
nn
.
Parameter
):
# bias
g2
.
append
(
v
.
bias
)
if
isinstance
(
v
,
nn
.
BatchNorm2d
):
# weight (no decay)
g0
.
append
(
v
.
weight
)
elif
hasattr
(
v
,
'weight'
)
and
isinstance
(
v
.
weight
,
nn
.
Parameter
):
# weight (with decay)
g1
.
append
(
v
.
weight
)
if
opt
.
adam
:
optimizer
=
Adam
(
g0
,
lr
=
hyp
[
'lr0'
],
betas
=
(
hyp
[
'momentum'
],
0.999
))
# adjust beta1 to momentum
else
:
optimizer
=
SGD
(
g0
,
lr
=
hyp
[
'lr0'
],
momentum
=
hyp
[
'momentum'
],
nesterov
=
True
)
optimizer
.
add_param_group
({
'params'
:
g1
,
'weight_decay'
:
hyp
[
'weight_decay'
]})
# add g1 with weight_decay
optimizer
.
add_param_group
({
'params'
:
g2
})
# add g2 (biases)
LOGGER
.
info
(
f
"
{
colorstr
(
'optimizer:'
)
}
{
type
(
optimizer
).
__name__
}
with parameter groups "
f
"
{
len
(
g0
)
}
weight,
{
len
(
g1
)
}
weight (no decay),
{
len
(
g2
)
}
bias"
)
del
g0
,
g1
,
g2
# Scheduler
if
opt
.
linear_lr
:
lf
=
lambda
x
:
(
1
-
x
/
(
epochs
-
1
))
*
(
1.0
-
hyp
[
'lrf'
])
+
hyp
[
'lrf'
]
# linear
else
:
lf
=
one_cycle
(
1
,
hyp
[
'lrf'
],
epochs
)
# cosine 1->hyp['lrf']
scheduler
=
lr_scheduler
.
LambdaLR
(
optimizer
,
lr_lambda
=
lf
)
# plot_lr_scheduler(optimizer, scheduler, epochs)
# EMA
ema
=
ModelEMA
(
model
)
if
RANK
in
[
-
1
,
0
]
else
None
# Resume
start_epoch
,
best_fitness
=
0
,
0.0
if
pretrained
:
# Optimizer
if
ckpt
[
'optimizer'
]
is
not
None
:
optimizer
.
load_state_dict
(
ckpt
[
'optimizer'
])
best_fitness
=
ckpt
[
'best_fitness'
]
# EMA
if
ema
and
ckpt
.
get
(
'ema'
):
ema
.
ema
.
load_state_dict
(
ckpt
[
'ema'
].
float
().
state_dict
())
ema
.
updates
=
ckpt
[
'updates'
]
# Epochs
start_epoch
=
ckpt
[
'epoch'
]
+
1
if
resume
:
assert
start_epoch
>
0
,
f
'
{
weights
}
training to
{
epochs
}
epochs is finished, nothing to resume.'
if
epochs
<
start_epoch
:
LOGGER
.
info
(
f
"
{
weights
}
has been trained for
{
ckpt
[
'epoch'
]
}
epochs. Fine-tuning for
{
epochs
}
more epochs."
)
epochs
+=
ckpt
[
'epoch'
]
# finetune additional epochs
del
ckpt
,
csd
# Image sizes
gs
=
max
(
int
(
model
.
stride
.
max
()),
32
)
# grid size (max stride)
nl
=
model
.
model
[
-
1
].
nl
# number of detection layers (used for scaling hyp['obj'])
imgsz
=
check_img_size
(
opt
.
imgsz
,
gs
,
floor
=
gs
*
2
)
# verify imgsz is gs-multiple
# DP mode
if
cuda
and
RANK
==
-
1
and
torch
.
cuda
.
device_count
()
>
1
:
logging
.
warning
(
'DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.
\n
'
'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.'
)
model
=
torch
.
nn
.
DataParallel
(
model
)
# SyncBatchNorm
if
opt
.
sync_bn
and
cuda
and
RANK
!=
-
1
:
model
=
torch
.
nn
.
SyncBatchNorm
.
convert_sync_batchnorm
(
model
).
to
(
device
)
LOGGER
.
info
(
'Using SyncBatchNorm()'
)
# Trainloader
train_loader
,
dataset
=
create_dataloader
(
train_path
,
imgsz
,
batch_size
//
WORLD_SIZE
,
gs
,
single_cls
,
hyp
=
hyp
,
augment
=
True
,
cache
=
opt
.
cache
,
rect
=
opt
.
rect
,
rank
=
LOCAL_RANK
,
workers
=
workers
,
image_weights
=
opt
.
image_weights
,
quad
=
opt
.
quad
,
prefix
=
colorstr
(
'train: '
))
mlc
=
int
(
np
.
concatenate
(
dataset
.
labels
,
0
)[:,
0
].
max
())
# max label class
nb
=
len
(
train_loader
)
# number of batches
assert
mlc
<
nc
,
f
'Label class
{
mlc
}
exceeds nc=
{
nc
}
in
{
data
}
. Possible class labels are 0-
{
nc
-
1
}
'
# Process 0
if
RANK
in
[
-
1
,
0
]:
val_loader
=
create_dataloader
(
val_path
,
imgsz
,
batch_size
//
WORLD_SIZE
*
2
,
gs
,
single_cls
,
hyp
=
hyp
,
cache
=
None
if
noval
else
opt
.
cache
,
rect
=
True
,
rank
=-
1
,
workers
=
workers
,
pad
=
0.5
,
prefix
=
colorstr
(
'val: '
))[
0
]
if
not
resume
:
labels
=
np
.
concatenate
(
dataset
.
labels
,
0
)
# c = torch.tensor(labels[:, 0]) # classes
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
# model._initialize_biases(cf.to(device))
if
plots
:
plot_labels
(
labels
,
names
,
save_dir
)
# Anchors
if
not
opt
.
noautoanchor
:
check_anchors
(
dataset
,
model
=
model
,
thr
=
hyp
[
'anchor_t'
],
imgsz
=
imgsz
)
model
.
half
().
float
()
# pre-reduce anchor precision
callbacks
.
run
(
'on_pretrain_routine_end'
)
# DDP mode
if
cuda
and
RANK
!=
-
1
:
model
=
DDP
(
model
,
device_ids
=
[
LOCAL_RANK
],
output_device
=
LOCAL_RANK
)
# Model parameters
hyp
[
'box'
]
*=
3.
/
nl
# scale to layers
hyp
[
'cls'
]
*=
nc
/
80.
*
3.
/
nl
# scale to classes and layers
hyp
[
'obj'
]
*=
(
imgsz
/
640
)
**
2
*
3.
/
nl
# scale to image size and layers
hyp
[
'label_smoothing'
]
=
opt
.
label_smoothing
model
.
nc
=
nc
# attach number of classes to model
model
.
hyp
=
hyp
# attach hyperparameters to model
model
.
class_weights
=
labels_to_class_weights
(
dataset
.
labels
,
nc
).
to
(
device
)
*
nc
# attach class weights
model
.
names
=
names
# Start training
t0
=
time
.
time
()
nw
=
max
(
round
(
hyp
[
'warmup_epochs'
]
*
nb
),
1000
)
# number of warmup iterations, max(3 epochs, 1k iterations)
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
last_opt_step
=
-
1
maps
=
np
.
zeros
(
nc
)
# mAP per class
results
=
(
0
,
0
,
0
,
0
,
0
,
0
,
0
)
# P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
scheduler
.
last_epoch
=
start_epoch
-
1
# do not move
scaler
=
amp
.
GradScaler
(
enabled
=
False
)
stopper
=
EarlyStopping
(
patience
=
opt
.
patience
)
compute_loss
=
ComputeLoss
(
model
)
# init loss class
LOGGER
.
info
(
f
'Image sizes
{
imgsz
}
train,
{
imgsz
}
val
\n
'
f
'Using
{
train_loader
.
num_workers
}
dataloader workers
\n
'
f
"Logging results to
{
colorstr
(
'bold'
,
save_dir
)
}
\n
"
f
'Starting training for
{
epochs
}
epochs...'
)
for
epoch
in
range
(
start_epoch
,
epochs
):
# epoch ------------------------------------------------------------------
model
.
train
()
# Update image weights (optional, single-GPU only)
if
opt
.
image_weights
:
cw
=
model
.
class_weights
.
cpu
().
numpy
()
*
(
1
-
maps
)
**
2
/
nc
# class weights
iw
=
labels_to_image_weights
(
dataset
.
labels
,
nc
=
nc
,
class_weights
=
cw
)
# image weights
dataset
.
indices
=
random
.
choices
(
range
(
dataset
.
n
),
weights
=
iw
,
k
=
dataset
.
n
)
# rand weighted idx
# Update mosaic border (optional)
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
mloss
=
torch
.
zeros
(
3
,
device
=
device
)
# mean losses
if
RANK
!=
-
1
:
train_loader
.
sampler
.
set_epoch
(
epoch
)
pbar
=
enumerate
(
train_loader
)
LOGGER
.
info
((
'
\n
'
+
'%10s'
*
7
)
%
(
'Epoch'
,
'gpu_mem'
,
'box'
,
'obj'
,
'cls'
,
'labels'
,
'img_size'
))
if
RANK
in
[
-
1
,
0
]:
pbar
=
tqdm
(
pbar
,
total
=
nb
)
# progress bar
optimizer
.
zero_grad
()
torch
.
backends
.
cudnn
.
benchmark
=
True
for
i
,
(
imgs
,
targets
,
paths
,
_
)
in
pbar
:
# batch -------------------------------------------------------------
ni
=
i
+
nb
*
epoch
# number integrated batches (since train start)
imgs
=
imgs
.
to
(
device
,
non_blocking
=
True
).
float
()
/
255.0
# uint8 to float32, 0-255 to 0.0-1.0
# Warmup
if
ni
<=
nw
:
xi
=
[
0
,
nw
]
# x interp
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
accumulate
=
max
(
1
,
np
.
interp
(
ni
,
xi
,
[
1
,
nbs
/
batch_size
]).
round
())
for
j
,
x
in
enumerate
(
optimizer
.
param_groups
):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x
[
'lr'
]
=
np
.
interp
(
ni
,
xi
,
[
hyp
[
'warmup_bias_lr'
]
if
j
==
2
else
0.0
,
x
[
'initial_lr'
]
*
lf
(
epoch
)])
if
'momentum'
in
x
:
x
[
'momentum'
]
=
np
.
interp
(
ni
,
xi
,
[
hyp
[
'warmup_momentum'
],
hyp
[
'momentum'
]])
# Multi-scale
if
opt
.
multi_scale
:
sz
=
random
.
randrange
(
imgsz
*
0.5
,
imgsz
*
1.5
+
gs
)
//
gs
*
gs
# size
sf
=
sz
/
max
(
imgs
.
shape
[
2
:])
# scale factor
if
sf
!=
1
:
ns
=
[
math
.
ceil
(
x
*
sf
/
gs
)
*
gs
for
x
in
imgs
.
shape
[
2
:]]
# new shape (stretched to gs-multiple)
imgs
=
nn
.
functional
.
interpolate
(
imgs
,
size
=
ns
,
mode
=
'bilinear'
,
align_corners
=
False
)
# Forward
with
amp
.
autocast
(
enabled
=
False
):
pred
=
model
(
imgs
)
# forward
loss
,
loss_items
=
compute_loss
(
pred
,
targets
.
to
(
device
))
# loss scaled by batch_size
if
RANK
!=
-
1
:
loss
*=
WORLD_SIZE
# gradient averaged between devices in DDP mode
if
opt
.
quad
:
loss
*=
4.
# Backward
scaler
.
scale
(
loss
).
backward
()
# Optimize
if
ni
-
last_opt_step
>=
accumulate
:
scaler
.
step
(
optimizer
)
# optimizer.step
scaler
.
update
()
optimizer
.
zero_grad
()
if
ema
:
ema
.
update
(
model
)
last_opt_step
=
ni
# Log
if
RANK
in
[
-
1
,
0
]:
mloss
=
(
mloss
*
i
+
loss_items
)
/
(
i
+
1
)
# update mean losses
mem
=
f
'
{
torch
.
cuda
.
memory_reserved
()
/
1E9
if
torch
.
cuda
.
is_available
()
else
0
:.
3
g
}
G'
# (GB)
pbar
.
set_description
((
'%10s'
*
2
+
'%10.4g'
*
5
)
%
(
f
'
{
epoch
}
/
{
epochs
-
1
}
'
,
mem
,
*
mloss
,
targets
.
shape
[
0
],
imgs
.
shape
[
-
1
]))
callbacks
.
run
(
'on_train_batch_end'
,
ni
,
model
,
imgs
,
targets
,
paths
,
plots
,
opt
.
sync_bn
)
# end batch ------------------------------------------------------------------------------------------------
# Scheduler
lr
=
[
x
[
'lr'
]
for
x
in
optimizer
.
param_groups
]
# for loggers
scheduler
.
step
()
if
RANK
in
[
-
1
,
0
]:
# mAP
callbacks
.
run
(
'on_train_epoch_end'
,
epoch
=
epoch
)
ema
.
update_attr
(
model
,
include
=
[
'yaml'
,
'nc'
,
'hyp'
,
'names'
,
'stride'
,
'class_weights'
])
final_epoch
=
(
epoch
+
1
==
epochs
)
or
stopper
.
possible_stop
if
not
noval
or
final_epoch
:
# Calculate mAP
results
,
maps
,
_
=
val
.
run
(
data_dict
,
batch_size
=
batch_size
//
WORLD_SIZE
*
2
,
imgsz
=
imgsz
,
model
=
ema
.
ema
,
single_cls
=
single_cls
,
dataloader
=
val_loader
,
save_dir
=
save_dir
,
plots
=
False
,
callbacks
=
callbacks
,
compute_loss
=
compute_loss
)
# Update best mAP
fi
=
fitness
(
np
.
array
(
results
).
reshape
(
1
,
-
1
))
# weighted combination of [P, R, mAP@.5, mAP@.5-.95]
if
fi
>
best_fitness
:
best_fitness
=
fi
log_vals
=
list
(
mloss
)
+
list
(
results
)
+
lr
callbacks
.
run
(
'on_fit_epoch_end'
,
log_vals
,
epoch
,
best_fitness
,
fi
)
# Save model
if
(
not
nosave
)
or
(
final_epoch
and
not
evolve
):
# if save
ckpt
=
{
'epoch'
:
epoch
,
'best_fitness'
:
best_fitness
,
'model'
:
deepcopy
(
de_parallel
(
model
)).
half
(),
'ema'
:
deepcopy
(
ema
.
ema
).
half
(),
'updates'
:
ema
.
updates
,
'optimizer'
:
optimizer
.
state_dict
(),
'wandb_id'
:
loggers
.
wandb
.
wandb_run
.
id
if
loggers
.
wandb
else
None
}
# Save last, best and delete
torch
.
save
(
ckpt
,
last
)
if
best_fitness
==
fi
:
torch
.
save
(
ckpt
,
best
)
if
(
epoch
>
0
)
and
(
opt
.
save_period
>
0
)
and
(
epoch
%
opt
.
save_period
==
0
):
torch
.
save
(
ckpt
,
w
/
f
'epoch
{
epoch
}
.pt'
)
del
ckpt
callbacks
.
run
(
'on_model_save'
,
last
,
epoch
,
final_epoch
,
best_fitness
,
fi
)
# Stop Single-GPU
if
RANK
==
-
1
and
stopper
(
epoch
=
epoch
,
fitness
=
fi
):
break
# Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
# stop = stopper(epoch=epoch, fitness=fi)
# if RANK == 0:
# dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks
# Stop DPP
# with torch_distributed_zero_first(RANK):
# if stop:
# break # must break all DDP ranks
# end epoch ----------------------------------------------------------------------------------------------------
# end training -----------------------------------------------------------------------------------------------------
if
RANK
in
[
-
1
,
0
]:
LOGGER
.
info
(
f
'
\n
{
epoch
-
start_epoch
+
1
}
epochs completed in
{
(
time
.
time
()
-
t0
)
/
3600
:.
3
f
}
hours.'
)
for
f
in
last
,
best
:
if
f
.
exists
():
strip_optimizer
(
f
)
# strip optimizers
if
f
is
best
:
LOGGER
.
info
(
f
'
\n
Validating
{
f
}
...'
)
results
,
_
,
_
=
val
.
run
(
data_dict
,
batch_size
=
batch_size
//
WORLD_SIZE
*
2
,
imgsz
=
imgsz
,
model
=
attempt_load
(
f
,
device
).
half
(),
iou_thres
=
0.65
if
is_coco
else
0.60
,
# best pycocotools results at 0.65
single_cls
=
single_cls
,
dataloader
=
val_loader
,
save_dir
=
save_dir
,
save_json
=
is_coco
,
verbose
=
True
,
plots
=
True
,
callbacks
=
callbacks
,
compute_loss
=
compute_loss
)
# val best model with plots
callbacks
.
run
(
'on_train_end'
,
last
,
best
,
plots
,
epoch
)
LOGGER
.
info
(
f
"Results saved to
{
colorstr
(
'bold'
,
save_dir
)
}
"
)
torch
.
cuda
.
empty_cache
()
return
results
def
parse_opt
(
known
=
False
):
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--weights'
,
type
=
str
,
default
=
ROOT
/
'yolov5s.pt'
,
help
=
'initial weights path'
)
parser
.
add_argument
(
'--cfg'
,
type
=
str
,
default
=
''
,
help
=
'model.yaml path'
)
parser
.
add_argument
(
'--data'
,
type
=
str
,
default
=
ROOT
/
'data/coco128.yaml'
,
help
=
'dataset.yaml path'
)
parser
.
add_argument
(
'--hyp'
,
type
=
str
,
default
=
ROOT
/
'data/hyps/hyp.scratch.yaml'
,
help
=
'hyperparameters path'
)
parser
.
add_argument
(
'--epochs'
,
type
=
int
,
default
=
300
)
parser
.
add_argument
(
'--batch-size'
,
type
=
int
,
default
=
16
,
help
=
'total batch size for all GPUs'
)
parser
.
add_argument
(
'--imgsz'
,
'--img'
,
'--img-size'
,
type
=
int
,
default
=
640
,
help
=
'train, val image size (pixels)'
)
parser
.
add_argument
(
'--rect'
,
action
=
'store_true'
,
help
=
'rectangular training'
)
parser
.
add_argument
(
'--resume'
,
nargs
=
'?'
,
const
=
True
,
default
=
False
,
help
=
'resume most recent training'
)
parser
.
add_argument
(
'--nosave'
,
action
=
'store_true'
,
help
=
'only save final checkpoint'
)
parser
.
add_argument
(
'--noval'
,
action
=
'store_true'
,
help
=
'only validate final epoch'
)
parser
.
add_argument
(
'--noautoanchor'
,
action
=
'store_true'
,
help
=
'disable autoanchor check'
)
parser
.
add_argument
(
'--evolve'
,
type
=
int
,
nargs
=
'?'
,
const
=
300
,
help
=
'evolve hyperparameters for x generations'
)
parser
.
add_argument
(
'--bucket'
,
type
=
str
,
default
=
''
,
help
=
'gsutil bucket'
)
parser
.
add_argument
(
'--cache'
,
type
=
str
,
nargs
=
'?'
,
const
=
'ram'
,
help
=
'--cache images in "ram" (default) or "disk"'
)
parser
.
add_argument
(
'--image-weights'
,
action
=
'store_true'
,
help
=
'use weighted image selection for training'
)
parser
.
add_argument
(
'--device'
,
default
=
''
,
help
=
'cuda device, i.e. 0 or 0,1,2,3 or cpu'
)
parser
.
add_argument
(
'--multi-scale'
,
action
=
'store_true'
,
help
=
'vary img-size +/- 50%%'
)
parser
.
add_argument
(
'--single-cls'
,
action
=
'store_true'
,
help
=
'train multi-class data as single-class'
)
parser
.
add_argument
(
'--adam'
,
action
=
'store_true'
,
help
=
'use torch.optim.Adam() optimizer'
)
parser
.
add_argument
(
'--sync-bn'
,
action
=
'store_true'
,
help
=
'use SyncBatchNorm, only available in DDP mode'
)
parser
.
add_argument
(
'--workers'
,
type
=
int
,
default
=
8
,
help
=
'maximum number of dataloader workers'
)
parser
.
add_argument
(
'--project'
,
default
=
ROOT
/
'runs/train'
,
help
=
'save to project/name'
)
parser
.
add_argument
(
'--name'
,
default
=
'exp'
,
help
=
'save to project/name'
)
parser
.
add_argument
(
'--exist-ok'
,
action
=
'store_true'
,
help
=
'existing project/name ok, do not increment'
)
parser
.
add_argument
(
'--quad'
,
action
=
'store_true'
,
help
=
'quad dataloader'
)
parser
.
add_argument
(
'--linear-lr'
,
action
=
'store_true'
,
help
=
'linear LR'
)
parser
.
add_argument
(
'--label-smoothing'
,
type
=
float
,
default
=
0.0
,
help
=
'Label smoothing epsilon'
)
parser
.
add_argument
(
'--patience'
,
type
=
int
,
default
=
100
,
help
=
'EarlyStopping patience (epochs without improvement)'
)
parser
.
add_argument
(
'--freeze'
,
type
=
int
,
default
=
0
,
help
=
'Number of layers to freeze. backbone=10, all=24'
)
parser
.
add_argument
(
'--save-period'
,
type
=
int
,
default
=-
1
,
help
=
'Save checkpoint every x epochs (disabled if < 1)'
)
parser
.
add_argument
(
'--local_rank'
,
type
=
int
,
default
=-
1
,
help
=
'DDP parameter, do not modify'
)
# Weights & Biases arguments
parser
.
add_argument
(
'--entity'
,
default
=
None
,
help
=
'W&B: Entity'
)
parser
.
add_argument
(
'--upload_dataset'
,
action
=
'store_true'
,
help
=
'W&B: Upload dataset as artifact table'
)
parser
.
add_argument
(
'--bbox_interval'
,
type
=
int
,
default
=-
1
,
help
=
'W&B: Set bounding-box image logging interval'
)
parser
.
add_argument
(
'--artifact_alias'
,
type
=
str
,
default
=
'latest'
,
help
=
'W&B: Version of dataset artifact to use'
)
opt
=
parser
.
parse_known_args
()[
0
]
if
known
else
parser
.
parse_args
()
return
opt
def
main
(
opt
,
callbacks
=
Callbacks
()):
# Checks
set_logging
(
RANK
)
if
RANK
in
[
-
1
,
0
]:
print_args
(
FILE
.
stem
,
opt
)
check_git_status
()
check_requirements
(
exclude
=
[
'thop'
])
# Resume
if
opt
.
resume
and
not
check_wandb_resume
(
opt
)
and
not
opt
.
evolve
:
# resume an interrupted run
ckpt
=
opt
.
resume
if
isinstance
(
opt
.
resume
,
str
)
else
get_latest_run
()
# specified or most recent path
assert
os
.
path
.
isfile
(
ckpt
),
'ERROR: --resume checkpoint does not exist'
with
open
(
Path
(
ckpt
).
parent
.
parent
/
'opt.yaml'
,
errors
=
'ignore'
)
as
f
:
opt
=
argparse
.
Namespace
(
**
yaml
.
safe_load
(
f
))
# replace
opt
.
cfg
,
opt
.
weights
,
opt
.
resume
=
''
,
ckpt
,
True
# reinstate
LOGGER
.
info
(
f
'Resuming training from
{
ckpt
}
'
)
else
:
opt
.
data
,
opt
.
cfg
,
opt
.
hyp
,
opt
.
weights
,
opt
.
project
=
\
check_file
(
opt
.
data
),
check_yaml
(
opt
.
cfg
),
check_yaml
(
opt
.
hyp
),
str
(
opt
.
weights
),
str
(
opt
.
project
)
# checks
assert
len
(
opt
.
cfg
)
or
len
(
opt
.
weights
),
'either --cfg or --weights must be specified'
if
opt
.
evolve
:
opt
.
project
=
str
(
ROOT
/
'runs/evolve'
)
opt
.
exist_ok
,
opt
.
resume
=
opt
.
resume
,
False
# pass resume to exist_ok and disable resume
opt
.
save_dir
=
str
(
increment_path
(
Path
(
opt
.
project
)
/
opt
.
name
,
exist_ok
=
opt
.
exist_ok
))
# DDP mode
device
=
select_device
(
opt
.
device
,
batch_size
=
opt
.
batch_size
)
if
LOCAL_RANK
!=
-
1
:
assert
torch
.
cuda
.
device_count
()
>
LOCAL_RANK
,
'insufficient CUDA devices for DDP command'
assert
opt
.
batch_size
%
WORLD_SIZE
==
0
,
'--batch-size must be multiple of CUDA device count'
assert
not
opt
.
image_weights
,
'--image-weights argument is not compatible with DDP training'
assert
not
opt
.
evolve
,
'--evolve argument is not compatible with DDP training'
torch
.
cuda
.
set_device
(
LOCAL_RANK
)
device
=
torch
.
device
(
'cuda'
,
LOCAL_RANK
)
dist
.
init_process_group
(
backend
=
"nccl"
if
dist
.
is_nccl_available
()
else
"gloo"
)
# Train
if
not
opt
.
evolve
:
train
(
opt
.
hyp
,
opt
,
device
,
callbacks
)
if
WORLD_SIZE
>
1
and
RANK
==
0
:
LOGGER
.
info
(
'Destroying process group... '
)
dist
.
destroy_process_group
()
# Evolve hyperparameters (optional)
else
:
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
meta
=
{
'lr0'
:
(
1
,
1e-5
,
1e-1
),
# initial learning rate (SGD=1E-2, Adam=1E-3)
'lrf'
:
(
1
,
0.01
,
1.0
),
# final OneCycleLR learning rate (lr0 * lrf)
'momentum'
:
(
0.3
,
0.6
,
0.98
),
# SGD momentum/Adam beta1
'weight_decay'
:
(
1
,
0.0
,
0.001
),
# optimizer weight decay
'warmup_epochs'
:
(
1
,
0.0
,
5.0
),
# warmup epochs (fractions ok)
'warmup_momentum'
:
(
1
,
0.0
,
0.95
),
# warmup initial momentum
'warmup_bias_lr'
:
(
1
,
0.0
,
0.2
),
# warmup initial bias lr
'box'
:
(
1
,
0.02
,
0.2
),
# box loss gain
'cls'
:
(
1
,
0.2
,
4.0
),
# cls loss gain
'cls_pw'
:
(
1
,
0.5
,
2.0
),
# cls BCELoss positive_weight
'obj'
:
(
1
,
0.2
,
4.0
),
# obj loss gain (scale with pixels)
'obj_pw'
:
(
1
,
0.5
,
2.0
),
# obj BCELoss positive_weight
'iou_t'
:
(
0
,
0.1
,
0.7
),
# IoU training threshold
'anchor_t'
:
(
1
,
2.0
,
8.0
),
# anchor-multiple threshold
'anchors'
:
(
2
,
2.0
,
10.0
),
# anchors per output grid (0 to ignore)
'fl_gamma'
:
(
0
,
0.0
,
2.0
),
# focal loss gamma (efficientDet default gamma=1.5)
'hsv_h'
:
(
1
,
0.0
,
0.1
),
# image HSV-Hue augmentation (fraction)
'hsv_s'
:
(
1
,
0.0
,
0.9
),
# image HSV-Saturation augmentation (fraction)
'hsv_v'
:
(
1
,
0.0
,
0.9
),
# image HSV-Value augmentation (fraction)
'degrees'
:
(
1
,
0.0
,
45.0
),
# image rotation (+/- deg)
'translate'
:
(
1
,
0.0
,
0.9
),
# image translation (+/- fraction)
'scale'
:
(
1
,
0.0
,
0.9
),
# image scale (+/- gain)
'shear'
:
(
1
,
0.0
,
10.0
),
# image shear (+/- deg)
'perspective'
:
(
0
,
0.0
,
0.001
),
# image perspective (+/- fraction), range 0-0.001
'flipud'
:
(
1
,
0.0
,
1.0
),
# image flip up-down (probability)
'fliplr'
:
(
0
,
0.0
,
1.0
),
# image flip left-right (probability)
'mosaic'
:
(
1
,
0.0
,
1.0
),
# image mixup (probability)
'mixup'
:
(
1
,
0.0
,
1.0
),
# image mixup (probability)
'copy_paste'
:
(
1
,
0.0
,
1.0
)}
# segment copy-paste (probability)
with
open
(
opt
.
hyp
,
errors
=
'ignore'
)
as
f
:
hyp
=
yaml
.
safe_load
(
f
)
# load hyps dict
if
'anchors'
not
in
hyp
:
# anchors commented in hyp.yaml
hyp
[
'anchors'
]
=
3
opt
.
noval
,
opt
.
nosave
,
save_dir
=
True
,
True
,
Path
(
opt
.
save_dir
)
# only val/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
evolve_yaml
,
evolve_csv
=
save_dir
/
'hyp_evolve.yaml'
,
save_dir
/
'evolve.csv'
if
opt
.
bucket
:
os
.
system
(
f
'gsutil cp gs://
{
opt
.
bucket
}
/evolve.csv
{
save_dir
}
'
)
# download evolve.csv if exists
for
_
in
range
(
opt
.
evolve
):
# generations to evolve
if
evolve_csv
.
exists
():
# if evolve.csv exists: select best hyps and mutate
# Select parent(s)
parent
=
'single'
# parent selection method: 'single' or 'weighted'
x
=
np
.
loadtxt
(
evolve_csv
,
ndmin
=
2
,
delimiter
=
','
,
skiprows
=
1
)
n
=
min
(
5
,
len
(
x
))
# number of previous results to consider
x
=
x
[
np
.
argsort
(
-
fitness
(
x
))][:
n
]
# top n mutations
w
=
fitness
(
x
)
-
fitness
(
x
).
min
()
+
1E-6
# weights (sum > 0)
if
parent
==
'single'
or
len
(
x
)
==
1
:
# x = x[random.randint(0, n - 1)] # random selection
x
=
x
[
random
.
choices
(
range
(
n
),
weights
=
w
)[
0
]]
# weighted selection
elif
parent
==
'weighted'
:
x
=
(
x
*
w
.
reshape
(
n
,
1
)).
sum
(
0
)
/
w
.
sum
()
# weighted combination
# Mutate
mp
,
s
=
0.8
,
0.2
# mutation probability, sigma
npr
=
np
.
random
npr
.
seed
(
int
(
time
.
time
()))
g
=
np
.
array
([
meta
[
k
][
0
]
for
k
in
hyp
.
keys
()])
# gains 0-1
ng
=
len
(
meta
)
v
=
np
.
ones
(
ng
)
while
all
(
v
==
1
):
# mutate until a change occurs (prevent duplicates)
v
=
(
g
*
(
npr
.
random
(
ng
)
<
mp
)
*
npr
.
randn
(
ng
)
*
npr
.
random
()
*
s
+
1
).
clip
(
0.3
,
3.0
)
for
i
,
k
in
enumerate
(
hyp
.
keys
()):
# plt.hist(v.ravel(), 300)
hyp
[
k
]
=
float
(
x
[
i
+
7
]
*
v
[
i
])
# mutate
# Constrain to limits
for
k
,
v
in
meta
.
items
():
hyp
[
k
]
=
max
(
hyp
[
k
],
v
[
1
])
# lower limit
hyp
[
k
]
=
min
(
hyp
[
k
],
v
[
2
])
# upper limit
hyp
[
k
]
=
round
(
hyp
[
k
],
5
)
# significant digits
# Train mutation
results
=
train
(
hyp
.
copy
(),
opt
,
device
,
callbacks
)
# Write mutation results
print_mutation
(
results
,
hyp
.
copy
(),
save_dir
,
opt
.
bucket
)
# Plot results
plot_evolve
(
evolve_csv
)
print
(
f
'Hyperparameter evolution finished
\n
'
f
"Results saved to
{
colorstr
(
'bold'
,
save_dir
)
}
\n
"
f
'Use best hyperparameters example: $ python train.py --hyp
{
evolve_yaml
}
'
)
def
run
(
**
kwargs
):
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
opt
=
parse_opt
(
True
)
for
k
,
v
in
kwargs
.
items
():
setattr
(
opt
,
k
,
v
)
main
(
opt
)
if
__name__
==
"__main__"
:
opt
=
parse_opt
()
main
(
opt
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment