# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from ppdet.core.workspace import register, create from .meta_arch import BaseArch __all__ = ['RTMDet'] @register class RTMDet(BaseArch): __category__ = 'architecture' __inject__ = ['post_process'] def __init__(self, backbone='CSPNeXt', neck='CSPNeXtPAFPN', head='RTMDetHead', post_process='BBoxPostProcess', for_mot=False): """ RTMDet see https://arxiv.org/abs/ Args: backbone (nn.Layer): backbone instance neck (nn.Layer): neck instance head (nn.Layer): head instance for_mot (bool): whether return other features for multi-object tracking models, default False in pure object detection models. """ super(RTMDet, self).__init__() self.backbone = backbone self.neck = neck self.head = head self.post_process = post_process self.for_mot = for_mot @classmethod def from_config(cls, cfg, *args, **kwargs): # backbone backbone = create(cfg['backbone']) # fpn kwargs = {'input_shape': backbone.out_shape} neck = create(cfg['neck'], **kwargs) # head kwargs = {'input_shape': neck.out_shape} head = create(cfg['head'], **kwargs) return { 'backbone': backbone, 'neck': neck, "head": head, } def _forward(self): body_feats = self.backbone(self.inputs) neck_feats = self.neck(body_feats, self.for_mot) if self.training: yolo_losses = self.head(neck_feats, self.inputs) return yolo_losses else: yolo_head_outs = self.head(neck_feats) post_outs = self.head.post_process(yolo_head_outs, self.inputs['im_shape'], self.inputs['scale_factor']) if not isinstance(post_outs, (tuple, list)): # if set exclude_post_process, concat([pred_bboxes, pred_scores]) not scaled to origin # export onnx as torch yolo models return post_outs else: # if set exclude_nms, [pred_bboxes, pred_scores] scaled to origin bbox, bbox_num = post_outs # default for end-to-end eval/infer return {'bbox': bbox, 'bbox_num': bbox_num} def get_loss(self): return self._forward() def get_pred(self): return self._forward()