# PP-YOLOE 转ONNX-TRT教程 本教程内容为:使用PP-YOLOE模型导出转换为ONNX格式,并定制化修改网络,使用[EfficientNMS_TRT](https://github.com/NVIDIA/TensorRT/tree/main/plugin/efficientNMSPlugin) OP, 可成功运行在[TensorRT](https://github.com/NVIDIA/TensorRT)上,示例仅供参考 ## 1. 环境依赖 CUDA 10.2 + [cudnn 8.2.1](https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html) + [TensorRT 8.2](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-821/install-guide/index.htm) ```commandline onnx onnxruntime paddle2onnx ``` ## 2. Paddle模型导出 ```commandline python tools/export_model.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams trt=True exclude_nms=True ``` ## 3. ONNX模型转换 + 定制化修改EfficientNMS_TRT ```commandline python deploy/third_engine/demo_onnx_trt/onnx_custom.py --onnx_file=output_inference/ppyoloe_crn_l_300e_coco/ppyoloe_crn_l_300e_coco.onnx --model_dir=output_inference/ppyoloe_crn_l_300e_coco/ --opset_version=11 ``` ## 4. TensorRT Engine ```commandline trtexec --onnx=output_inference/ppyoloe_crn_l_300e_coco/ppyoloe_crn_l_300e_coco.onnx --saveEngine=ppyoloe_crn_l_300e_coco.engine ``` **注意**:若运行报错,可尝试添加`--tacticSources=-cublasLt,+cublas`参数解决 ## 5. 运行TensorRT推理 ```commandline python deploy/third_engine/demo_onnx_trt/trt_infer.py --infer_cfg=output_inference/ppyoloe_crn_l_300e_coco/infer_cfg.yml --trt_engine=ppyoloe_crn_l_300e_coco.engine --image_file=demo/000000014439.jpg ```