yolov5-qat
Showing
readme_imgs/image-2.png
0 → 100644
38.3 KB
readme_imgs/trt.png
0 → 100644
1.74 MB
requirements.txt
0 → 100644
| # YOLOv5 requirements | ||
| # Usage: pip install -r requirements.txt | ||
| # Base ------------------------------------------------------------------------ | ||
| gitpython>=3.1.30 | ||
| matplotlib>=3.3 | ||
| numpy>=1.23.5 | ||
| opencv-python>=4.1.1 | ||
| Pillow>=9.4.0 | ||
| psutil # system resources | ||
| PyYAML>=5.3.1 | ||
| requests>=2.23.0 | ||
| scipy>=1.4.1 | ||
| thop>=0.1.1 # FLOPs computation | ||
| torch>=1.8.0 # see https://pytorch.org/get-started/locally (recommended) | ||
| torchvision>=0.9.0 | ||
| tqdm>=4.64.0 | ||
| ultralytics>=8.0.232 | ||
| # protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012 | ||
| # Logging --------------------------------------------------------------------- | ||
| # tensorboard>=2.4.1 | ||
| # clearml>=1.2.0 | ||
| # comet | ||
| # Plotting -------------------------------------------------------------------- | ||
| pandas>=1.1.4 | ||
| seaborn>=0.11.0 | ||
| # Export ---------------------------------------------------------------------- | ||
| # coremltools>=6.0 # CoreML export | ||
| # onnx>=1.10.0 # ONNX export | ||
| # onnx-simplifier>=0.4.1 # ONNX simplifier | ||
| # nvidia-pyindex # TensorRT export | ||
| # nvidia-tensorrt # TensorRT export | ||
| # scikit-learn<=1.1.2 # CoreML quantization | ||
| # tensorflow>=2.4.0,<=2.13.1 # TF exports (-cpu, -aarch64, -macos) | ||
| # tensorflowjs>=3.9.0 # TF.js export | ||
| # openvino-dev>=2023.0 # OpenVINO export | ||
| # Deploy ---------------------------------------------------------------------- | ||
| setuptools>=65.5.1 # Snyk vulnerability fix | ||
| # tritonclient[all]~=2.24.0 | ||
| # Extras ---------------------------------------------------------------------- | ||
| # ipython # interactive notebook | ||
| # mss # screenshots | ||
| # albumentations>=1.0.3 | ||
| # pycocotools>=2.0.6 # COCO mAP |
scripts/coco2yolo.py
0 → 100644
scripts/qat.py
0 → 100644
segment/predict.py
0 → 100644
segment/train.py
0 → 100644
segment/tutorial.ipynb
0 → 100644
segment/val.py
0 → 100644
train.py
0 → 100644
trt_utils/__init__.py
0 → 100644
trt_utils/trt.py
0 → 100644
tutorial.ipynb
0 → 100644
utils/__init__.py
0 → 100644
utils/activations.py
0 → 100644
utils/augmentations.py
0 → 100644
utils/autoanchor.py
0 → 100644
utils/autobatch.py
0 → 100644
utils/aws/__init__.py
0 → 100644
utils/aws/mime.sh
0 → 100644