Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
yolov13_pytorch
Commits
e63cf68a
Commit
e63cf68a
authored
Jul 11, 2025
by
chenzk
Browse files
v1.0
parents
Pipeline
#2842
canceled with stages
Changes
353
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
909 additions
and
0 deletions
+909
-0
ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml
ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml
+45
-0
ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml
ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml
+45
-0
ultralytics/cfg/models/rt-detr/rtdetr-x.yaml
ultralytics/cfg/models/rt-detr/rtdetr-x.yaml
+57
-0
ultralytics/cfg/models/v10/yolov10b.yaml
ultralytics/cfg/models/v10/yolov10b.yaml
+45
-0
ultralytics/cfg/models/v10/yolov10l.yaml
ultralytics/cfg/models/v10/yolov10l.yaml
+45
-0
ultralytics/cfg/models/v10/yolov10m.yaml
ultralytics/cfg/models/v10/yolov10m.yaml
+45
-0
ultralytics/cfg/models/v10/yolov10n.yaml
ultralytics/cfg/models/v10/yolov10n.yaml
+45
-0
ultralytics/cfg/models/v10/yolov10s.yaml
ultralytics/cfg/models/v10/yolov10s.yaml
+45
-0
ultralytics/cfg/models/v10/yolov10x.yaml
ultralytics/cfg/models/v10/yolov10x.yaml
+45
-0
ultralytics/cfg/models/v12/yolov12.yaml
ultralytics/cfg/models/v12/yolov12.yaml
+47
-0
ultralytics/cfg/models/v13/yolov13.yaml
ultralytics/cfg/models/v13/yolov13.yaml
+50
-0
ultralytics/cfg/models/v3/yolov3-spp.yaml
ultralytics/cfg/models/v3/yolov3-spp.yaml
+49
-0
ultralytics/cfg/models/v3/yolov3-tiny.yaml
ultralytics/cfg/models/v3/yolov3-tiny.yaml
+40
-0
ultralytics/cfg/models/v3/yolov3.yaml
ultralytics/cfg/models/v3/yolov3.yaml
+49
-0
ultralytics/cfg/models/v5/yolov5-p6.yaml
ultralytics/cfg/models/v5/yolov5-p6.yaml
+62
-0
ultralytics/cfg/models/v5/yolov5.yaml
ultralytics/cfg/models/v5/yolov5.yaml
+51
-0
ultralytics/cfg/models/v6/yolov6.yaml
ultralytics/cfg/models/v6/yolov6.yaml
+56
-0
ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml
ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml
+28
-0
ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml
ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml
+28
-0
ultralytics/cfg/models/v8/yolov8-cls.yaml
ultralytics/cfg/models/v8/yolov8-cls.yaml
+32
-0
No files found.
Too many changes to show.
To preserve performance only
353 of 353+
files are displayed.
Plain diff
Email patch
ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics RT-DETR-ResNet101 hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l
:
[
1.00
,
1.00
,
1024
]
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
ResNetLayer
,
[
3
,
64
,
1
,
True
,
1
]]
# 0
-
[
-1
,
1
,
ResNetLayer
,
[
64
,
64
,
1
,
False
,
3
]]
# 1
-
[
-1
,
1
,
ResNetLayer
,
[
256
,
128
,
2
,
False
,
4
]]
# 2
-
[
-1
,
1
,
ResNetLayer
,
[
512
,
256
,
2
,
False
,
23
]]
# 3
-
[
-1
,
1
,
ResNetLayer
,
[
1024
,
512
,
2
,
False
,
3
]]
# 4
head
:
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
,
None
,
1
,
1
,
False
]]
# 5
-
[
-1
,
1
,
AIFI
,
[
1024
,
8
]]
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
# 7
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[
3
,
1
,
Conv
,
[
256
,
1
,
1
,
None
,
1
,
1
,
False
]]
# 9
-
[[
-2
,
-1
],
1
,
Concat
,
[
1
]]
-
[
-1
,
3
,
RepC3
,
[
256
]]
# 11
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
# 12
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[
2
,
1
,
Conv
,
[
256
,
1
,
1
,
None
,
1
,
1
,
False
]]
# 14
-
[[
-2
,
-1
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
RepC3
,
[
256
]]
# X3 (16), fpn_blocks.1
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 17, downsample_convs.0
-
[[
-1
,
12
],
1
,
Concat
,
[
1
]]
# cat Y4
-
[
-1
,
3
,
RepC3
,
[
256
]]
# F4 (19), pan_blocks.0
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 20, downsample_convs.1
-
[[
-1
,
7
],
1
,
Concat
,
[
1
]]
# cat Y5
-
[
-1
,
3
,
RepC3
,
[
256
]]
# F5 (22), pan_blocks.1
-
[[
16
,
19
,
22
],
1
,
RTDETRDecoder
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics RT-DETR-ResNet50 hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l
:
[
1.00
,
1.00
,
1024
]
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
ResNetLayer
,
[
3
,
64
,
1
,
True
,
1
]]
# 0
-
[
-1
,
1
,
ResNetLayer
,
[
64
,
64
,
1
,
False
,
3
]]
# 1
-
[
-1
,
1
,
ResNetLayer
,
[
256
,
128
,
2
,
False
,
4
]]
# 2
-
[
-1
,
1
,
ResNetLayer
,
[
512
,
256
,
2
,
False
,
6
]]
# 3
-
[
-1
,
1
,
ResNetLayer
,
[
1024
,
512
,
2
,
False
,
3
]]
# 4
head
:
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
,
None
,
1
,
1
,
False
]]
# 5
-
[
-1
,
1
,
AIFI
,
[
1024
,
8
]]
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
# 7
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[
3
,
1
,
Conv
,
[
256
,
1
,
1
,
None
,
1
,
1
,
False
]]
# 9
-
[[
-2
,
-1
],
1
,
Concat
,
[
1
]]
-
[
-1
,
3
,
RepC3
,
[
256
]]
# 11
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
# 12
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[
2
,
1
,
Conv
,
[
256
,
1
,
1
,
None
,
1
,
1
,
False
]]
# 14
-
[[
-2
,
-1
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
RepC3
,
[
256
]]
# X3 (16), fpn_blocks.1
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 17, downsample_convs.0
-
[[
-1
,
12
],
1
,
Concat
,
[
1
]]
# cat Y4
-
[
-1
,
3
,
RepC3
,
[
256
]]
# F4 (19), pan_blocks.0
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 20, downsample_convs.1
-
[[
-1
,
7
],
1
,
Concat
,
[
1
]]
# cat Y5
-
[
-1
,
3
,
RepC3
,
[
256
]]
# F5 (22), pan_blocks.1
-
[[
16
,
19
,
22
],
1
,
RTDETRDecoder
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/rt-detr/rtdetr-x.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics RT-DETR-x hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
x
:
[
1.00
,
1.00
,
2048
]
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
HGStem
,
[
32
,
64
]]
# 0-P2/4
-
[
-1
,
6
,
HGBlock
,
[
64
,
128
,
3
]]
# stage 1
-
[
-1
,
1
,
DWConv
,
[
128
,
3
,
2
,
1
,
False
]]
# 2-P3/8
-
[
-1
,
6
,
HGBlock
,
[
128
,
512
,
3
]]
-
[
-1
,
6
,
HGBlock
,
[
128
,
512
,
3
,
False
,
True
]]
# 4-stage 2
-
[
-1
,
1
,
DWConv
,
[
512
,
3
,
2
,
1
,
False
]]
# 5-P3/16
-
[
-1
,
6
,
HGBlock
,
[
256
,
1024
,
5
,
True
,
False
]]
# cm, c2, k, light, shortcut
-
[
-1
,
6
,
HGBlock
,
[
256
,
1024
,
5
,
True
,
True
]]
-
[
-1
,
6
,
HGBlock
,
[
256
,
1024
,
5
,
True
,
True
]]
-
[
-1
,
6
,
HGBlock
,
[
256
,
1024
,
5
,
True
,
True
]]
-
[
-1
,
6
,
HGBlock
,
[
256
,
1024
,
5
,
True
,
True
]]
# 10-stage 3
-
[
-1
,
1
,
DWConv
,
[
1024
,
3
,
2
,
1
,
False
]]
# 11-P4/32
-
[
-1
,
6
,
HGBlock
,
[
512
,
2048
,
5
,
True
,
False
]]
-
[
-1
,
6
,
HGBlock
,
[
512
,
2048
,
5
,
True
,
True
]]
# 13-stage 4
head
:
-
[
-1
,
1
,
Conv
,
[
384
,
1
,
1
,
None
,
1
,
1
,
False
]]
# 14 input_proj.2
-
[
-1
,
1
,
AIFI
,
[
2048
,
8
]]
-
[
-1
,
1
,
Conv
,
[
384
,
1
,
1
]]
# 16, Y5, lateral_convs.0
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[
10
,
1
,
Conv
,
[
384
,
1
,
1
,
None
,
1
,
1
,
False
]]
# 18 input_proj.1
-
[[
-2
,
-1
],
1
,
Concat
,
[
1
]]
-
[
-1
,
3
,
RepC3
,
[
384
]]
# 20, fpn_blocks.0
-
[
-1
,
1
,
Conv
,
[
384
,
1
,
1
]]
# 21, Y4, lateral_convs.1
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[
4
,
1
,
Conv
,
[
384
,
1
,
1
,
None
,
1
,
1
,
False
]]
# 23 input_proj.0
-
[[
-2
,
-1
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
RepC3
,
[
384
]]
# X3 (25), fpn_blocks.1
-
[
-1
,
1
,
Conv
,
[
384
,
3
,
2
]]
# 26, downsample_convs.0
-
[[
-1
,
21
],
1
,
Concat
,
[
1
]]
# cat Y4
-
[
-1
,
3
,
RepC3
,
[
384
]]
# F4 (28), pan_blocks.0
-
[
-1
,
1
,
Conv
,
[
384
,
3
,
2
]]
# 29, downsample_convs.1
-
[[
-1
,
16
],
1
,
Concat
,
[
1
]]
# cat Y5
-
[
-1
,
3
,
RepC3
,
[
384
]]
# F5 (31), pan_blocks.1
-
[[
25
,
28
,
31
],
1
,
RTDETRDecoder
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v10/yolov10b.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10b object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
# [depth, width, max_channels]
b
:
[
0.67
,
1.00
,
512
]
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2f
,
[
512
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
-
[
-1
,
1
,
PSA
,
[
1024
]]
# 10
# YOLOv10.0n head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C2fCIB
,
[
512
,
True
]]
# 13
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C2f
,
[
256
]]
# 16 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
13
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C2fCIB
,
[
512
,
True
]]
# 19 (P4/16-medium)
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
-
[[
-1
,
10
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
]]
# 22 (P5/32-large)
-
[[
16
,
19
,
22
],
1
,
v10Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v10/yolov10l.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10l object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
# [depth, width, max_channels]
l
:
[
1.00
,
1.00
,
512
]
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2f
,
[
512
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
-
[
-1
,
1
,
PSA
,
[
1024
]]
# 10
# YOLOv10.0n head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C2fCIB
,
[
512
,
True
]]
# 13
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C2f
,
[
256
]]
# 16 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
13
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C2fCIB
,
[
512
,
True
]]
# 19 (P4/16-medium)
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
-
[[
-1
,
10
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
]]
# 22 (P5/32-large)
-
[[
16
,
19
,
22
],
1
,
v10Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v10/yolov10m.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10m object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
# [depth, width, max_channels]
m
:
[
0.67
,
0.75
,
768
]
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2f
,
[
512
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
-
[
-1
,
1
,
PSA
,
[
1024
]]
# 10
# YOLOv10.0n head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 13
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C2f
,
[
256
]]
# 16 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
13
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C2fCIB
,
[
512
,
True
]]
# 19 (P4/16-medium)
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
-
[[
-1
,
10
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
]]
# 22 (P5/32-large)
-
[[
16
,
19
,
22
],
1
,
v10Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v10/yolov10n.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10n object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2f
,
[
512
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2f
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
-
[
-1
,
1
,
PSA
,
[
1024
]]
# 10
# YOLOv10.0n head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 13
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C2f
,
[
256
]]
# 16 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
13
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 19 (P4/16-medium)
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
-
[[
-1
,
10
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
,
True
]]
# 22 (P5/32-large)
-
[[
16
,
19
,
22
],
1
,
v10Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v10/yolov10s.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10s object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
# [depth, width, max_channels]
s
:
[
0.33
,
0.50
,
1024
]
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2f
,
[
512
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
-
[
-1
,
1
,
PSA
,
[
1024
]]
# 10
# YOLOv10.0n head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 13
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C2f
,
[
256
]]
# 16 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
13
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 19 (P4/16-medium)
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
-
[[
-1
,
10
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
,
True
]]
# 22 (P5/32-large)
-
[[
16
,
19
,
22
],
1
,
v10Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v10/yolov10x.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10x object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
# [depth, width, max_channels]
x
:
[
1.00
,
1.25
,
512
]
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2fCIB
,
[
512
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
-
[
-1
,
1
,
PSA
,
[
1024
]]
# 10
# YOLOv10.0n head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C2fCIB
,
[
512
,
True
]]
# 13
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C2f
,
[
256
]]
# 16 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
13
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C2fCIB
,
[
512
,
True
]]
# 19 (P4/16-medium)
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
-
[[
-1
,
10
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
]]
# 22 (P5/32-large)
-
[[
16
,
19
,
22
],
1
,
v10Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v12/yolov12.yaml
0 → 100644
View file @
e63cf68a
# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.50
,
0.25
,
1024
]
# summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
s
:
[
0.50
,
0.50
,
1024
]
# summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
m
:
[
0.50
,
1.00
,
512
]
# summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
l
:
[
1.00
,
1.00
,
512
]
# summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
x
:
[
1.00
,
1.50
,
512
]
# summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs
# YOLO12-turbo backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
,
1
,
2
]]
# 1-P2/4
-
[
-1
,
2
,
C3k2
,
[
256
,
False
,
0.25
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
,
1
,
4
]]
# 3-P3/8
-
[
-1
,
2
,
C3k2
,
[
512
,
False
,
0.25
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
4
,
A2C2f
,
[
512
,
True
,
4
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
4
,
A2C2f
,
[
1024
,
True
,
1
]]
# 8
# YOLO12-turbo head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
2
,
A2C2f
,
[
512
,
False
,
-1
]]
# 11
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
2
,
A2C2f
,
[
256
,
False
,
-1
]]
# 14
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
11
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
2
,
A2C2f
,
[
512
,
False
,
-1
]]
# 17
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
-
[[
-1
,
8
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
2
,
C3k2
,
[
1024
,
True
]]
# 20 (P5/32-large)
-
[[
14
,
17
,
20
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v13/yolov13.yaml
0 → 100644
View file @
e63cf68a
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov13n.yaml' will call yolov13.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.50
,
0.25
,
1024
]
# Nano
s
:
[
0.50
,
0.50
,
1024
]
# Small
l
:
[
1.00
,
1.00
,
512
]
# Large
x
:
[
1.00
,
1.50
,
512
]
# Extra Large
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
,
1
,
2
]]
# 1-P2/4
-
[
-1
,
2
,
DSC3k2
,
[
256
,
False
,
0.25
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
,
1
,
4
]]
# 3-P3/8
-
[
-1
,
2
,
DSC3k2
,
[
512
,
False
,
0.25
]]
-
[
-1
,
1
,
DSConv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
4
,
A2C2f
,
[
512
,
True
,
4
]]
-
[
-1
,
1
,
DSConv
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
4
,
A2C2f
,
[
1024
,
True
,
1
]]
# 8
head
:
-
[[
4
,
6
,
8
],
2
,
HyperACE
,
[
512
,
8
,
True
,
True
,
0.5
,
1
,
"
both"
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[
9
,
1
,
DownsampleConv
,
[]]
-
[[
6
,
9
],
1
,
FullPAD_Tunnel
,
[]]
#12
-
[[
4
,
10
],
1
,
FullPAD_Tunnel
,
[]]
#13
-
[[
8
,
11
],
1
,
FullPAD_Tunnel
,
[]]
#14
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
12
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
2
,
DSC3k2
,
[
512
,
True
]]
# 17
-
[[
-1
,
9
],
1
,
FullPAD_Tunnel
,
[]]
#18
-
[
17
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
13
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
2
,
DSC3k2
,
[
256
,
True
]]
# 21
-
[
10
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[[
21
,
22
],
1
,
FullPAD_Tunnel
,
[]]
#23
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
18
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
2
,
DSC3k2
,
[
512
,
True
]]
# 26
-
[[
-1
,
9
],
1
,
FullPAD_Tunnel
,
[]]
-
[
26
,
1
,
Conv
,
[
512
,
3
,
2
]]
-
[[
-1
,
14
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
2
,
DSC3k2
,
[
1024
,
True
]]
# 30 (P5/32-large)
-
[[
-1
,
11
],
1
,
FullPAD_Tunnel
,
[]]
-
[[
23
,
27
,
31
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v3/yolov3-spp.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv3-SPP object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov3
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
depth_multiple
:
1.0
# model depth multiple
width_multiple
:
1.0
# layer channel multiple
# darknet53 backbone
backbone
:
# [from, number, module, args]
-
[
-1
,
1
,
Conv
,
[
32
,
3
,
1
]]
# 0
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 1-P1/2
-
[
-1
,
1
,
Bottleneck
,
[
64
]]
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 3-P2/4
-
[
-1
,
2
,
Bottleneck
,
[
128
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 5-P3/8
-
[
-1
,
8
,
Bottleneck
,
[
256
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 7-P4/16
-
[
-1
,
8
,
Bottleneck
,
[
512
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 9-P5/32
-
[
-1
,
4
,
Bottleneck
,
[
1024
]]
# 10
# YOLOv3-SPP head
head
:
-
[
-1
,
1
,
Bottleneck
,
[
1024
,
False
]]
-
[
-1
,
1
,
SPP
,
[
512
,
[
5
,
9
,
13
]]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
1
]]
-
[
-1
,
1
,
Conv
,
[
512
,
1
,
1
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
1
]]
# 15 (P5/32-large)
-
[
-2
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
8
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
1
,
Bottleneck
,
[
512
,
False
]]
-
[
-1
,
1
,
Bottleneck
,
[
512
,
False
]]
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
1
]]
# 22 (P4/16-medium)
-
[
-2
,
1
,
Conv
,
[
128
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
1
,
Bottleneck
,
[
256
,
False
]]
-
[
-1
,
2
,
Bottleneck
,
[
256
,
False
]]
# 27 (P3/8-small)
-
[[
27
,
22
,
15
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v3/yolov3-tiny.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv3-tiiny object detection model with P4/16 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov3
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
depth_multiple
:
1.0
# model depth multiple
width_multiple
:
1.0
# layer channel multiple
# YOLOv3-tiny backbone
backbone
:
# [from, number, module, args]
-
[
-1
,
1
,
Conv
,
[
16
,
3
,
1
]]
# 0
-
[
-1
,
1
,
nn.MaxPool2d
,
[
2
,
2
,
0
]]
# 1-P1/2
-
[
-1
,
1
,
Conv
,
[
32
,
3
,
1
]]
-
[
-1
,
1
,
nn.MaxPool2d
,
[
2
,
2
,
0
]]
# 3-P2/4
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
1
]]
-
[
-1
,
1
,
nn.MaxPool2d
,
[
2
,
2
,
0
]]
# 5-P3/8
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
1
]]
-
[
-1
,
1
,
nn.MaxPool2d
,
[
2
,
2
,
0
]]
# 7-P4/16
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
1
]]
-
[
-1
,
1
,
nn.MaxPool2d
,
[
2
,
2
,
0
]]
# 9-P5/32
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
1
]]
-
[
-1
,
1
,
nn.ZeroPad2d
,
[[
0
,
1
,
0
,
1
]]]
# 11
-
[
-1
,
1
,
nn.MaxPool2d
,
[
2
,
1
,
0
]]
# 12
# YOLOv3-tiny head
head
:
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
1
]]
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
1
]]
# 15 (P5/32-large)
-
[
-2
,
1
,
Conv
,
[
128
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
8
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
1
]]
# 19 (P4/16-medium)
-
[[
19
,
15
],
1
,
Detect
,
[
nc
]]
# Detect(P4, P5)
ultralytics/cfg/models/v3/yolov3.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv3 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov3
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
depth_multiple
:
1.0
# model depth multiple
width_multiple
:
1.0
# layer channel multiple
# darknet53 backbone
backbone
:
# [from, number, module, args]
-
[
-1
,
1
,
Conv
,
[
32
,
3
,
1
]]
# 0
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 1-P1/2
-
[
-1
,
1
,
Bottleneck
,
[
64
]]
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 3-P2/4
-
[
-1
,
2
,
Bottleneck
,
[
128
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 5-P3/8
-
[
-1
,
8
,
Bottleneck
,
[
256
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 7-P4/16
-
[
-1
,
8
,
Bottleneck
,
[
512
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 9-P5/32
-
[
-1
,
4
,
Bottleneck
,
[
1024
]]
# 10
# YOLOv3 head
head
:
-
[
-1
,
1
,
Bottleneck
,
[
1024
,
False
]]
-
[
-1
,
1
,
Conv
,
[
512
,
1
,
1
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
1
]]
-
[
-1
,
1
,
Conv
,
[
512
,
1
,
1
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
1
]]
# 15 (P5/32-large)
-
[
-2
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
8
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
1
,
Bottleneck
,
[
512
,
False
]]
-
[
-1
,
1
,
Bottleneck
,
[
512
,
False
]]
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
1
]]
# 22 (P4/16-medium)
-
[
-2
,
1
,
Conv
,
[
128
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
1
,
Bottleneck
,
[
256
,
False
]]
-
[
-1
,
2
,
Bottleneck
,
[
256
,
False
]]
# 27 (P3/8-small)
-
[[
27
,
22
,
15
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v5/yolov5-p6.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv5 object detection model with P3/8 - P6/64 outputs
# Model docs: https://docs.ultralytics.com/models/yolov5
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov5n-p6.yaml' will call yolov5-p6.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
1024
]
l
:
[
1.00
,
1.00
,
1024
]
x
:
[
1.33
,
1.25
,
1024
]
# YOLOv5 v6.0 backbone
backbone
:
# [from, number, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
6
,
2
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C3
,
[
128
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C3
,
[
256
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
9
,
C3
,
[
512
]]
-
[
-1
,
1
,
Conv
,
[
768
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C3
,
[
768
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 9-P6/64
-
[
-1
,
3
,
C3
,
[
1024
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 11
# YOLOv5 v6.0 head
head
:
-
[
-1
,
1
,
Conv
,
[
768
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
8
],
1
,
Concat
,
[
1
]]
# cat backbone P5
-
[
-1
,
3
,
C3
,
[
768
,
False
]]
# 15
-
[
-1
,
1
,
Conv
,
[
512
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C3
,
[
512
,
False
]]
# 19
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C3
,
[
256
,
False
]]
# 23 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
20
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C3
,
[
512
,
False
]]
# 26 (P4/16-medium)
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
-
[[
-1
,
16
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C3
,
[
768
,
False
]]
# 29 (P5/32-large)
-
[
-1
,
1
,
Conv
,
[
768
,
3
,
2
]]
-
[[
-1
,
12
],
1
,
Concat
,
[
1
]]
# cat head P6
-
[
-1
,
3
,
C3
,
[
1024
,
False
]]
# 32 (P6/64-xlarge)
-
[[
23
,
26
,
29
,
32
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5, P6)
ultralytics/cfg/models/v5/yolov5.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv5 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov5
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
1024
]
l
:
[
1.00
,
1.00
,
1024
]
x
:
[
1.33
,
1.25
,
1024
]
# YOLOv5 v6.0 backbone
backbone
:
# [from, number, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
6
,
2
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C3
,
[
128
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C3
,
[
256
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
9
,
C3
,
[
512
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C3
,
[
1024
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
# YOLOv5 v6.0 head
head
:
-
[
-1
,
1
,
Conv
,
[
512
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C3
,
[
512
,
False
]]
# 13
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C3
,
[
256
,
False
]]
# 17 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
14
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C3
,
[
512
,
False
]]
# 20 (P4/16-medium)
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
-
[[
-1
,
10
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C3
,
[
1024
,
False
]]
# 23 (P5/32-large)
-
[[
17
,
20
,
23
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v6/yolov6.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Meituan YOLOv6 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov6
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
activation
:
nn.ReLU()
# (optional) model default activation function
scales
:
# model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
768
]
l
:
[
1.00
,
1.00
,
512
]
x
:
[
1.00
,
1.25
,
512
]
# YOLOv6-3.0s backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
6
,
Conv
,
[
128
,
3
,
1
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
12
,
Conv
,
[
256
,
3
,
1
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
18
,
Conv
,
[
512
,
3
,
1
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
6
,
Conv
,
[
1024
,
3
,
1
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
# YOLOv6-3.0s head
head
:
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
nn.ConvTranspose2d
,
[
256
,
2
,
2
,
0
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
1
]]
-
[
-1
,
9
,
Conv
,
[
256
,
3
,
1
]]
# 14
-
[
-1
,
1
,
Conv
,
[
128
,
1
,
1
]]
-
[
-1
,
1
,
nn.ConvTranspose2d
,
[
128
,
2
,
2
,
0
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
1
]]
-
[
-1
,
9
,
Conv
,
[
128
,
3
,
1
]]
# 19
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
-
[[
-1
,
15
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
1
]]
-
[
-1
,
9
,
Conv
,
[
256
,
3
,
1
]]
# 23
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
10
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
1
]]
-
[
-1
,
9
,
Conv
,
[
512
,
3
,
1
]]
# 27
-
[[
19
,
23
,
27
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8-cls image classification model with ResNet101 backbone
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters
nc
:
1000
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
1024
]
l
:
[
1.00
,
1.00
,
1024
]
x
:
[
1.00
,
1.25
,
1024
]
# YOLOv8.0n backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
ResNetLayer
,
[
3
,
64
,
1
,
True
,
1
]]
# 0-P1/2
-
[
-1
,
1
,
ResNetLayer
,
[
64
,
64
,
1
,
False
,
3
]]
# 1-P2/4
-
[
-1
,
1
,
ResNetLayer
,
[
256
,
128
,
2
,
False
,
4
]]
# 2-P3/8
-
[
-1
,
1
,
ResNetLayer
,
[
512
,
256
,
2
,
False
,
23
]]
# 3-P4/16
-
[
-1
,
1
,
ResNetLayer
,
[
1024
,
512
,
2
,
False
,
3
]]
# 4-P5/32
# YOLOv8.0n head
head
:
-
[
-1
,
1
,
Classify
,
[
nc
]]
# Classify
ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8-cls image classification model with ResNet50 backbone
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters
nc
:
1000
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
1024
]
l
:
[
1.00
,
1.00
,
1024
]
x
:
[
1.00
,
1.25
,
1024
]
# YOLOv8.0n backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
ResNetLayer
,
[
3
,
64
,
1
,
True
,
1
]]
# 0-P1/2
-
[
-1
,
1
,
ResNetLayer
,
[
64
,
64
,
1
,
False
,
3
]]
# 1-P2/4
-
[
-1
,
1
,
ResNetLayer
,
[
256
,
128
,
2
,
False
,
4
]]
# 2-P3/8
-
[
-1
,
1
,
ResNetLayer
,
[
512
,
256
,
2
,
False
,
6
]]
# 3-P4/16
-
[
-1
,
1
,
ResNetLayer
,
[
1024
,
512
,
2
,
False
,
3
]]
# 4-P5/32
# YOLOv8.0n head
head
:
-
[
-1
,
1
,
Classify
,
[
nc
]]
# Classify
ultralytics/cfg/models/v8/yolov8-cls.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8-cls image classification model with YOLO backbone
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters
nc
:
1000
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
1024
]
l
:
[
1.00
,
1.00
,
1024
]
x
:
[
1.00
,
1.25
,
1024
]
# YOLOv8.0n backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2f
,
[
512
,
True
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2f
,
[
1024
,
True
]]
# YOLOv8.0n head
head
:
-
[
-1
,
1
,
Classify
,
[
nc
]]
# Classify
Prev
1
…
4
5
6
7
8
9
10
11
12
…
18
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment