Commit e63cf68a authored by chenzk's avatar chenzk
Browse files

v1.0

parents
Pipeline #2842 canceled with stages
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Crack-seg dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/crack-seg/
# Example usage: yolo train data=crack-seg.yaml
# parent
# ├── ultralytics
# └── datasets
# └── crack-seg ← downloads here (91.2 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/crack-seg # dataset root dir
train: train/images # train images (relative to 'path') 3717 images
val: valid/images # val images (relative to 'path') 112 images
test: test/images # test images (relative to 'path') 200 images
# Classes
names:
0: crack
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/crack-seg.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Dogs dataset http://vision.stanford.edu/aditya86/ImageNetDogs/ by Stanford
# Documentation: https://docs.ultralytics.com/datasets/pose/dog-pose/
# Example usage: yolo train data=dog-pose.yaml
# parent
# ├── ultralytics
# └── datasets
# └── dog-pose ← downloads here (337 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/dog-pose # dataset root dir
train: train # train images (relative to 'path') 6773 images
val: val # val images (relative to 'path') 1703 images
# Keypoints
kpt_shape: [24, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
# Classes
names:
0: dog
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dog-pose.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DOTA8 dataset 8 images from split DOTAv1 dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
# Example usage: yolo train model=yolov8n-obb.pt data=dota8.yaml
# parent
# ├── ultralytics
# └── datasets
# └── dota8 ← downloads here (1MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/dota8 # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
# Classes for DOTA 1.0
names:
0: plane
1: ship
2: storage tank
3: baseball diamond
4: tennis court
5: basketball court
6: ground track field
7: harbor
8: bridge
9: large vehicle
10: small vehicle
11: helicopter
12: roundabout
13: soccer ball field
14: swimming pool
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dota8.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hand Keypoints dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/hand-keypoints/
# Example usage: yolo train data=hand-keypoints.yaml
# parent
# ├── ultralytics
# └── datasets
# └── hand-keypoints ← downloads here (369 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/hand-keypoints # dataset root dir
train: train # train images (relative to 'path') 18776 images
val: val # val images (relative to 'path') 7992 images
# Keypoints
kpt_shape: [21, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx:
[0, 1, 2, 4, 3, 10, 11, 12, 13, 14, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 20]
# Classes
names:
0: hand
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/hand-keypoints.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# LVIS dataset http://www.lvisdataset.org by Facebook AI Research.
# Documentation: https://docs.ultralytics.com/datasets/detect/lvis/
# Example usage: yolo train data=lvis.yaml
# parent
# ├── ultralytics
# └── datasets
# └── lvis ← downloads here (20.1 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/lvis # dataset root dir
train: train.txt # train images (relative to 'path') 100170 images
val: val.txt # val images (relative to 'path') 19809 images
minival: minival.txt # minival images (relative to 'path') 5000 images
names:
0: aerosol can/spray can
1: air conditioner
2: airplane/aeroplane
3: alarm clock
4: alcohol/alcoholic beverage
5: alligator/gator
6: almond
7: ambulance
8: amplifier
9: anklet/ankle bracelet
10: antenna/aerial/transmitting aerial
11: apple
12: applesauce
13: apricot
14: apron
15: aquarium/fish tank
16: arctic/arctic type of shoe/galosh/golosh/rubber/rubber type of shoe/gumshoe
17: armband
18: armchair
19: armoire
20: armor/armour
21: artichoke
22: trash can/garbage can/wastebin/dustbin/trash barrel/trash bin
23: ashtray
24: asparagus
25: atomizer/atomiser/spray/sprayer/nebulizer/nebuliser
26: avocado
27: award/accolade
28: awning
29: ax/axe
30: baboon
31: baby buggy/baby carriage/perambulator/pram/stroller
32: basketball backboard
33: backpack/knapsack/packsack/rucksack/haversack
34: handbag/purse/pocketbook
35: suitcase/baggage/luggage
36: bagel/beigel
37: bagpipe
38: baguet/baguette
39: bait/lure
40: ball
41: ballet skirt/tutu
42: balloon
43: bamboo
44: banana
45: Band Aid
46: bandage
47: bandanna/bandana
48: banjo
49: banner/streamer
50: barbell
51: barge
52: barrel/cask
53: barrette
54: barrow/garden cart/lawn cart/wheelbarrow
55: baseball base
56: baseball
57: baseball bat
58: baseball cap/jockey cap/golf cap
59: baseball glove/baseball mitt
60: basket/handbasket
61: basketball
62: bass horn/sousaphone/tuba
63: bat/bat animal
64: bath mat
65: bath towel
66: bathrobe
67: bathtub/bathing tub
68: batter/batter food
69: battery
70: beachball
71: bead
72: bean curd/tofu
73: beanbag
74: beanie/beany
75: bear
76: bed
77: bedpan
78: bedspread/bedcover/bed covering/counterpane/spread
79: cow
80: beef/beef food/boeuf/boeuf food
81: beeper/pager
82: beer bottle
83: beer can
84: beetle
85: bell
86: bell pepper/capsicum
87: belt
88: belt buckle
89: bench
90: beret
91: bib
92: Bible
93: bicycle/bike/bike bicycle
94: visor/vizor
95: billboard
96: binder/ring-binder
97: binoculars/field glasses/opera glasses
98: bird
99: birdfeeder
100: birdbath
101: birdcage
102: birdhouse
103: birthday cake
104: birthday card
105: pirate flag
106: black sheep
107: blackberry
108: blackboard/chalkboard
109: blanket
110: blazer/sport jacket/sport coat/sports jacket/sports coat
111: blender/liquidizer/liquidiser
112: blimp
113: blinker/flasher
114: blouse
115: blueberry
116: gameboard
117: boat/ship/ship boat
118: bob/bobber/bobfloat
119: bobbin/spool/reel
120: bobby pin/hairgrip
121: boiled egg/coddled egg
122: bolo tie/bolo/bola tie/bola
123: deadbolt
124: bolt
125: bonnet
126: book
127: bookcase
128: booklet/brochure/leaflet/pamphlet
129: bookmark/bookmarker
130: boom microphone/microphone boom
131: boot
132: bottle
133: bottle opener
134: bouquet
135: bow/bow weapon
136: bow/bow decorative ribbons
137: bow-tie/bowtie
138: bowl
139: pipe bowl
140: bowler hat/bowler/derby hat/derby/plug hat
141: bowling ball
142: box
143: boxing glove
144: suspenders
145: bracelet/bangle
146: brass plaque
147: brassiere/bra/bandeau
148: bread-bin/breadbox
149: bread
150: breechcloth/breechclout/loincloth
151: bridal gown/wedding gown/wedding dress
152: briefcase
153: broccoli
154: broach
155: broom
156: brownie
157: brussels sprouts
158: bubble gum
159: bucket/pail
160: horse buggy
161: horned cow
162: bulldog
163: bulldozer/dozer
164: bullet train
165: bulletin board/notice board
166: bulletproof vest
167: bullhorn/megaphone
168: bun/roll
169: bunk bed
170: buoy
171: burrito
172: bus/bus vehicle/autobus/charabanc/double-decker/motorbus/motorcoach
173: business card
174: butter
175: butterfly
176: button
177: cab/cab taxi/taxi/taxicab
178: cabana
179: cabin car/caboose
180: cabinet
181: locker/storage locker
182: cake
183: calculator
184: calendar
185: calf
186: camcorder
187: camel
188: camera
189: camera lens
190: camper/camper vehicle/camping bus/motor home
191: can/tin can
192: can opener/tin opener
193: candle/candlestick
194: candle holder
195: candy bar
196: candy cane
197: walking cane
198: canister/canister
199: canoe
200: cantaloup/cantaloupe
201: canteen
202: cap/cap headwear
203: bottle cap/cap/cap container lid
204: cape
205: cappuccino/coffee cappuccino
206: car/car automobile/auto/auto automobile/automobile
207: railcar/railcar part of a train/railway car/railway car part of a train/railroad car/railroad car part of a train
208: elevator car
209: car battery/automobile battery
210: identity card
211: card
212: cardigan
213: cargo ship/cargo vessel
214: carnation
215: horse carriage
216: carrot
217: tote bag
218: cart
219: carton
220: cash register/register/register for cash transactions
221: casserole
222: cassette
223: cast/plaster cast/plaster bandage
224: cat
225: cauliflower
226: cayenne/cayenne spice/cayenne pepper/cayenne pepper spice/red pepper/red pepper spice
227: CD player
228: celery
229: cellular telephone/cellular phone/cellphone/mobile phone/smart phone
230: chain mail/ring mail/chain armor/chain armour/ring armor/ring armour
231: chair
232: chaise longue/chaise/daybed
233: chalice
234: chandelier
235: chap
236: checkbook/chequebook
237: checkerboard
238: cherry
239: chessboard
240: chicken/chicken animal
241: chickpea/garbanzo
242: chili/chili vegetable/chili pepper/chili pepper vegetable/chilli/chilli vegetable/chilly/chilly vegetable/chile/chile vegetable
243: chime/gong
244: chinaware
245: crisp/crisp potato chip/potato chip
246: poker chip
247: chocolate bar
248: chocolate cake
249: chocolate milk
250: chocolate mousse
251: choker/collar/neckband
252: chopping board/cutting board/chopping block
253: chopstick
254: Christmas tree
255: slide
256: cider/cyder
257: cigar box
258: cigarette
259: cigarette case/cigarette pack
260: cistern/water tank
261: clarinet
262: clasp
263: cleansing agent/cleanser/cleaner
264: cleat/cleat for securing rope
265: clementine
266: clip
267: clipboard
268: clippers/clippers for plants
269: cloak
270: clock/timepiece/timekeeper
271: clock tower
272: clothes hamper/laundry basket/clothes basket
273: clothespin/clothes peg
274: clutch bag
275: coaster
276: coat
277: coat hanger/clothes hanger/dress hanger
278: coatrack/hatrack
279: cock/rooster
280: cockroach
281: cocoa/cocoa beverage/hot chocolate/hot chocolate beverage/drinking chocolate
282: coconut/cocoanut
283: coffee maker/coffee machine
284: coffee table/cocktail table
285: coffeepot
286: coil
287: coin
288: colander/cullender
289: coleslaw/slaw
290: coloring material/colouring material
291: combination lock
292: pacifier/teething ring
293: comic book
294: compass
295: computer keyboard/keyboard/keyboard computer
296: condiment
297: cone/traffic cone
298: control/controller
299: convertible/convertible automobile
300: sofa bed
301: cooker
302: cookie/cooky/biscuit/biscuit cookie
303: cooking utensil
304: cooler/cooler for food/ice chest
305: cork/cork bottle plug/bottle cork
306: corkboard
307: corkscrew/bottle screw
308: edible corn/corn/maize
309: cornbread
310: cornet/horn/trumpet
311: cornice/valance/valance board/pelmet
312: cornmeal
313: corset/girdle
314: costume
315: cougar/puma/catamount/mountain lion/panther
316: coverall
317: cowbell
318: cowboy hat/ten-gallon hat
319: crab/crab animal
320: crabmeat
321: cracker
322: crape/crepe/French pancake
323: crate
324: crayon/wax crayon
325: cream pitcher
326: crescent roll/croissant
327: crib/cot
328: crock pot/earthenware jar
329: crossbar
330: crouton
331: crow
332: crowbar/wrecking bar/pry bar
333: crown
334: crucifix
335: cruise ship/cruise liner
336: police cruiser/patrol car/police car/squad car
337: crumb
338: crutch
339: cub/cub animal
340: cube/square block
341: cucumber/cuke
342: cufflink
343: cup
344: trophy cup
345: cupboard/closet
346: cupcake
347: hair curler/hair roller/hair crimper
348: curling iron
349: curtain/drapery
350: cushion
351: cylinder
352: cymbal
353: dagger
354: dalmatian
355: dartboard
356: date/date fruit
357: deck chair/beach chair
358: deer/cervid
359: dental floss/floss
360: desk
361: detergent
362: diaper
363: diary/journal
364: die/dice
365: dinghy/dory/rowboat
366: dining table
367: tux/tuxedo
368: dish
369: dish antenna
370: dishrag/dishcloth
371: dishtowel/tea towel
372: dishwasher/dishwashing machine
373: dishwasher detergent/dishwashing detergent/dishwashing liquid/dishsoap
374: dispenser
375: diving board
376: Dixie cup/paper cup
377: dog
378: dog collar
379: doll
380: dollar/dollar bill/one dollar bill
381: dollhouse/doll's house
382: dolphin
383: domestic ass/donkey
384: doorknob/doorhandle
385: doormat/welcome mat
386: doughnut/donut
387: dove
388: dragonfly
389: drawer
390: underdrawers/boxers/boxershorts
391: dress/frock
392: dress hat/high hat/opera hat/silk hat/top hat
393: dress suit
394: dresser
395: drill
396: drone
397: dropper/eye dropper
398: drum/drum musical instrument
399: drumstick
400: duck
401: duckling
402: duct tape
403: duffel bag/duffle bag/duffel/duffle
404: dumbbell
405: dumpster
406: dustpan
407: eagle
408: earphone/earpiece/headphone
409: earplug
410: earring
411: easel
412: eclair
413: eel
414: egg/eggs
415: egg roll/spring roll
416: egg yolk/yolk/yolk egg
417: eggbeater/eggwhisk
418: eggplant/aubergine
419: electric chair
420: refrigerator
421: elephant
422: elk/moose
423: envelope
424: eraser
425: escargot
426: eyepatch
427: falcon
428: fan
429: faucet/spigot/tap
430: fedora
431: ferret
432: Ferris wheel
433: ferry/ferryboat
434: fig/fig fruit
435: fighter jet/fighter aircraft/attack aircraft
436: figurine
437: file cabinet/filing cabinet
438: file/file tool
439: fire alarm/smoke alarm
440: fire engine/fire truck
441: fire extinguisher/extinguisher
442: fire hose
443: fireplace
444: fireplug/fire hydrant/hydrant
445: first-aid kit
446: fish
447: fish/fish food
448: fishbowl/goldfish bowl
449: fishing rod/fishing pole
450: flag
451: flagpole/flagstaff
452: flamingo
453: flannel
454: flap
455: flash/flashbulb
456: flashlight/torch
457: fleece
458: flip-flop/flip-flop sandal
459: flipper/flipper footwear/fin/fin footwear
460: flower arrangement/floral arrangement
461: flute glass/champagne flute
462: foal
463: folding chair
464: food processor
465: football/football American
466: football helmet
467: footstool/footrest
468: fork
469: forklift
470: freight car
471: French toast
472: freshener/air freshener
473: frisbee
474: frog/toad/toad frog
475: fruit juice
476: frying pan/frypan/skillet
477: fudge
478: funnel
479: futon
480: gag/muzzle
481: garbage
482: garbage truck
483: garden hose
484: gargle/mouthwash
485: gargoyle
486: garlic/ail
487: gasmask/respirator/gas helmet
488: gazelle
489: gelatin/jelly
490: gemstone
491: generator
492: giant panda/panda/panda bear
493: gift wrap
494: ginger/gingerroot
495: giraffe
496: cincture/sash/waistband/waistcloth
497: glass/glass drink container/drinking glass
498: globe
499: glove
500: goat
501: goggles
502: goldfish
503: golf club/golf-club
504: golfcart
505: gondola/gondola boat
506: goose
507: gorilla
508: gourd
509: grape
510: grater
511: gravestone/headstone/tombstone
512: gravy boat/gravy holder
513: green bean
514: green onion/spring onion/scallion
515: griddle
516: grill/grille/grillwork/radiator grille
517: grits/hominy grits
518: grizzly/grizzly bear
519: grocery bag
520: guitar
521: gull/seagull
522: gun
523: hairbrush
524: hairnet
525: hairpin
526: halter top
527: ham/jambon/gammon
528: hamburger/beefburger/burger
529: hammer
530: hammock
531: hamper
532: hamster
533: hair dryer
534: hand glass/hand mirror
535: hand towel/face towel
536: handcart/pushcart/hand truck
537: handcuff
538: handkerchief
539: handle/grip/handgrip
540: handsaw/carpenter's saw
541: hardback book/hardcover book
542: harmonium/organ/organ musical instrument/reed organ/reed organ musical instrument
543: hat
544: hatbox
545: veil
546: headband
547: headboard
548: headlight/headlamp
549: headscarf
550: headset
551: headstall/headstall for horses/headpiece/headpiece for horses
552: heart
553: heater/warmer
554: helicopter
555: helmet
556: heron
557: highchair/feeding chair
558: hinge
559: hippopotamus
560: hockey stick
561: hog/pig
562: home plate/home plate baseball/home base/home base baseball
563: honey
564: fume hood/exhaust hood
565: hook
566: hookah/narghile/nargileh/sheesha/shisha/water pipe
567: hornet
568: horse
569: hose/hosepipe
570: hot-air balloon
571: hotplate
572: hot sauce
573: hourglass
574: houseboat
575: hummingbird
576: hummus/humus/hommos/hoummos/humous
577: polar bear
578: icecream
579: popsicle
580: ice maker
581: ice pack/ice bag
582: ice skate
583: igniter/ignitor/lighter
584: inhaler/inhalator
585: iPod
586: iron/iron for clothing/smoothing iron/smoothing iron for clothing
587: ironing board
588: jacket
589: jam
590: jar
591: jean/blue jean/denim
592: jeep/landrover
593: jelly bean/jelly egg
594: jersey/T-shirt/tee shirt
595: jet plane/jet-propelled plane
596: jewel/gem/precious stone
597: jewelry/jewellery
598: joystick
599: jumpsuit
600: kayak
601: keg
602: kennel/doghouse
603: kettle/boiler
604: key
605: keycard
606: kilt
607: kimono
608: kitchen sink
609: kitchen table
610: kite
611: kitten/kitty
612: kiwi fruit
613: knee pad
614: knife
615: knitting needle
616: knob
617: knocker/knocker on a door/doorknocker
618: koala/koala bear
619: lab coat/laboratory coat
620: ladder
621: ladle
622: ladybug/ladybeetle/ladybird beetle
623: lamb/lamb animal
624: lamb-chop/lambchop
625: lamp
626: lamppost
627: lampshade
628: lantern
629: lanyard/laniard
630: laptop computer/notebook computer
631: lasagna/lasagne
632: latch
633: lawn mower
634: leather
635: legging/legging clothing/leging/leging clothing/leg covering
636: Lego/Lego set
637: legume
638: lemon
639: lemonade
640: lettuce
641: license plate/numberplate
642: life buoy/lifesaver/life belt/life ring
643: life jacket/life vest
644: lightbulb
645: lightning rod/lightning conductor
646: lime
647: limousine
648: lion
649: lip balm
650: liquor/spirits/hard liquor/liqueur/cordial
651: lizard
652: log
653: lollipop
654: speaker/speaker stereo equipment
655: loveseat
656: machine gun
657: magazine
658: magnet
659: mail slot
660: mailbox/mailbox at home/letter box/letter box at home
661: mallard
662: mallet
663: mammoth
664: manatee
665: mandarin orange
666: manager/through
667: manhole
668: map
669: marker
670: martini
671: mascot
672: mashed potato
673: masher
674: mask/facemask
675: mast
676: mat/mat gym equipment/gym mat
677: matchbox
678: mattress
679: measuring cup
680: measuring stick/ruler/ruler measuring stick/measuring rod
681: meatball
682: medicine
683: melon
684: microphone
685: microscope
686: microwave oven
687: milestone/milepost
688: milk
689: milk can
690: milkshake
691: minivan
692: mint candy
693: mirror
694: mitten
695: mixer/mixer kitchen tool/stand mixer
696: money
697: monitor/monitor computer equipment
698: monkey
699: motor
700: motor scooter/scooter
701: motor vehicle/automotive vehicle
702: motorcycle
703: mound/mound baseball/pitcher's mound
704: mouse/mouse computer equipment/computer mouse
705: mousepad
706: muffin
707: mug
708: mushroom
709: music stool/piano stool
710: musical instrument/instrument/instrument musical
711: nailfile
712: napkin/table napkin/serviette
713: neckerchief
714: necklace
715: necktie/tie/tie necktie
716: needle
717: nest
718: newspaper/paper/paper newspaper
719: newsstand
720: nightshirt/nightwear/sleepwear/nightclothes
721: nosebag/nosebag for animals/feedbag
722: noseband/noseband for animals/nosepiece/nosepiece for animals
723: notebook
724: notepad
725: nut
726: nutcracker
727: oar
728: octopus/octopus food
729: octopus/octopus animal
730: oil lamp/kerosene lamp/kerosine lamp
731: olive oil
732: omelet/omelette
733: onion
734: orange/orange fruit
735: orange juice
736: ostrich
737: ottoman/pouf/pouffe/hassock
738: oven
739: overalls/overalls clothing
740: owl
741: packet
742: inkpad/inking pad/stamp pad
743: pad
744: paddle/boat paddle
745: padlock
746: paintbrush
747: painting
748: pajamas/pyjamas
749: palette/pallet
750: pan/pan for cooking/cooking pan
751: pan/pan metal container
752: pancake
753: pantyhose
754: papaya
755: paper plate
756: paper towel
757: paperback book/paper-back book/softback book/soft-cover book
758: paperweight
759: parachute
760: parakeet/parrakeet/parroket/paraquet/paroquet/parroquet
761: parasail/parasail sports
762: parasol/sunshade
763: parchment
764: parka/anorak
765: parking meter
766: parrot
767: passenger car/passenger car part of a train/coach/coach part of a train
768: passenger ship
769: passport
770: pastry
771: patty/patty food
772: pea/pea food
773: peach
774: peanut butter
775: pear
776: peeler/peeler tool for fruit and vegetables
777: wooden leg/pegleg
778: pegboard
779: pelican
780: pen
781: pencil
782: pencil box/pencil case
783: pencil sharpener
784: pendulum
785: penguin
786: pennant
787: penny/penny coin
788: pepper/peppercorn
789: pepper mill/pepper grinder
790: perfume
791: persimmon
792: person/baby/child/boy/girl/man/woman/human
793: pet
794: pew/pew church bench/church bench
795: phonebook/telephone book/telephone directory
796: phonograph record/phonograph recording/record/record phonograph recording
797: piano
798: pickle
799: pickup truck
800: pie
801: pigeon
802: piggy bank/penny bank
803: pillow
804: pin/pin non jewelry
805: pineapple
806: pinecone
807: ping-pong ball
808: pinwheel
809: tobacco pipe
810: pipe/piping
811: pistol/handgun
812: pita/pita bread/pocket bread
813: pitcher/pitcher vessel for liquid/ewer
814: pitchfork
815: pizza
816: place mat
817: plate
818: platter
819: playpen
820: pliers/plyers
821: plow/plow farm equipment/plough/plough farm equipment
822: plume
823: pocket watch
824: pocketknife
825: poker/poker fire stirring tool/stove poker/fire hook
826: pole/post
827: polo shirt/sport shirt
828: poncho
829: pony
830: pool table/billiard table/snooker table
831: pop/pop soda/soda/soda pop/tonic/soft drink
832: postbox/postbox public/mailbox/mailbox public
833: postcard/postal card/mailing-card
834: poster/placard
835: pot
836: flowerpot
837: potato
838: potholder
839: pottery/clayware
840: pouch
841: power shovel/excavator/digger
842: prawn/shrimp
843: pretzel
844: printer/printing machine
845: projectile/projectile weapon/missile
846: projector
847: propeller/propellor
848: prune
849: pudding
850: puffer/puffer fish/pufferfish/blowfish/globefish
851: puffin
852: pug-dog
853: pumpkin
854: puncher
855: puppet/marionette
856: puppy
857: quesadilla
858: quiche
859: quilt/comforter
860: rabbit
861: race car/racing car
862: racket/racquet
863: radar
864: radiator
865: radio receiver/radio set/radio/tuner/tuner radio
866: radish/daikon
867: raft
868: rag doll
869: raincoat/waterproof jacket
870: ram/ram animal
871: raspberry
872: rat
873: razorblade
874: reamer/reamer juicer/juicer/juice reamer
875: rearview mirror
876: receipt
877: recliner/reclining chair/lounger/lounger chair
878: record player/phonograph/phonograph record player/turntable
879: reflector
880: remote control
881: rhinoceros
882: rib/rib food
883: rifle
884: ring
885: river boat
886: road map
887: robe
888: rocking chair
889: rodent
890: roller skate
891: Rollerblade
892: rolling pin
893: root beer
894: router/router computer equipment
895: rubber band/elastic band
896: runner/runner carpet
897: plastic bag/paper bag
898: saddle/saddle on an animal
899: saddle blanket/saddlecloth/horse blanket
900: saddlebag
901: safety pin
902: sail
903: salad
904: salad plate/salad bowl
905: salami
906: salmon/salmon fish
907: salmon/salmon food
908: salsa
909: saltshaker
910: sandal/sandal type of shoe
911: sandwich
912: satchel
913: saucepan
914: saucer
915: sausage
916: sawhorse/sawbuck
917: saxophone
918: scale/scale measuring instrument
919: scarecrow/strawman
920: scarf
921: school bus
922: scissors
923: scoreboard
924: scraper
925: screwdriver
926: scrubbing brush
927: sculpture
928: seabird/seafowl
929: seahorse
930: seaplane/hydroplane
931: seashell
932: sewing machine
933: shaker
934: shampoo
935: shark
936: sharpener
937: Sharpie
938: shaver/shaver electric/electric shaver/electric razor
939: shaving cream/shaving soap
940: shawl
941: shears
942: sheep
943: shepherd dog/sheepdog
944: sherbert/sherbet
945: shield
946: shirt
947: shoe/sneaker/sneaker type of shoe/tennis shoe
948: shopping bag
949: shopping cart
950: short pants/shorts/shorts clothing/trunks/trunks clothing
951: shot glass
952: shoulder bag
953: shovel
954: shower head
955: shower cap
956: shower curtain
957: shredder/shredder for paper
958: signboard
959: silo
960: sink
961: skateboard
962: skewer
963: ski
964: ski boot
965: ski parka/ski jacket
966: ski pole
967: skirt
968: skullcap
969: sled/sledge/sleigh
970: sleeping bag
971: sling/sling bandage/triangular bandage
972: slipper/slipper footwear/carpet slipper/carpet slipper footwear
973: smoothie
974: snake/serpent
975: snowboard
976: snowman
977: snowmobile
978: soap
979: soccer ball
980: sock
981: sofa/couch/lounge
982: softball
983: solar array/solar battery/solar panel
984: sombrero
985: soup
986: soup bowl
987: soupspoon
988: sour cream/soured cream
989: soya milk/soybean milk/soymilk
990: space shuttle
991: sparkler/sparkler fireworks
992: spatula
993: spear/lance
994: spectacles/specs/eyeglasses/glasses
995: spice rack
996: spider
997: crawfish/crayfish
998: sponge
999: spoon
1000: sportswear/athletic wear/activewear
1001: spotlight
1002: squid/squid food/calamari/calamary
1003: squirrel
1004: stagecoach
1005: stapler/stapler stapling machine
1006: starfish/sea star
1007: statue/statue sculpture
1008: steak/steak food
1009: steak knife
1010: steering wheel
1011: stepladder
1012: step stool
1013: stereo/stereo sound system
1014: stew
1015: stirrer
1016: stirrup
1017: stool
1018: stop sign
1019: brake light
1020: stove/kitchen stove/range/range kitchen appliance/kitchen range/cooking stove
1021: strainer
1022: strap
1023: straw/straw for drinking/drinking straw
1024: strawberry
1025: street sign
1026: streetlight/street lamp
1027: string cheese
1028: stylus
1029: subwoofer
1030: sugar bowl
1031: sugarcane/sugarcane plant
1032: suit/suit clothing
1033: sunflower
1034: sunglasses
1035: sunhat
1036: surfboard
1037: sushi
1038: mop
1039: sweat pants
1040: sweatband
1041: sweater
1042: sweatshirt
1043: sweet potato
1044: swimsuit/swimwear/bathing suit/swimming costume/bathing costume/swimming trunks/bathing trunks
1045: sword
1046: syringe
1047: Tabasco sauce
1048: table-tennis table/ping-pong table
1049: table
1050: table lamp
1051: tablecloth
1052: tachometer
1053: taco
1054: tag
1055: taillight/rear light
1056: tambourine
1057: army tank/armored combat vehicle/armoured combat vehicle
1058: tank/tank storage vessel/storage tank
1059: tank top/tank top clothing
1060: tape/tape sticky cloth or paper
1061: tape measure/measuring tape
1062: tapestry
1063: tarp
1064: tartan/plaid
1065: tassel
1066: tea bag
1067: teacup
1068: teakettle
1069: teapot
1070: teddy bear
1071: telephone/phone/telephone set
1072: telephone booth/phone booth/call box/telephone box/telephone kiosk
1073: telephone pole/telegraph pole/telegraph post
1074: telephoto lens/zoom lens
1075: television camera/tv camera
1076: television set/tv/tv set
1077: tennis ball
1078: tennis racket
1079: tequila
1080: thermometer
1081: thermos bottle
1082: thermostat
1083: thimble
1084: thread/yarn
1085: thumbtack/drawing pin/pushpin
1086: tiara
1087: tiger
1088: tights/tights clothing/leotards
1089: timer/stopwatch
1090: tinfoil
1091: tinsel
1092: tissue paper
1093: toast/toast food
1094: toaster
1095: toaster oven
1096: toilet
1097: toilet tissue/toilet paper/bathroom tissue
1098: tomato
1099: tongs
1100: toolbox
1101: toothbrush
1102: toothpaste
1103: toothpick
1104: cover
1105: tortilla
1106: tow truck
1107: towel
1108: towel rack/towel rail/towel bar
1109: toy
1110: tractor/tractor farm equipment
1111: traffic light
1112: dirt bike
1113: trailer truck/tractor trailer/trucking rig/articulated lorry/semi truck
1114: train/train railroad vehicle/railroad train
1115: trampoline
1116: tray
1117: trench coat
1118: triangle/triangle musical instrument
1119: tricycle
1120: tripod
1121: trousers/pants/pants clothing
1122: truck
1123: truffle/truffle chocolate/chocolate truffle
1124: trunk
1125: vat
1126: turban
1127: turkey/turkey food
1128: turnip
1129: turtle
1130: turtleneck/turtleneck clothing/polo-neck
1131: typewriter
1132: umbrella
1133: underwear/underclothes/underclothing/underpants
1134: unicycle
1135: urinal
1136: urn
1137: vacuum cleaner
1138: vase
1139: vending machine
1140: vent/blowhole/air vent
1141: vest/waistcoat
1142: videotape
1143: vinegar
1144: violin/fiddle
1145: vodka
1146: volleyball
1147: vulture
1148: waffle
1149: waffle iron
1150: wagon
1151: wagon wheel
1152: walking stick
1153: wall clock
1154: wall socket/wall plug/electric outlet/electrical outlet/outlet/electric receptacle
1155: wallet/billfold
1156: walrus
1157: wardrobe
1158: washbasin/basin/basin for washing/washbowl/washstand/handbasin
1159: automatic washer/washing machine
1160: watch/wristwatch
1161: water bottle
1162: water cooler
1163: water faucet/water tap/tap/tap water faucet
1164: water heater/hot-water heater
1165: water jug
1166: water gun/squirt gun
1167: water scooter/sea scooter/jet ski
1168: water ski
1169: water tower
1170: watering can
1171: watermelon
1172: weathervane/vane/vane weathervane/wind vane
1173: webcam
1174: wedding cake/bridecake
1175: wedding ring/wedding band
1176: wet suit
1177: wheel
1178: wheelchair
1179: whipped cream
1180: whistle
1181: wig
1182: wind chime
1183: windmill
1184: window box/window box for plants
1185: windshield wiper/windscreen wiper/wiper/wiper for windshield or screen
1186: windsock/air sock/air-sleeve/wind sleeve/wind cone
1187: wine bottle
1188: wine bucket/wine cooler
1189: wineglass
1190: blinder/blinder for horses
1191: wok
1192: wolf
1193: wooden spoon
1194: wreath
1195: wrench/spanner
1196: wristband
1197: wristlet/wrist band
1198: yacht
1199: yogurt/yoghurt/yoghourt
1200: yoke/yoke animal equipment
1201: zebra
1202: zucchini/courgette
# Download script/URL (optional)
download: |
from ultralytics.utils.downloads import download
from pathlib import Path
# Download labels
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
urls = [url + 'lvis-labels-segments.zip'] # labels
download(urls, dir=dir.parent)
# Download data
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
download(urls, dir=dir / 'images', threads=3)
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Medical-pills dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/medical-pills/
# Example usage: yolo train data=medical-pills.yaml
# parent
# ├── ultralytics
# └── datasets
# └── medical-pills ← downloads here (8.19 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/medical-pills # dataset root dir
train: train/images # train images (relative to 'path') 92 images
val: valid/images # val images (relative to 'path') 23 images
test: # test images (relative to 'path')
# Classes
names:
0: pill
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/medical-pills.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Open Images v7 dataset https://storage.googleapis.com/openimages/web/index.html by Google
# Documentation: https://docs.ultralytics.com/datasets/detect/open-images-v7/
# Example usage: yolo train data=open-images-v7.yaml
# parent
# ├── ultralytics
# └── datasets
# └── open-images-v7 ← downloads here (561 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/open-images-v7 # dataset root dir
train: images/train # train images (relative to 'path') 1743042 images
val: images/val # val images (relative to 'path') 41620 images
test: # test images (optional)
# Classes
names:
0: Accordion
1: Adhesive tape
2: Aircraft
3: Airplane
4: Alarm clock
5: Alpaca
6: Ambulance
7: Animal
8: Ant
9: Antelope
10: Apple
11: Armadillo
12: Artichoke
13: Auto part
14: Axe
15: Backpack
16: Bagel
17: Baked goods
18: Balance beam
19: Ball
20: Balloon
21: Banana
22: Band-aid
23: Banjo
24: Barge
25: Barrel
26: Baseball bat
27: Baseball glove
28: Bat (Animal)
29: Bathroom accessory
30: Bathroom cabinet
31: Bathtub
32: Beaker
33: Bear
34: Bed
35: Bee
36: Beehive
37: Beer
38: Beetle
39: Bell pepper
40: Belt
41: Bench
42: Bicycle
43: Bicycle helmet
44: Bicycle wheel
45: Bidet
46: Billboard
47: Billiard table
48: Binoculars
49: Bird
50: Blender
51: Blue jay
52: Boat
53: Bomb
54: Book
55: Bookcase
56: Boot
57: Bottle
58: Bottle opener
59: Bow and arrow
60: Bowl
61: Bowling equipment
62: Box
63: Boy
64: Brassiere
65: Bread
66: Briefcase
67: Broccoli
68: Bronze sculpture
69: Brown bear
70: Building
71: Bull
72: Burrito
73: Bus
74: Bust
75: Butterfly
76: Cabbage
77: Cabinetry
78: Cake
79: Cake stand
80: Calculator
81: Camel
82: Camera
83: Can opener
84: Canary
85: Candle
86: Candy
87: Cannon
88: Canoe
89: Cantaloupe
90: Car
91: Carnivore
92: Carrot
93: Cart
94: Cassette deck
95: Castle
96: Cat
97: Cat furniture
98: Caterpillar
99: Cattle
100: Ceiling fan
101: Cello
102: Centipede
103: Chainsaw
104: Chair
105: Cheese
106: Cheetah
107: Chest of drawers
108: Chicken
109: Chime
110: Chisel
111: Chopsticks
112: Christmas tree
113: Clock
114: Closet
115: Clothing
116: Coat
117: Cocktail
118: Cocktail shaker
119: Coconut
120: Coffee
121: Coffee cup
122: Coffee table
123: Coffeemaker
124: Coin
125: Common fig
126: Common sunflower
127: Computer keyboard
128: Computer monitor
129: Computer mouse
130: Container
131: Convenience store
132: Cookie
133: Cooking spray
134: Corded phone
135: Cosmetics
136: Couch
137: Countertop
138: Cowboy hat
139: Crab
140: Cream
141: Cricket ball
142: Crocodile
143: Croissant
144: Crown
145: Crutch
146: Cucumber
147: Cupboard
148: Curtain
149: Cutting board
150: Dagger
151: Dairy Product
152: Deer
153: Desk
154: Dessert
155: Diaper
156: Dice
157: Digital clock
158: Dinosaur
159: Dishwasher
160: Dog
161: Dog bed
162: Doll
163: Dolphin
164: Door
165: Door handle
166: Doughnut
167: Dragonfly
168: Drawer
169: Dress
170: Drill (Tool)
171: Drink
172: Drinking straw
173: Drum
174: Duck
175: Dumbbell
176: Eagle
177: Earrings
178: Egg (Food)
179: Elephant
180: Envelope
181: Eraser
182: Face powder
183: Facial tissue holder
184: Falcon
185: Fashion accessory
186: Fast food
187: Fax
188: Fedora
189: Filing cabinet
190: Fire hydrant
191: Fireplace
192: Fish
193: Flag
194: Flashlight
195: Flower
196: Flowerpot
197: Flute
198: Flying disc
199: Food
200: Food processor
201: Football
202: Football helmet
203: Footwear
204: Fork
205: Fountain
206: Fox
207: French fries
208: French horn
209: Frog
210: Fruit
211: Frying pan
212: Furniture
213: Garden Asparagus
214: Gas stove
215: Giraffe
216: Girl
217: Glasses
218: Glove
219: Goat
220: Goggles
221: Goldfish
222: Golf ball
223: Golf cart
224: Gondola
225: Goose
226: Grape
227: Grapefruit
228: Grinder
229: Guacamole
230: Guitar
231: Hair dryer
232: Hair spray
233: Hamburger
234: Hammer
235: Hamster
236: Hand dryer
237: Handbag
238: Handgun
239: Harbor seal
240: Harmonica
241: Harp
242: Harpsichord
243: Hat
244: Headphones
245: Heater
246: Hedgehog
247: Helicopter
248: Helmet
249: High heels
250: Hiking equipment
251: Hippopotamus
252: Home appliance
253: Honeycomb
254: Horizontal bar
255: Horse
256: Hot dog
257: House
258: Houseplant
259: Human arm
260: Human beard
261: Human body
262: Human ear
263: Human eye
264: Human face
265: Human foot
266: Human hair
267: Human hand
268: Human head
269: Human leg
270: Human mouth
271: Human nose
272: Humidifier
273: Ice cream
274: Indoor rower
275: Infant bed
276: Insect
277: Invertebrate
278: Ipod
279: Isopod
280: Jacket
281: Jacuzzi
282: Jaguar (Animal)
283: Jeans
284: Jellyfish
285: Jet ski
286: Jug
287: Juice
288: Kangaroo
289: Kettle
290: Kitchen & dining room table
291: Kitchen appliance
292: Kitchen knife
293: Kitchen utensil
294: Kitchenware
295: Kite
296: Knife
297: Koala
298: Ladder
299: Ladle
300: Ladybug
301: Lamp
302: Land vehicle
303: Lantern
304: Laptop
305: Lavender (Plant)
306: Lemon
307: Leopard
308: Light bulb
309: Light switch
310: Lighthouse
311: Lily
312: Limousine
313: Lion
314: Lipstick
315: Lizard
316: Lobster
317: Loveseat
318: Luggage and bags
319: Lynx
320: Magpie
321: Mammal
322: Man
323: Mango
324: Maple
325: Maracas
326: Marine invertebrates
327: Marine mammal
328: Measuring cup
329: Mechanical fan
330: Medical equipment
331: Microphone
332: Microwave oven
333: Milk
334: Miniskirt
335: Mirror
336: Missile
337: Mixer
338: Mixing bowl
339: Mobile phone
340: Monkey
341: Moths and butterflies
342: Motorcycle
343: Mouse
344: Muffin
345: Mug
346: Mule
347: Mushroom
348: Musical instrument
349: Musical keyboard
350: Nail (Construction)
351: Necklace
352: Nightstand
353: Oboe
354: Office building
355: Office supplies
356: Orange
357: Organ (Musical Instrument)
358: Ostrich
359: Otter
360: Oven
361: Owl
362: Oyster
363: Paddle
364: Palm tree
365: Pancake
366: Panda
367: Paper cutter
368: Paper towel
369: Parachute
370: Parking meter
371: Parrot
372: Pasta
373: Pastry
374: Peach
375: Pear
376: Pen
377: Pencil case
378: Pencil sharpener
379: Penguin
380: Perfume
381: Person
382: Personal care
383: Personal flotation device
384: Piano
385: Picnic basket
386: Picture frame
387: Pig
388: Pillow
389: Pineapple
390: Pitcher (Container)
391: Pizza
392: Pizza cutter
393: Plant
394: Plastic bag
395: Plate
396: Platter
397: Plumbing fixture
398: Polar bear
399: Pomegranate
400: Popcorn
401: Porch
402: Porcupine
403: Poster
404: Potato
405: Power plugs and sockets
406: Pressure cooker
407: Pretzel
408: Printer
409: Pumpkin
410: Punching bag
411: Rabbit
412: Raccoon
413: Racket
414: Radish
415: Ratchet (Device)
416: Raven
417: Rays and skates
418: Red panda
419: Refrigerator
420: Remote control
421: Reptile
422: Rhinoceros
423: Rifle
424: Ring binder
425: Rocket
426: Roller skates
427: Rose
428: Rugby ball
429: Ruler
430: Salad
431: Salt and pepper shakers
432: Sandal
433: Sandwich
434: Saucer
435: Saxophone
436: Scale
437: Scarf
438: Scissors
439: Scoreboard
440: Scorpion
441: Screwdriver
442: Sculpture
443: Sea lion
444: Sea turtle
445: Seafood
446: Seahorse
447: Seat belt
448: Segway
449: Serving tray
450: Sewing machine
451: Shark
452: Sheep
453: Shelf
454: Shellfish
455: Shirt
456: Shorts
457: Shotgun
458: Shower
459: Shrimp
460: Sink
461: Skateboard
462: Ski
463: Skirt
464: Skull
465: Skunk
466: Skyscraper
467: Slow cooker
468: Snack
469: Snail
470: Snake
471: Snowboard
472: Snowman
473: Snowmobile
474: Snowplow
475: Soap dispenser
476: Sock
477: Sofa bed
478: Sombrero
479: Sparrow
480: Spatula
481: Spice rack
482: Spider
483: Spoon
484: Sports equipment
485: Sports uniform
486: Squash (Plant)
487: Squid
488: Squirrel
489: Stairs
490: Stapler
491: Starfish
492: Stationary bicycle
493: Stethoscope
494: Stool
495: Stop sign
496: Strawberry
497: Street light
498: Stretcher
499: Studio couch
500: Submarine
501: Submarine sandwich
502: Suit
503: Suitcase
504: Sun hat
505: Sunglasses
506: Surfboard
507: Sushi
508: Swan
509: Swim cap
510: Swimming pool
511: Swimwear
512: Sword
513: Syringe
514: Table
515: Table tennis racket
516: Tablet computer
517: Tableware
518: Taco
519: Tank
520: Tap
521: Tart
522: Taxi
523: Tea
524: Teapot
525: Teddy bear
526: Telephone
527: Television
528: Tennis ball
529: Tennis racket
530: Tent
531: Tiara
532: Tick
533: Tie
534: Tiger
535: Tin can
536: Tire
537: Toaster
538: Toilet
539: Toilet paper
540: Tomato
541: Tool
542: Toothbrush
543: Torch
544: Tortoise
545: Towel
546: Tower
547: Toy
548: Traffic light
549: Traffic sign
550: Train
551: Training bench
552: Treadmill
553: Tree
554: Tree house
555: Tripod
556: Trombone
557: Trousers
558: Truck
559: Trumpet
560: Turkey
561: Turtle
562: Umbrella
563: Unicycle
564: Van
565: Vase
566: Vegetable
567: Vehicle
568: Vehicle registration plate
569: Violin
570: Volleyball (Ball)
571: Waffle
572: Waffle iron
573: Wall clock
574: Wardrobe
575: Washing machine
576: Waste container
577: Watch
578: Watercraft
579: Watermelon
580: Weapon
581: Whale
582: Wheel
583: Wheelchair
584: Whisk
585: Whiteboard
586: Willow
587: Window
588: Window blind
589: Wine
590: Wine glass
591: Wine rack
592: Winter melon
593: Wok
594: Woman
595: Wood-burning stove
596: Woodpecker
597: Worm
598: Wrench
599: Zebra
600: Zucchini
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from ultralytics.utils import LOGGER, SETTINGS, Path, is_ubuntu, get_ubuntu_version
from ultralytics.utils.checks import check_requirements, check_version
check_requirements('fiftyone')
if is_ubuntu() and check_version(get_ubuntu_version(), '>=22.04'):
# Ubuntu>=22.04 patch https://github.com/voxel51/fiftyone/issues/2961#issuecomment-1666519347
check_requirements('fiftyone-db-ubuntu2204')
import fiftyone as fo
import fiftyone.zoo as foz
import warnings
name = 'open-images-v7'
fraction = 1.0 # fraction of full dataset to use
LOGGER.warning('WARNING ⚠️ Open Images V7 dataset requires at least **561 GB of free space. Starting download...')
for split in 'train', 'validation': # 1743042 train, 41620 val images
train = split == 'train'
# Load Open Images dataset
dataset = foz.load_zoo_dataset(name,
split=split,
label_types=['detections'],
dataset_dir=Path(SETTINGS['datasets_dir']) / 'fiftyone' / name,
max_samples=round((1743042 if train else 41620) * fraction))
# Define classes
if train:
classes = dataset.default_classes # all classes
# classes = dataset.distinct('ground_truth.detections.label') # only observed classes
# Export to YOLO format
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning, module="fiftyone.utils.yolo")
dataset.export(export_dir=str(Path(SETTINGS['datasets_dir']) / name),
dataset_type=fo.types.YOLOv5Dataset,
label_field='ground_truth',
split='val' if split == 'validation' else split,
classes=classes,
overwrite=train)
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Package-seg dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/package-seg/
# Example usage: yolo train data=package-seg.yaml
# parent
# ├── ultralytics
# └── datasets
# └── package-seg ← downloads here (102 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/package-seg # dataset root dir
train: train/images # train images (relative to 'path') 1920 images
val: valid/images # val images (relative to 'path') 89 images
test: test/images # test images (relative to 'path') 188 images
# Classes
names:
0: package
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/package-seg.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Signature dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/signature/
# Example usage: yolo train data=signature.yaml
# parent
# ├── ultralytics
# └── datasets
# └── signature ← downloads here (11.2 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/signature # dataset root dir
train: train/images # train images (relative to 'path') 143 images
val: valid/images # val images (relative to 'path') 35 images
# Classes
names:
0: signature
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/signature.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Tiger Pose dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/tiger-pose/
# Example usage: yolo train data=tiger-pose.yaml
# parent
# ├── ultralytics
# └── datasets
# └── tiger-pose ← downloads here (75.3 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/tiger-pose # dataset root dir
train: train # train images (relative to 'path') 210 images
val: val # val images (relative to 'path') 53 images
# Keypoints
kpt_shape: [12, 2] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
# Classes
names:
0: tiger
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/tiger-pose.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
# Documentation: https://docs.ultralytics.com/datasets/detect/xview/
# Example usage: yolo train data=xView.yaml
# parent
# ├── ultralytics
# └── datasets
# └── xView ← downloads here (20.7 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/xView # dataset root dir
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
# Classes
names:
0: Fixed-wing Aircraft
1: Small Aircraft
2: Cargo Plane
3: Helicopter
4: Passenger Vehicle
5: Small Car
6: Bus
7: Pickup Truck
8: Utility Truck
9: Truck
10: Cargo Truck
11: Truck w/Box
12: Truck Tractor
13: Trailer
14: Truck w/Flatbed
15: Truck w/Liquid
16: Crane Truck
17: Railway Vehicle
18: Passenger Car
19: Cargo Car
20: Flat Car
21: Tank car
22: Locomotive
23: Maritime Vessel
24: Motorboat
25: Sailboat
26: Tugboat
27: Barge
28: Fishing Vessel
29: Ferry
30: Yacht
31: Container Ship
32: Oil Tanker
33: Engineering Vehicle
34: Tower crane
35: Container Crane
36: Reach Stacker
37: Straddle Carrier
38: Mobile Crane
39: Dump Truck
40: Haul Truck
41: Scraper/Tractor
42: Front loader/Bulldozer
43: Excavator
44: Cement Mixer
45: Ground Grader
46: Hut/Tent
47: Shed
48: Building
49: Aircraft Hangar
50: Damaged Building
51: Facility
52: Construction Site
53: Vehicle Lot
54: Helipad
55: Storage Tank
56: Shipping container lot
57: Shipping Container
58: Pylon
59: Tower
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import json
import os
from pathlib import Path
import numpy as np
from PIL import Image
from tqdm import tqdm
from ultralytics.data.utils import autosplit
from ultralytics.utils.ops import xyxy2xywhn
def convert_labels(fname=Path('xView/xView_train.geojson')):
# Convert xView geoJSON labels to YOLO format
path = fname.parent
with open(fname) as f:
print(f'Loading {fname}...')
data = json.load(f)
# Make dirs
labels = Path(path / 'labels' / 'train')
os.system(f'rm -rf {labels}')
labels.mkdir(parents=True, exist_ok=True)
# xView classes 11-94 to 0-59
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
shapes = {}
for feature in tqdm(data['features'], desc=f'Converting {fname}'):
p = feature['properties']
if p['bounds_imcoords']:
id = p['image_id']
file = path / 'train_images' / id
if file.exists(): # 1395.tif missing
try:
box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
cls = p['type_id']
cls = xview_class2index[int(cls)] # xView class to 0-60
assert 59 >= cls >= 0, f'incorrect class index {cls}'
# Write YOLO label
if id not in shapes:
shapes[id] = Image.open(file).size
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
with open((labels / id).with_suffix('.txt'), 'a') as f:
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
except Exception as e:
print(f'WARNING: skipping one label for {file}: {e}')
# Download manually from https://challenge.xviewdataset.org
dir = Path(yaml['path']) # dataset root dir
# urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
# 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
# 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
# download(urls, dir=dir)
# Convert labels
convert_labels(dir / 'xView_train.geojson')
# Move images
images = Path(dir / 'images')
images.mkdir(parents=True, exist_ok=True)
Path(dir / 'train_images').rename(dir / 'images' / 'train')
Path(dir / 'val_images').rename(dir / 'images' / 'val')
# Split
autosplit(dir / 'images' / 'train')
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Global configuration YAML with settings and hyperparameters for YOLO training, validation, prediction and export
# For documentation see https://docs.ultralytics.com/usage/cfg/
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose, obb
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
# Train settings -------------------------------------------------------------------------------------------------------
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
data: # (str, optional) path to data file, i.e. coco8.yaml
epochs: 100 # (int) number of epochs to train for
time: # (float, optional) number of hours to train for, overrides epochs if supplied
patience: 100 # (int) epochs to wait for no observable improvement for early stopping of training
batch: 16 # (int) number of images per batch (-1 for AutoBatch)
imgsz: 640 # (int | list) input images size as int for train and val modes, or list[h,w] for predict and export modes
save: True # (bool) save train checkpoints and predict results
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
cache: False # (bool) True/ram, disk or False. Use cache for data loading
device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
project: # (str, optional) project name
name: # (str, optional) experiment name, results saved to 'project/name' directory
exist_ok: False # (bool) whether to overwrite existing experiment
pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
verbose: True # (bool) whether to print verbose output
seed: 0 # (int) random seed for reproducibility
deterministic: True # (bool) whether to enable deterministic mode
single_cls: False # (bool) train multi-class data as single-class
rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
cos_lr: False # (bool) use cosine learning rate scheduler
close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable)
resume: False # (bool) resume training from last checkpoint
amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
multi_scale: False # (bool) Whether to use multiscale during training
# Segmentation
overlap_mask: True # (bool) merge object masks into a single image mask during training (segment train only)
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
# Classification
dropout: 0.0 # (float) use dropout regularization (classify train only)
# Val/Test settings ----------------------------------------------------------------------------------------------------
val: True # (bool) validate/test during training
split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
save_json: False # (bool) save results to JSON file
save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
max_det: 300 # (int) maximum number of detections per image
half: False # (bool) use half precision (FP16)
dnn: False # (bool) use OpenCV DNN for ONNX inference
plots: True # (bool) save plots and images during train/val
# Predict settings -----------------------------------------------------------------------------------------------------
source: # (str, optional) source directory for images or videos
vid_stride: 1 # (int) video frame-rate stride
stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False)
visualize: False # (bool) visualize model features
augment: False # (bool) apply image augmentation to prediction sources
agnostic_nms: False # (bool) class-agnostic NMS
classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
retina_masks: False # (bool) use high-resolution segmentation masks
embed: # (list[int], optional) return feature vectors/embeddings from given layers
# Visualize settings ---------------------------------------------------------------------------------------------------
show: False # (bool) show predicted images and videos if environment allows
save_frames: False # (bool) save predicted individual video frames
save_txt: False # (bool) save results as .txt file
save_conf: False # (bool) save results with confidence scores
save_crop: False # (bool) save cropped images with results
show_labels: True # (bool) show prediction labels, i.e. 'person'
show_conf: True # (bool) show prediction confidence, i.e. '0.99'
show_boxes: True # (bool) show prediction boxes
line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None.
# Export settings ------------------------------------------------------------------------------------------------------
format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
keras: False # (bool) use Kera=s
optimize: False # (bool) TorchScript: optimize for mobile
int8: False # (bool) CoreML/TF INT8 quantization
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
simplify: True # (bool) ONNX: simplify model using `onnxslim`
opset: # (int, optional) ONNX: opset version
workspace: None # (float, optional) TensorRT: workspace size (GiB), `None` will let TensorRT auto-allocate memory
nms: False # (bool) CoreML: add NMS
# Hyperparameters ------------------------------------------------------------------------------------------------------
lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
lrf: 0.01 # (float) final learning rate (lr0 * lrf)
momentum: 0.937 # (float) SGD momentum/Adam beta1
weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
warmup_momentum: 0.8 # (float) warmup initial momentum
warmup_bias_lr: 0.0 # 0.1 # (float) warmup initial bias lr
box: 7.5 # (float) box loss gain
cls: 0.5 # (float) cls loss gain (scale with pixels)
dfl: 1.5 # (float) dfl loss gain
pose: 12.0 # (float) pose loss gain
kobj: 1.0 # (float) keypoint obj loss gain
nbs: 64 # (int) nominal batch size
hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
degrees: 0.0 # (float) image rotation (+/- deg)
translate: 0.1 # (float) image translation (+/- fraction)
scale: 0.5 # (float) image scale (+/- gain)
shear: 0.0 # (float) image shear (+/- deg)
perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # (float) image flip up-down (probability)
fliplr: 0.5 # (float) image flip left-right (probability)
bgr: 0.0 # (float) image channel BGR (probability)
mosaic: 1.0 # (float) image mosaic (probability)
mixup: 0.0 # (float) image mixup (probability)
copy_paste: 0.1 # (float) segment copy-paste (probability)
copy_paste_mode: "flip" # (str) the method to do copy_paste augmentation (flip, mixup)
auto_augment: randaugment # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)
erasing: 0.4 # (float) probability of random erasing during classification training (0-0.9), 0 means no erasing, must be less than 1.0.
crop_fraction: 1.0 # (float) image crop fraction for classification (0.1-1), 1.0 means no crop, must be greater than 0.
# Custom config.yaml ---------------------------------------------------------------------------------------------------
cfg: # (str, optional) for overriding defaults.yaml
# Tracker settings ------------------------------------------------------------------------------------------------------
tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLO11-cls image classification model with ResNet18 backbone
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters
nc: 10 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n-cls.yaml' will call yolo11-cls.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
s: [0.33, 0.50, 1024]
m: [0.67, 0.75, 1024]
l: [1.00, 1.00, 1024]
x: [1.00, 1.25, 1024]
# ResNet18 backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, TorchVision, [512, "resnet18", "DEFAULT", True, 2]] # truncate two layers from the end
# YOLO11n head
head:
- [-1, 1, Classify, [nc]] # Classify
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLO11-cls image classification model
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n-cls.yaml' will call yolo11-cls.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 151 layers, 1633584 parameters, 1633584 gradients, 3.3 GFLOPs
s: [0.50, 0.50, 1024] # summary: 151 layers, 5545488 parameters, 5545488 gradients, 12.2 GFLOPs
m: [0.50, 1.00, 512] # summary: 187 layers, 10455696 parameters, 10455696 gradients, 39.7 GFLOPs
l: [1.00, 1.00, 512] # summary: 309 layers, 12937104 parameters, 12937104 gradients, 49.9 GFLOPs
x: [1.00, 1.50, 512] # summary: 309 layers, 28458544 parameters, 28458544 gradients, 111.1 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 2, C2PSA, [1024]] # 9
# YOLO11n head
head:
- [-1, 1, Classify, [nc]] # Classify
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLO11-obb Oriented Bounding Boxes (OBB) model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/obb
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n-obb.yaml' will call yolo11-obb.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 344 layers, 2695747 parameters, 2695731 gradients, 6.9 GFLOPs
s: [0.50, 0.50, 1024] # summary: 344 layers, 9744931 parameters, 9744915 gradients, 22.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 434 layers, 20963523 parameters, 20963507 gradients, 72.2 GFLOPs
l: [1.00, 1.00, 512] # summary: 656 layers, 26220995 parameters, 26220979 gradients, 91.3 GFLOPs
x: [1.00, 1.50, 512] # summary: 656 layers, 58875331 parameters, 58875315 gradients, 204.3 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, OBB, [nc, 1]] # Detect(P3, P4, P5)
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLO11-pose keypoints/pose estimation model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/pose
# Parameters
nc: 80 # number of classes
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
scales: # model compound scaling constants, i.e. 'model=yolo11n-pose.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 344 layers, 2908507 parameters, 2908491 gradients, 7.7 GFLOPs
s: [0.50, 0.50, 1024] # summary: 344 layers, 9948811 parameters, 9948795 gradients, 23.5 GFLOPs
m: [0.50, 1.00, 512] # summary: 434 layers, 20973273 parameters, 20973257 gradients, 72.3 GFLOPs
l: [1.00, 1.00, 512] # summary: 656 layers, 26230745 parameters, 26230729 gradients, 91.4 GFLOPs
x: [1.00, 1.50, 512] # summary: 656 layers, 58889881 parameters, 58889865 gradients, 204.3 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, Pose, [nc, kpt_shape]] # Detect(P3, P4, P5)
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLO11-seg instance segmentation model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/segment
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n-seg.yaml' will call yolo11-seg.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 355 layers, 2876848 parameters, 2876832 gradients, 10.5 GFLOPs
s: [0.50, 0.50, 1024] # summary: 355 layers, 10113248 parameters, 10113232 gradients, 35.8 GFLOPs
m: [0.50, 1.00, 512] # summary: 445 layers, 22420896 parameters, 22420880 gradients, 123.9 GFLOPs
l: [1.00, 1.00, 512] # summary: 667 layers, 27678368 parameters, 27678352 gradients, 143.0 GFLOPs
x: [1.00, 1.50, 512] # summary: 667 layers, 62142656 parameters, 62142640 gradients, 320.2 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, Segment, [nc, 32, 256]] # Detect(P3, P4, P5)
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLO11 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
## Models
Welcome to the [Ultralytics](https://www.ultralytics.com/) Models directory! Here you will find a wide variety of pre-configured model configuration files (`*.yaml`s) that can be used to create custom YOLO models. The models in this directory have been expertly crafted and fine-tuned by the Ultralytics team to provide the best performance for a wide range of object detection and image segmentation tasks.
These model configurations cover a wide range of scenarios, from simple object detection to more complex tasks like instance segmentation and object tracking. They are also designed to run efficiently on a variety of hardware platforms, from CPUs to GPUs. Whether you are a seasoned machine learning practitioner or just getting started with YOLO, this directory provides a great starting point for your custom model development needs.
To get started, simply browse through the models in this directory and find one that best suits your needs. Once you've selected a model, you can use the provided `*.yaml` file to train and deploy your custom YOLO model with ease. See full details at the Ultralytics [Docs](https://docs.ultralytics.com/models/), and if you need help or have any questions, feel free to reach out to the Ultralytics team for support. So, don't wait, start creating your custom YOLO model now!
### Usage
Model `*.yaml` files may be used directly in the [Command Line Interface (CLI)](https://docs.ultralytics.com/usage/cli/) with a `yolo` command:
```bash
# Train a YOLO11n model using the coco8 dataset for 100 epochs
yolo task=detect mode=train model=yolo11n.yaml data=coco8.yaml epochs=100
```
They may also be used directly in a Python environment, and accept the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Initialize a YOLO11n model from a YAML configuration file
model = YOLO("model.yaml")
# If a pre-trained model is available, use it instead
# model = YOLO("model.pt")
# Display model information
model.info()
# Train the model using the COCO8 dataset for 100 epochs
model.train(data="coco8.yaml", epochs=100)
```
## Pre-trained Model Architectures
Ultralytics supports many model architectures. Visit [Ultralytics Models](https://docs.ultralytics.com/models/) to view detailed information and usage. Any of these models can be used by loading their configurations or pretrained checkpoints if available.
## Contribute New Models
Have you trained a new YOLO variant or achieved state-of-the-art performance with specific tuning? We'd love to showcase your work in our Models section! Contributions from the community in the form of new models, architectures, or optimizations are highly valued and can significantly enrich our repository.
By contributing to this section, you're helping us offer a wider array of model choices and configurations to the community. It's a fantastic way to share your knowledge and expertise while making the Ultralytics YOLO ecosystem even more versatile.
To get started, please consult our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) for step-by-step instructions on how to submit a Pull Request (PR) 🛠️. Your contributions are eagerly awaited!
Let's join hands to extend the range and capabilities of the Ultralytics YOLO models 🙏!
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics RT-DETR-l hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, HGStem, [32, 48]] # 0-P2/4
- [-1, 6, HGBlock, [48, 128, 3]] # stage 1
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- [-1, 6, HGBlock, [96, 512, 3]] # stage 2
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P3/16
- [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- [-1, 6, HGBlock, [192, 1024, 5, True, True]]
- [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P4/32
- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
- [[-1, 17], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
- [[-1, 12], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
- [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment