Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
yolov13_pytorch
Commits
e63cf68a
Commit
e63cf68a
authored
Jul 11, 2025
by
chenzk
Browse files
v1.0
parents
Pipeline
#2842
canceled with stages
Changes
353
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
3578 additions
and
0 deletions
+3578
-0
ultralytics/cfg/__pycache__/__init__.cpython-310.pyc
ultralytics/cfg/__pycache__/__init__.cpython-310.pyc
+0
-0
ultralytics/cfg/datasets/Argoverse.yaml
ultralytics/cfg/datasets/Argoverse.yaml
+75
-0
ultralytics/cfg/datasets/DOTAv1.5.yaml
ultralytics/cfg/datasets/DOTAv1.5.yaml
+37
-0
ultralytics/cfg/datasets/DOTAv1.yaml
ultralytics/cfg/datasets/DOTAv1.yaml
+36
-0
ultralytics/cfg/datasets/GlobalWheat2020.yaml
ultralytics/cfg/datasets/GlobalWheat2020.yaml
+54
-0
ultralytics/cfg/datasets/ImageNet.yaml
ultralytics/cfg/datasets/ImageNet.yaml
+2025
-0
ultralytics/cfg/datasets/Objects365.yaml
ultralytics/cfg/datasets/Objects365.yaml
+443
-0
ultralytics/cfg/datasets/SKU-110K.yaml
ultralytics/cfg/datasets/SKU-110K.yaml
+58
-0
ultralytics/cfg/datasets/VOC.yaml
ultralytics/cfg/datasets/VOC.yaml
+101
-0
ultralytics/cfg/datasets/VisDrone.yaml
ultralytics/cfg/datasets/VisDrone.yaml
+73
-0
ultralytics/cfg/datasets/african-wildlife.yaml
ultralytics/cfg/datasets/african-wildlife.yaml
+25
-0
ultralytics/cfg/datasets/brain-tumor.yaml
ultralytics/cfg/datasets/brain-tumor.yaml
+23
-0
ultralytics/cfg/datasets/carparts-seg.yaml
ultralytics/cfg/datasets/carparts-seg.yaml
+44
-0
ultralytics/cfg/datasets/coco-pose.yaml
ultralytics/cfg/datasets/coco-pose.yaml
+39
-0
ultralytics/cfg/datasets/coco.yaml
ultralytics/cfg/datasets/coco.yaml
+115
-0
ultralytics/cfg/datasets/coco128-seg.yaml
ultralytics/cfg/datasets/coco128-seg.yaml
+101
-0
ultralytics/cfg/datasets/coco128.yaml
ultralytics/cfg/datasets/coco128.yaml
+101
-0
ultralytics/cfg/datasets/coco8-pose.yaml
ultralytics/cfg/datasets/coco8-pose.yaml
+26
-0
ultralytics/cfg/datasets/coco8-seg.yaml
ultralytics/cfg/datasets/coco8-seg.yaml
+101
-0
ultralytics/cfg/datasets/coco8.yaml
ultralytics/cfg/datasets/coco8.yaml
+101
-0
No files found.
Too many changes to show.
To preserve performance only
353 of 353+
files are displayed.
Plain diff
Email patch
ultralytics/cfg/__pycache__/__init__.cpython-310.pyc
0 → 100644
View file @
e63cf68a
File added
ultralytics/cfg/datasets/Argoverse.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
# Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
# Example usage: yolo train data=Argoverse.yaml
# parent
# ├── ultralytics
# └── datasets
# └── Argoverse ← downloads here (31.5 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/Argoverse
# dataset root dir
train
:
Argoverse-1.1/images/train/
# train images (relative to 'path') 39384 images
val
:
Argoverse-1.1/images/val/
# val images (relative to 'path') 15062 images
test
:
Argoverse-1.1/images/test/
# test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
# Classes
names
:
0
:
person
1
:
bicycle
2
:
car
3
:
motorcycle
4
:
bus
5
:
truck
6
:
traffic_light
7
:
stop_sign
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download
:
|
import json
from tqdm import tqdm
from ultralytics.utils.downloads import download
from pathlib import Path
def argoverse2yolo(set):
labels = {}
a = json.load(open(set, "rb"))
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
img_id = annot['image_id']
img_name = a['images'][img_id]['name']
img_label_name = f'{img_name[:-3]}txt'
cls = annot['category_id'] # instance class id
x_center, y_center, width, height = annot['bbox']
x_center = (x_center + width / 2) / 1920.0 # offset and scale
y_center = (y_center + height / 2) / 1200.0 # offset and scale
width /= 1920.0 # scale
height /= 1200.0 # scale
img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
if not img_dir.exists():
img_dir.mkdir(parents=True, exist_ok=True)
k = str(img_dir / img_label_name)
if k not in labels:
labels[k] = []
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
for k in labels:
with open(k, "w") as f:
f.writelines(labels[k])
# Download 'https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip' (deprecated S3 link)
dir = Path(yaml['path']) # dataset root dir
urls = ['https://drive.google.com/file/d/1st9qW3BeIwQsnR0t8mRpvbsSWIo16ACi/view?usp=drive_link']
print("\n\nWARNING: Argoverse dataset MUST be downloaded manually, autodownload will NOT work.")
print(f"WARNING: Manually download Argoverse dataset '{urls[0]}' to '{dir}' and re-run your command.\n\n")
# download(urls, dir=dir)
# Convert
annotations_dir = 'Argoverse-HD/annotations/'
(dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
for d in "train.json", "val.json":
argoverse2yolo(dir / annotations_dir / d) # convert Argoverse annotations to YOLO labels
ultralytics/cfg/datasets/DOTAv1.5.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DOTA 1.5 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.5.yaml
# parent
# ├── ultralytics
# └── datasets
# └── dota1.5 ← downloads here (2GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/DOTAv1.5
# dataset root dir
train
:
images/train
# train images (relative to 'path') 1411 images
val
:
images/val
# val images (relative to 'path') 458 images
test
:
images/test
# test images (optional) 937 images
# Classes for DOTA 1.5
names
:
0
:
plane
1
:
ship
2
:
storage tank
3
:
baseball diamond
4
:
tennis court
5
:
basketball court
6
:
ground track field
7
:
harbor
8
:
bridge
9
:
large vehicle
10
:
small vehicle
11
:
helicopter
12
:
roundabout
13
:
soccer ball field
14
:
swimming pool
15
:
container crane
# Download script/URL (optional)
download
:
https://github.com/ultralytics/assets/releases/download/v0.0.0/DOTAv1.5.zip
ultralytics/cfg/datasets/DOTAv1.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DOTA 1.0 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.yaml
# parent
# ├── ultralytics
# └── datasets
# └── dota1 ← downloads here (2GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/DOTAv1
# dataset root dir
train
:
images/train
# train images (relative to 'path') 1411 images
val
:
images/val
# val images (relative to 'path') 458 images
test
:
images/test
# test images (optional) 937 images
# Classes for DOTA 1.0
names
:
0
:
plane
1
:
ship
2
:
storage tank
3
:
baseball diamond
4
:
tennis court
5
:
basketball court
6
:
ground track field
7
:
harbor
8
:
bridge
9
:
large vehicle
10
:
small vehicle
11
:
helicopter
12
:
roundabout
13
:
soccer ball field
14
:
swimming pool
# Download script/URL (optional)
download
:
https://github.com/ultralytics/assets/releases/download/v0.0.0/DOTAv1.zip
ultralytics/cfg/datasets/GlobalWheat2020.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Global Wheat 2020 dataset https://www.global-wheat.com/ by University of Saskatchewan
# Documentation: https://docs.ultralytics.com/datasets/detect/globalwheat2020/
# Example usage: yolo train data=GlobalWheat2020.yaml
# parent
# ├── ultralytics
# └── datasets
# └── GlobalWheat2020 ← downloads here (7.0 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/GlobalWheat2020
# dataset root dir
train
:
# train images (relative to 'path') 3422 images
-
images/arvalis_1
-
images/arvalis_2
-
images/arvalis_3
-
images/ethz_1
-
images/rres_1
-
images/inrae_1
-
images/usask_1
val
:
# val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
-
images/ethz_1
test
:
# test images (optional) 1276 images
-
images/utokyo_1
-
images/utokyo_2
-
images/nau_1
-
images/uq_1
# Classes
names
:
0
:
wheat_head
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download
:
|
from ultralytics.utils.downloads import download
from pathlib import Path
# Download
dir = Path(yaml['path']) # dataset root dir
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
'https://github.com/ultralytics/assets/releases/download/v0.0.0/GlobalWheat2020_labels.zip']
download(urls, dir=dir)
# Make Directories
for p in 'annotations', 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
# Move
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
(dir / 'global-wheat-codalab-official' / p).rename(dir / 'images' / p) # move to /images
f = (dir / 'global-wheat-codalab-official' / p).with_suffix('.json') # json file
if f.exists():
f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
ultralytics/cfg/datasets/ImageNet.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
# Documentation: https://docs.ultralytics.com/datasets/classify/imagenet/
# Example usage: yolo train task=classify data=imagenet
# parent
# ├── ultralytics
# └── datasets
# └── imagenet ← downloads here (144 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/imagenet
# dataset root dir
train
:
train
# train images (relative to 'path') 1281167 images
val
:
val
# val images (relative to 'path') 50000 images
test
:
# test images (optional)
# Classes
names
:
0
:
tench
1
:
goldfish
2
:
great white shark
3
:
tiger shark
4
:
hammerhead shark
5
:
electric ray
6
:
stingray
7
:
cock
8
:
hen
9
:
ostrich
10
:
brambling
11
:
goldfinch
12
:
house finch
13
:
junco
14
:
indigo bunting
15
:
American robin
16
:
bulbul
17
:
jay
18
:
magpie
19
:
chickadee
20
:
American dipper
21
:
kite
22
:
bald eagle
23
:
vulture
24
:
great grey owl
25
:
fire salamander
26
:
smooth newt
27
:
newt
28
:
spotted salamander
29
:
axolotl
30
:
American bullfrog
31
:
tree frog
32
:
tailed frog
33
:
loggerhead sea turtle
34
:
leatherback sea turtle
35
:
mud turtle
36
:
terrapin
37
:
box turtle
38
:
banded gecko
39
:
green iguana
40
:
Carolina anole
41
:
desert grassland whiptail lizard
42
:
agama
43
:
frilled-necked lizard
44
:
alligator lizard
45
:
Gila monster
46
:
European green lizard
47
:
chameleon
48
:
Komodo dragon
49
:
Nile crocodile
50
:
American alligator
51
:
triceratops
52
:
worm snake
53
:
ring-necked snake
54
:
eastern hog-nosed snake
55
:
smooth green snake
56
:
kingsnake
57
:
garter snake
58
:
water snake
59
:
vine snake
60
:
night snake
61
:
boa constrictor
62
:
African rock python
63
:
Indian cobra
64
:
green mamba
65
:
sea snake
66
:
Saharan horned viper
67
:
eastern diamondback rattlesnake
68
:
sidewinder
69
:
trilobite
70
:
harvestman
71
:
scorpion
72
:
yellow garden spider
73
:
barn spider
74
:
European garden spider
75
:
southern black widow
76
:
tarantula
77
:
wolf spider
78
:
tick
79
:
centipede
80
:
black grouse
81
:
ptarmigan
82
:
ruffed grouse
83
:
prairie grouse
84
:
peacock
85
:
quail
86
:
partridge
87
:
grey parrot
88
:
macaw
89
:
sulphur-crested cockatoo
90
:
lorikeet
91
:
coucal
92
:
bee eater
93
:
hornbill
94
:
hummingbird
95
:
jacamar
96
:
toucan
97
:
duck
98
:
red-breasted merganser
99
:
goose
100
:
black swan
101
:
tusker
102
:
echidna
103
:
platypus
104
:
wallaby
105
:
koala
106
:
wombat
107
:
jellyfish
108
:
sea anemone
109
:
brain coral
110
:
flatworm
111
:
nematode
112
:
conch
113
:
snail
114
:
slug
115
:
sea slug
116
:
chiton
117
:
chambered nautilus
118
:
Dungeness crab
119
:
rock crab
120
:
fiddler crab
121
:
red king crab
122
:
American lobster
123
:
spiny lobster
124
:
crayfish
125
:
hermit crab
126
:
isopod
127
:
white stork
128
:
black stork
129
:
spoonbill
130
:
flamingo
131
:
little blue heron
132
:
great egret
133
:
bittern
134
:
crane (bird)
135
:
limpkin
136
:
common gallinule
137
:
American coot
138
:
bustard
139
:
ruddy turnstone
140
:
dunlin
141
:
common redshank
142
:
dowitcher
143
:
oystercatcher
144
:
pelican
145
:
king penguin
146
:
albatross
147
:
grey whale
148
:
killer whale
149
:
dugong
150
:
sea lion
151
:
Chihuahua
152
:
Japanese Chin
153
:
Maltese
154
:
Pekingese
155
:
Shih Tzu
156
:
King Charles Spaniel
157
:
Papillon
158
:
toy terrier
159
:
Rhodesian Ridgeback
160
:
Afghan Hound
161
:
Basset Hound
162
:
Beagle
163
:
Bloodhound
164
:
Bluetick Coonhound
165
:
Black and Tan Coonhound
166
:
Treeing Walker Coonhound
167
:
English foxhound
168
:
Redbone Coonhound
169
:
borzoi
170
:
Irish Wolfhound
171
:
Italian Greyhound
172
:
Whippet
173
:
Ibizan Hound
174
:
Norwegian Elkhound
175
:
Otterhound
176
:
Saluki
177
:
Scottish Deerhound
178
:
Weimaraner
179
:
Staffordshire Bull Terrier
180
:
American Staffordshire Terrier
181
:
Bedlington Terrier
182
:
Border Terrier
183
:
Kerry Blue Terrier
184
:
Irish Terrier
185
:
Norfolk Terrier
186
:
Norwich Terrier
187
:
Yorkshire Terrier
188
:
Wire Fox Terrier
189
:
Lakeland Terrier
190
:
Sealyham Terrier
191
:
Airedale Terrier
192
:
Cairn Terrier
193
:
Australian Terrier
194
:
Dandie Dinmont Terrier
195
:
Boston Terrier
196
:
Miniature Schnauzer
197
:
Giant Schnauzer
198
:
Standard Schnauzer
199
:
Scottish Terrier
200
:
Tibetan Terrier
201
:
Australian Silky Terrier
202
:
Soft-coated Wheaten Terrier
203
:
West Highland White Terrier
204
:
Lhasa Apso
205
:
Flat-Coated Retriever
206
:
Curly-coated Retriever
207
:
Golden Retriever
208
:
Labrador Retriever
209
:
Chesapeake Bay Retriever
210
:
German Shorthaired Pointer
211
:
Vizsla
212
:
English Setter
213
:
Irish Setter
214
:
Gordon Setter
215
:
Brittany
216
:
Clumber Spaniel
217
:
English Springer Spaniel
218
:
Welsh Springer Spaniel
219
:
Cocker Spaniels
220
:
Sussex Spaniel
221
:
Irish Water Spaniel
222
:
Kuvasz
223
:
Schipperke
224
:
Groenendael
225
:
Malinois
226
:
Briard
227
:
Australian Kelpie
228
:
Komondor
229
:
Old English Sheepdog
230
:
Shetland Sheepdog
231
:
collie
232
:
Border Collie
233
:
Bouvier des Flandres
234
:
Rottweiler
235
:
German Shepherd Dog
236
:
Dobermann
237
:
Miniature Pinscher
238
:
Greater Swiss Mountain Dog
239
:
Bernese Mountain Dog
240
:
Appenzeller Sennenhund
241
:
Entlebucher Sennenhund
242
:
Boxer
243
:
Bullmastiff
244
:
Tibetan Mastiff
245
:
French Bulldog
246
:
Great Dane
247
:
St. Bernard
248
:
husky
249
:
Alaskan Malamute
250
:
Siberian Husky
251
:
Dalmatian
252
:
Affenpinscher
253
:
Basenji
254
:
pug
255
:
Leonberger
256
:
Newfoundland
257
:
Pyrenean Mountain Dog
258
:
Samoyed
259
:
Pomeranian
260
:
Chow Chow
261
:
Keeshond
262
:
Griffon Bruxellois
263
:
Pembroke Welsh Corgi
264
:
Cardigan Welsh Corgi
265
:
Toy Poodle
266
:
Miniature Poodle
267
:
Standard Poodle
268
:
Mexican hairless dog
269
:
grey wolf
270
:
Alaskan tundra wolf
271
:
red wolf
272
:
coyote
273
:
dingo
274
:
dhole
275
:
African wild dog
276
:
hyena
277
:
red fox
278
:
kit fox
279
:
Arctic fox
280
:
grey fox
281
:
tabby cat
282
:
tiger cat
283
:
Persian cat
284
:
Siamese cat
285
:
Egyptian Mau
286
:
cougar
287
:
lynx
288
:
leopard
289
:
snow leopard
290
:
jaguar
291
:
lion
292
:
tiger
293
:
cheetah
294
:
brown bear
295
:
American black bear
296
:
polar bear
297
:
sloth bear
298
:
mongoose
299
:
meerkat
300
:
tiger beetle
301
:
ladybug
302
:
ground beetle
303
:
longhorn beetle
304
:
leaf beetle
305
:
dung beetle
306
:
rhinoceros beetle
307
:
weevil
308
:
fly
309
:
bee
310
:
ant
311
:
grasshopper
312
:
cricket
313
:
stick insect
314
:
cockroach
315
:
mantis
316
:
cicada
317
:
leafhopper
318
:
lacewing
319
:
dragonfly
320
:
damselfly
321
:
red admiral
322
:
ringlet
323
:
monarch butterfly
324
:
small white
325
:
sulphur butterfly
326
:
gossamer-winged butterfly
327
:
starfish
328
:
sea urchin
329
:
sea cucumber
330
:
cottontail rabbit
331
:
hare
332
:
Angora rabbit
333
:
hamster
334
:
porcupine
335
:
fox squirrel
336
:
marmot
337
:
beaver
338
:
guinea pig
339
:
common sorrel
340
:
zebra
341
:
pig
342
:
wild boar
343
:
warthog
344
:
hippopotamus
345
:
ox
346
:
water buffalo
347
:
bison
348
:
ram
349
:
bighorn sheep
350
:
Alpine ibex
351
:
hartebeest
352
:
impala
353
:
gazelle
354
:
dromedary
355
:
llama
356
:
weasel
357
:
mink
358
:
European polecat
359
:
black-footed ferret
360
:
otter
361
:
skunk
362
:
badger
363
:
armadillo
364
:
three-toed sloth
365
:
orangutan
366
:
gorilla
367
:
chimpanzee
368
:
gibbon
369
:
siamang
370
:
guenon
371
:
patas monkey
372
:
baboon
373
:
macaque
374
:
langur
375
:
black-and-white colobus
376
:
proboscis monkey
377
:
marmoset
378
:
white-headed capuchin
379
:
howler monkey
380
:
titi
381
:
Geoffroy's spider monkey
382
:
common squirrel monkey
383
:
ring-tailed lemur
384
:
indri
385
:
Asian elephant
386
:
African bush elephant
387
:
red panda
388
:
giant panda
389
:
snoek
390
:
eel
391
:
coho salmon
392
:
rock beauty
393
:
clownfish
394
:
sturgeon
395
:
garfish
396
:
lionfish
397
:
pufferfish
398
:
abacus
399
:
abaya
400
:
academic gown
401
:
accordion
402
:
acoustic guitar
403
:
aircraft carrier
404
:
airliner
405
:
airship
406
:
altar
407
:
ambulance
408
:
amphibious vehicle
409
:
analog clock
410
:
apiary
411
:
apron
412
:
waste container
413
:
assault rifle
414
:
backpack
415
:
bakery
416
:
balance beam
417
:
balloon
418
:
ballpoint pen
419
:
Band-Aid
420
:
banjo
421
:
baluster
422
:
barbell
423
:
barber chair
424
:
barbershop
425
:
barn
426
:
barometer
427
:
barrel
428
:
wheelbarrow
429
:
baseball
430
:
basketball
431
:
bassinet
432
:
bassoon
433
:
swimming cap
434
:
bath towel
435
:
bathtub
436
:
station wagon
437
:
lighthouse
438
:
beaker
439
:
military cap
440
:
beer bottle
441
:
beer glass
442
:
bell-cot
443
:
bib
444
:
tandem bicycle
445
:
bikini
446
:
ring binder
447
:
binoculars
448
:
birdhouse
449
:
boathouse
450
:
bobsleigh
451
:
bolo tie
452
:
poke bonnet
453
:
bookcase
454
:
bookstore
455
:
bottle cap
456
:
bow
457
:
bow tie
458
:
brass
459
:
bra
460
:
breakwater
461
:
breastplate
462
:
broom
463
:
bucket
464
:
buckle
465
:
bulletproof vest
466
:
high-speed train
467
:
butcher shop
468
:
taxicab
469
:
cauldron
470
:
candle
471
:
cannon
472
:
canoe
473
:
can opener
474
:
cardigan
475
:
car mirror
476
:
carousel
477
:
tool kit
478
:
carton
479
:
car wheel
480
:
automated teller machine
481
:
cassette
482
:
cassette player
483
:
castle
484
:
catamaran
485
:
CD player
486
:
cello
487
:
mobile phone
488
:
chain
489
:
chain-link fence
490
:
chain mail
491
:
chainsaw
492
:
chest
493
:
chiffonier
494
:
chime
495
:
china cabinet
496
:
Christmas stocking
497
:
church
498
:
movie theater
499
:
cleaver
500
:
cliff dwelling
501
:
cloak
502
:
clogs
503
:
cocktail shaker
504
:
coffee mug
505
:
coffeemaker
506
:
coil
507
:
combination lock
508
:
computer keyboard
509
:
confectionery store
510
:
container ship
511
:
convertible
512
:
corkscrew
513
:
cornet
514
:
cowboy boot
515
:
cowboy hat
516
:
cradle
517
:
crane (machine)
518
:
crash helmet
519
:
crate
520
:
infant bed
521
:
Crock Pot
522
:
croquet ball
523
:
crutch
524
:
cuirass
525
:
dam
526
:
desk
527
:
desktop computer
528
:
rotary dial telephone
529
:
diaper
530
:
digital clock
531
:
digital watch
532
:
dining table
533
:
dishcloth
534
:
dishwasher
535
:
disc brake
536
:
dock
537
:
dog sled
538
:
dome
539
:
doormat
540
:
drilling rig
541
:
drum
542
:
drumstick
543
:
dumbbell
544
:
Dutch oven
545
:
electric fan
546
:
electric guitar
547
:
electric locomotive
548
:
entertainment center
549
:
envelope
550
:
espresso machine
551
:
face powder
552
:
feather boa
553
:
filing cabinet
554
:
fireboat
555
:
fire engine
556
:
fire screen sheet
557
:
flagpole
558
:
flute
559
:
folding chair
560
:
football helmet
561
:
forklift
562
:
fountain
563
:
fountain pen
564
:
four-poster bed
565
:
freight car
566
:
French horn
567
:
frying pan
568
:
fur coat
569
:
garbage truck
570
:
gas mask
571
:
gas pump
572
:
goblet
573
:
go-kart
574
:
golf ball
575
:
golf cart
576
:
gondola
577
:
gong
578
:
gown
579
:
grand piano
580
:
greenhouse
581
:
grille
582
:
grocery store
583
:
guillotine
584
:
barrette
585
:
hair spray
586
:
half-track
587
:
hammer
588
:
hamper
589
:
hair dryer
590
:
hand-held computer
591
:
handkerchief
592
:
hard disk drive
593
:
harmonica
594
:
harp
595
:
harvester
596
:
hatchet
597
:
holster
598
:
home theater
599
:
honeycomb
600
:
hook
601
:
hoop skirt
602
:
horizontal bar
603
:
horse-drawn vehicle
604
:
hourglass
605
:
iPod
606
:
clothes iron
607
:
jack-o'-lantern
608
:
jeans
609
:
jeep
610
:
T-shirt
611
:
jigsaw puzzle
612
:
pulled rickshaw
613
:
joystick
614
:
kimono
615
:
knee pad
616
:
knot
617
:
lab coat
618
:
ladle
619
:
lampshade
620
:
laptop computer
621
:
lawn mower
622
:
lens cap
623
:
paper knife
624
:
library
625
:
lifeboat
626
:
lighter
627
:
limousine
628
:
ocean liner
629
:
lipstick
630
:
slip-on shoe
631
:
lotion
632
:
speaker
633
:
loupe
634
:
sawmill
635
:
magnetic compass
636
:
mail bag
637
:
mailbox
638
:
tights
639
:
tank suit
640
:
manhole cover
641
:
maraca
642
:
marimba
643
:
mask
644
:
match
645
:
maypole
646
:
maze
647
:
measuring cup
648
:
medicine chest
649
:
megalith
650
:
microphone
651
:
microwave oven
652
:
military uniform
653
:
milk can
654
:
minibus
655
:
miniskirt
656
:
minivan
657
:
missile
658
:
mitten
659
:
mixing bowl
660
:
mobile home
661
:
Model T
662
:
modem
663
:
monastery
664
:
monitor
665
:
moped
666
:
mortar
667
:
square academic cap
668
:
mosque
669
:
mosquito net
670
:
scooter
671
:
mountain bike
672
:
tent
673
:
computer mouse
674
:
mousetrap
675
:
moving van
676
:
muzzle
677
:
nail
678
:
neck brace
679
:
necklace
680
:
nipple
681
:
notebook computer
682
:
obelisk
683
:
oboe
684
:
ocarina
685
:
odometer
686
:
oil filter
687
:
organ
688
:
oscilloscope
689
:
overskirt
690
:
bullock cart
691
:
oxygen mask
692
:
packet
693
:
paddle
694
:
paddle wheel
695
:
padlock
696
:
paintbrush
697
:
pajamas
698
:
palace
699
:
pan flute
700
:
paper towel
701
:
parachute
702
:
parallel bars
703
:
park bench
704
:
parking meter
705
:
passenger car
706
:
patio
707
:
payphone
708
:
pedestal
709
:
pencil case
710
:
pencil sharpener
711
:
perfume
712
:
Petri dish
713
:
photocopier
714
:
plectrum
715
:
Pickelhaube
716
:
picket fence
717
:
pickup truck
718
:
pier
719
:
piggy bank
720
:
pill bottle
721
:
pillow
722
:
ping-pong ball
723
:
pinwheel
724
:
pirate ship
725
:
pitcher
726
:
hand plane
727
:
planetarium
728
:
plastic bag
729
:
plate rack
730
:
plow
731
:
plunger
732
:
Polaroid camera
733
:
pole
734
:
police van
735
:
poncho
736
:
billiard table
737
:
soda bottle
738
:
pot
739
:
potter's wheel
740
:
power drill
741
:
prayer rug
742
:
printer
743
:
prison
744
:
projectile
745
:
projector
746
:
hockey puck
747
:
punching bag
748
:
purse
749
:
quill
750
:
quilt
751
:
race car
752
:
racket
753
:
radiator
754
:
radio
755
:
radio telescope
756
:
rain barrel
757
:
recreational vehicle
758
:
reel
759
:
reflex camera
760
:
refrigerator
761
:
remote control
762
:
restaurant
763
:
revolver
764
:
rifle
765
:
rocking chair
766
:
rotisserie
767
:
eraser
768
:
rugby ball
769
:
ruler
770
:
running shoe
771
:
safe
772
:
safety pin
773
:
salt shaker
774
:
sandal
775
:
sarong
776
:
saxophone
777
:
scabbard
778
:
weighing scale
779
:
school bus
780
:
schooner
781
:
scoreboard
782
:
CRT screen
783
:
screw
784
:
screwdriver
785
:
seat belt
786
:
sewing machine
787
:
shield
788
:
shoe store
789
:
shoji
790
:
shopping basket
791
:
shopping cart
792
:
shovel
793
:
shower cap
794
:
shower curtain
795
:
ski
796
:
ski mask
797
:
sleeping bag
798
:
slide rule
799
:
sliding door
800
:
slot machine
801
:
snorkel
802
:
snowmobile
803
:
snowplow
804
:
soap dispenser
805
:
soccer ball
806
:
sock
807
:
solar thermal collector
808
:
sombrero
809
:
soup bowl
810
:
space bar
811
:
space heater
812
:
space shuttle
813
:
spatula
814
:
motorboat
815
:
spider web
816
:
spindle
817
:
sports car
818
:
spotlight
819
:
stage
820
:
steam locomotive
821
:
through arch bridge
822
:
steel drum
823
:
stethoscope
824
:
scarf
825
:
stone wall
826
:
stopwatch
827
:
stove
828
:
strainer
829
:
tram
830
:
stretcher
831
:
couch
832
:
stupa
833
:
submarine
834
:
suit
835
:
sundial
836
:
sunglass
837
:
sunglasses
838
:
sunscreen
839
:
suspension bridge
840
:
mop
841
:
sweatshirt
842
:
swimsuit
843
:
swing
844
:
switch
845
:
syringe
846
:
table lamp
847
:
tank
848
:
tape player
849
:
teapot
850
:
teddy bear
851
:
television
852
:
tennis ball
853
:
thatched roof
854
:
front curtain
855
:
thimble
856
:
threshing machine
857
:
throne
858
:
tile roof
859
:
toaster
860
:
tobacco shop
861
:
toilet seat
862
:
torch
863
:
totem pole
864
:
tow truck
865
:
toy store
866
:
tractor
867
:
semi-trailer truck
868
:
tray
869
:
trench coat
870
:
tricycle
871
:
trimaran
872
:
tripod
873
:
triumphal arch
874
:
trolleybus
875
:
trombone
876
:
tub
877
:
turnstile
878
:
typewriter keyboard
879
:
umbrella
880
:
unicycle
881
:
upright piano
882
:
vacuum cleaner
883
:
vase
884
:
vault
885
:
velvet
886
:
vending machine
887
:
vestment
888
:
viaduct
889
:
violin
890
:
volleyball
891
:
waffle iron
892
:
wall clock
893
:
wallet
894
:
wardrobe
895
:
military aircraft
896
:
sink
897
:
washing machine
898
:
water bottle
899
:
water jug
900
:
water tower
901
:
whiskey jug
902
:
whistle
903
:
wig
904
:
window screen
905
:
window shade
906
:
Windsor tie
907
:
wine bottle
908
:
wing
909
:
wok
910
:
wooden spoon
911
:
wool
912
:
split-rail fence
913
:
shipwreck
914
:
yawl
915
:
yurt
916
:
website
917
:
comic book
918
:
crossword
919
:
traffic sign
920
:
traffic light
921
:
dust jacket
922
:
menu
923
:
plate
924
:
guacamole
925
:
consomme
926
:
hot pot
927
:
trifle
928
:
ice cream
929
:
ice pop
930
:
baguette
931
:
bagel
932
:
pretzel
933
:
cheeseburger
934
:
hot dog
935
:
mashed potato
936
:
cabbage
937
:
broccoli
938
:
cauliflower
939
:
zucchini
940
:
spaghetti squash
941
:
acorn squash
942
:
butternut squash
943
:
cucumber
944
:
artichoke
945
:
bell pepper
946
:
cardoon
947
:
mushroom
948
:
Granny Smith
949
:
strawberry
950
:
orange
951
:
lemon
952
:
fig
953
:
pineapple
954
:
banana
955
:
jackfruit
956
:
custard apple
957
:
pomegranate
958
:
hay
959
:
carbonara
960
:
chocolate syrup
961
:
dough
962
:
meatloaf
963
:
pizza
964
:
pot pie
965
:
burrito
966
:
red wine
967
:
espresso
968
:
cup
969
:
eggnog
970
:
alp
971
:
bubble
972
:
cliff
973
:
coral reef
974
:
geyser
975
:
lakeshore
976
:
promontory
977
:
shoal
978
:
seashore
979
:
valley
980
:
volcano
981
:
baseball player
982
:
bridegroom
983
:
scuba diver
984
:
rapeseed
985
:
daisy
986
:
yellow lady's slipper
987
:
corn
988
:
acorn
989
:
rose hip
990
:
horse chestnut seed
991
:
coral fungus
992
:
agaric
993
:
gyromitra
994
:
stinkhorn mushroom
995
:
earth star
996
:
hen-of-the-woods
997
:
bolete
998
:
ear
999
:
toilet paper
# Imagenet class codes to human-readable names
map
:
n01440764
:
tench
n01443537
:
goldfish
n01484850
:
great_white_shark
n01491361
:
tiger_shark
n01494475
:
hammerhead
n01496331
:
electric_ray
n01498041
:
stingray
n01514668
:
cock
n01514859
:
hen
n01518878
:
ostrich
n01530575
:
brambling
n01531178
:
goldfinch
n01532829
:
house_finch
n01534433
:
junco
n01537544
:
indigo_bunting
n01558993
:
robin
n01560419
:
bulbul
n01580077
:
jay
n01582220
:
magpie
n01592084
:
chickadee
n01601694
:
water_ouzel
n01608432
:
kite
n01614925
:
bald_eagle
n01616318
:
vulture
n01622779
:
great_grey_owl
n01629819
:
European_fire_salamander
n01630670
:
common_newt
n01631663
:
eft
n01632458
:
spotted_salamander
n01632777
:
axolotl
n01641577
:
bullfrog
n01644373
:
tree_frog
n01644900
:
tailed_frog
n01664065
:
loggerhead
n01665541
:
leatherback_turtle
n01667114
:
mud_turtle
n01667778
:
terrapin
n01669191
:
box_turtle
n01675722
:
banded_gecko
n01677366
:
common_iguana
n01682714
:
American_chameleon
n01685808
:
whiptail
n01687978
:
agama
n01688243
:
frilled_lizard
n01689811
:
alligator_lizard
n01692333
:
Gila_monster
n01693334
:
green_lizard
n01694178
:
African_chameleon
n01695060
:
Komodo_dragon
n01697457
:
African_crocodile
n01698640
:
American_alligator
n01704323
:
triceratops
n01728572
:
thunder_snake
n01728920
:
ringneck_snake
n01729322
:
hognose_snake
n01729977
:
green_snake
n01734418
:
king_snake
n01735189
:
garter_snake
n01737021
:
water_snake
n01739381
:
vine_snake
n01740131
:
night_snake
n01742172
:
boa_constrictor
n01744401
:
rock_python
n01748264
:
Indian_cobra
n01749939
:
green_mamba
n01751748
:
sea_snake
n01753488
:
horned_viper
n01755581
:
diamondback
n01756291
:
sidewinder
n01768244
:
trilobite
n01770081
:
harvestman
n01770393
:
scorpion
n01773157
:
black_and_gold_garden_spider
n01773549
:
barn_spider
n01773797
:
garden_spider
n01774384
:
black_widow
n01774750
:
tarantula
n01775062
:
wolf_spider
n01776313
:
tick
n01784675
:
centipede
n01795545
:
black_grouse
n01796340
:
ptarmigan
n01797886
:
ruffed_grouse
n01798484
:
prairie_chicken
n01806143
:
peacock
n01806567
:
quail
n01807496
:
partridge
n01817953
:
African_grey
n01818515
:
macaw
n01819313
:
sulphur-crested_cockatoo
n01820546
:
lorikeet
n01824575
:
coucal
n01828970
:
bee_eater
n01829413
:
hornbill
n01833805
:
hummingbird
n01843065
:
jacamar
n01843383
:
toucan
n01847000
:
drake
n01855032
:
red-breasted_merganser
n01855672
:
goose
n01860187
:
black_swan
n01871265
:
tusker
n01872401
:
echidna
n01873310
:
platypus
n01877812
:
wallaby
n01882714
:
koala
n01883070
:
wombat
n01910747
:
jellyfish
n01914609
:
sea_anemone
n01917289
:
brain_coral
n01924916
:
flatworm
n01930112
:
nematode
n01943899
:
conch
n01944390
:
snail
n01945685
:
slug
n01950731
:
sea_slug
n01955084
:
chiton
n01968897
:
chambered_nautilus
n01978287
:
Dungeness_crab
n01978455
:
rock_crab
n01980166
:
fiddler_crab
n01981276
:
king_crab
n01983481
:
American_lobster
n01984695
:
spiny_lobster
n01985128
:
crayfish
n01986214
:
hermit_crab
n01990800
:
isopod
n02002556
:
white_stork
n02002724
:
black_stork
n02006656
:
spoonbill
n02007558
:
flamingo
n02009229
:
little_blue_heron
n02009912
:
American_egret
n02011460
:
bittern
n02012849
:
crane_(bird)
n02013706
:
limpkin
n02017213
:
European_gallinule
n02018207
:
American_coot
n02018795
:
bustard
n02025239
:
ruddy_turnstone
n02027492
:
red-backed_sandpiper
n02028035
:
redshank
n02033041
:
dowitcher
n02037110
:
oystercatcher
n02051845
:
pelican
n02056570
:
king_penguin
n02058221
:
albatross
n02066245
:
grey_whale
n02071294
:
killer_whale
n02074367
:
dugong
n02077923
:
sea_lion
n02085620
:
Chihuahua
n02085782
:
Japanese_spaniel
n02085936
:
Maltese_dog
n02086079
:
Pekinese
n02086240
:
Shih-Tzu
n02086646
:
Blenheim_spaniel
n02086910
:
papillon
n02087046
:
toy_terrier
n02087394
:
Rhodesian_ridgeback
n02088094
:
Afghan_hound
n02088238
:
basset
n02088364
:
beagle
n02088466
:
bloodhound
n02088632
:
bluetick
n02089078
:
black-and-tan_coonhound
n02089867
:
Walker_hound
n02089973
:
English_foxhound
n02090379
:
redbone
n02090622
:
borzoi
n02090721
:
Irish_wolfhound
n02091032
:
Italian_greyhound
n02091134
:
whippet
n02091244
:
Ibizan_hound
n02091467
:
Norwegian_elkhound
n02091635
:
otterhound
n02091831
:
Saluki
n02092002
:
Scottish_deerhound
n02092339
:
Weimaraner
n02093256
:
Staffordshire_bullterrier
n02093428
:
American_Staffordshire_terrier
n02093647
:
Bedlington_terrier
n02093754
:
Border_terrier
n02093859
:
Kerry_blue_terrier
n02093991
:
Irish_terrier
n02094114
:
Norfolk_terrier
n02094258
:
Norwich_terrier
n02094433
:
Yorkshire_terrier
n02095314
:
wire-haired_fox_terrier
n02095570
:
Lakeland_terrier
n02095889
:
Sealyham_terrier
n02096051
:
Airedale
n02096177
:
cairn
n02096294
:
Australian_terrier
n02096437
:
Dandie_Dinmont
n02096585
:
Boston_bull
n02097047
:
miniature_schnauzer
n02097130
:
giant_schnauzer
n02097209
:
standard_schnauzer
n02097298
:
Scotch_terrier
n02097474
:
Tibetan_terrier
n02097658
:
silky_terrier
n02098105
:
soft-coated_wheaten_terrier
n02098286
:
West_Highland_white_terrier
n02098413
:
Lhasa
n02099267
:
flat-coated_retriever
n02099429
:
curly-coated_retriever
n02099601
:
golden_retriever
n02099712
:
Labrador_retriever
n02099849
:
Chesapeake_Bay_retriever
n02100236
:
German_short-haired_pointer
n02100583
:
vizsla
n02100735
:
English_setter
n02100877
:
Irish_setter
n02101006
:
Gordon_setter
n02101388
:
Brittany_spaniel
n02101556
:
clumber
n02102040
:
English_springer
n02102177
:
Welsh_springer_spaniel
n02102318
:
cocker_spaniel
n02102480
:
Sussex_spaniel
n02102973
:
Irish_water_spaniel
n02104029
:
kuvasz
n02104365
:
schipperke
n02105056
:
groenendael
n02105162
:
malinois
n02105251
:
briard
n02105412
:
kelpie
n02105505
:
komondor
n02105641
:
Old_English_sheepdog
n02105855
:
Shetland_sheepdog
n02106030
:
collie
n02106166
:
Border_collie
n02106382
:
Bouvier_des_Flandres
n02106550
:
Rottweiler
n02106662
:
German_shepherd
n02107142
:
Doberman
n02107312
:
miniature_pinscher
n02107574
:
Greater_Swiss_Mountain_dog
n02107683
:
Bernese_mountain_dog
n02107908
:
Appenzeller
n02108000
:
EntleBucher
n02108089
:
boxer
n02108422
:
bull_mastiff
n02108551
:
Tibetan_mastiff
n02108915
:
French_bulldog
n02109047
:
Great_Dane
n02109525
:
Saint_Bernard
n02109961
:
Eskimo_dog
n02110063
:
malamute
n02110185
:
Siberian_husky
n02110341
:
dalmatian
n02110627
:
affenpinscher
n02110806
:
basenji
n02110958
:
pug
n02111129
:
Leonberg
n02111277
:
Newfoundland
n02111500
:
Great_Pyrenees
n02111889
:
Samoyed
n02112018
:
Pomeranian
n02112137
:
chow
n02112350
:
keeshond
n02112706
:
Brabancon_griffon
n02113023
:
Pembroke
n02113186
:
Cardigan
n02113624
:
toy_poodle
n02113712
:
miniature_poodle
n02113799
:
standard_poodle
n02113978
:
Mexican_hairless
n02114367
:
timber_wolf
n02114548
:
white_wolf
n02114712
:
red_wolf
n02114855
:
coyote
n02115641
:
dingo
n02115913
:
dhole
n02116738
:
African_hunting_dog
n02117135
:
hyena
n02119022
:
red_fox
n02119789
:
kit_fox
n02120079
:
Arctic_fox
n02120505
:
grey_fox
n02123045
:
tabby
n02123159
:
tiger_cat
n02123394
:
Persian_cat
n02123597
:
Siamese_cat
n02124075
:
Egyptian_cat
n02125311
:
cougar
n02127052
:
lynx
n02128385
:
leopard
n02128757
:
snow_leopard
n02128925
:
jaguar
n02129165
:
lion
n02129604
:
tiger
n02130308
:
cheetah
n02132136
:
brown_bear
n02133161
:
American_black_bear
n02134084
:
ice_bear
n02134418
:
sloth_bear
n02137549
:
mongoose
n02138441
:
meerkat
n02165105
:
tiger_beetle
n02165456
:
ladybug
n02167151
:
ground_beetle
n02168699
:
long-horned_beetle
n02169497
:
leaf_beetle
n02172182
:
dung_beetle
n02174001
:
rhinoceros_beetle
n02177972
:
weevil
n02190166
:
fly
n02206856
:
bee
n02219486
:
ant
n02226429
:
grasshopper
n02229544
:
cricket
n02231487
:
walking_stick
n02233338
:
cockroach
n02236044
:
mantis
n02256656
:
cicada
n02259212
:
leafhopper
n02264363
:
lacewing
n02268443
:
dragonfly
n02268853
:
damselfly
n02276258
:
admiral
n02277742
:
ringlet
n02279972
:
monarch
n02280649
:
cabbage_butterfly
n02281406
:
sulphur_butterfly
n02281787
:
lycaenid
n02317335
:
starfish
n02319095
:
sea_urchin
n02321529
:
sea_cucumber
n02325366
:
wood_rabbit
n02326432
:
hare
n02328150
:
Angora
n02342885
:
hamster
n02346627
:
porcupine
n02356798
:
fox_squirrel
n02361337
:
marmot
n02363005
:
beaver
n02364673
:
guinea_pig
n02389026
:
sorrel
n02391049
:
zebra
n02395406
:
hog
n02396427
:
wild_boar
n02397096
:
warthog
n02398521
:
hippopotamus
n02403003
:
ox
n02408429
:
water_buffalo
n02410509
:
bison
n02412080
:
ram
n02415577
:
bighorn
n02417914
:
ibex
n02422106
:
hartebeest
n02422699
:
impala
n02423022
:
gazelle
n02437312
:
Arabian_camel
n02437616
:
llama
n02441942
:
weasel
n02442845
:
mink
n02443114
:
polecat
n02443484
:
black-footed_ferret
n02444819
:
otter
n02445715
:
skunk
n02447366
:
badger
n02454379
:
armadillo
n02457408
:
three-toed_sloth
n02480495
:
orangutan
n02480855
:
gorilla
n02481823
:
chimpanzee
n02483362
:
gibbon
n02483708
:
siamang
n02484975
:
guenon
n02486261
:
patas
n02486410
:
baboon
n02487347
:
macaque
n02488291
:
langur
n02488702
:
colobus
n02489166
:
proboscis_monkey
n02490219
:
marmoset
n02492035
:
capuchin
n02492660
:
howler_monkey
n02493509
:
titi
n02493793
:
spider_monkey
n02494079
:
squirrel_monkey
n02497673
:
Madagascar_cat
n02500267
:
indri
n02504013
:
Indian_elephant
n02504458
:
African_elephant
n02509815
:
lesser_panda
n02510455
:
giant_panda
n02514041
:
barracouta
n02526121
:
eel
n02536864
:
coho
n02606052
:
rock_beauty
n02607072
:
anemone_fish
n02640242
:
sturgeon
n02641379
:
gar
n02643566
:
lionfish
n02655020
:
puffer
n02666196
:
abacus
n02667093
:
abaya
n02669723
:
academic_gown
n02672831
:
accordion
n02676566
:
acoustic_guitar
n02687172
:
aircraft_carrier
n02690373
:
airliner
n02692877
:
airship
n02699494
:
altar
n02701002
:
ambulance
n02704792
:
amphibian
n02708093
:
analog_clock
n02727426
:
apiary
n02730930
:
apron
n02747177
:
ashcan
n02749479
:
assault_rifle
n02769748
:
backpack
n02776631
:
bakery
n02777292
:
balance_beam
n02782093
:
balloon
n02783161
:
ballpoint
n02786058
:
Band_Aid
n02787622
:
banjo
n02788148
:
bannister
n02790996
:
barbell
n02791124
:
barber_chair
n02791270
:
barbershop
n02793495
:
barn
n02794156
:
barometer
n02795169
:
barrel
n02797295
:
barrow
n02799071
:
baseball
n02802426
:
basketball
n02804414
:
bassinet
n02804610
:
bassoon
n02807133
:
bathing_cap
n02808304
:
bath_towel
n02808440
:
bathtub
n02814533
:
beach_wagon
n02814860
:
beacon
n02815834
:
beaker
n02817516
:
bearskin
n02823428
:
beer_bottle
n02823750
:
beer_glass
n02825657
:
bell_cote
n02834397
:
bib
n02835271
:
bicycle-built-for-two
n02837789
:
bikini
n02840245
:
binder
n02841315
:
binoculars
n02843684
:
birdhouse
n02859443
:
boathouse
n02860847
:
bobsled
n02865351
:
bolo_tie
n02869837
:
bonnet
n02870880
:
bookcase
n02871525
:
bookshop
n02877765
:
bottlecap
n02879718
:
bow
n02883205
:
bow_tie
n02892201
:
brass
n02892767
:
brassiere
n02894605
:
breakwater
n02895154
:
breastplate
n02906734
:
broom
n02909870
:
bucket
n02910353
:
buckle
n02916936
:
bulletproof_vest
n02917067
:
bullet_train
n02927161
:
butcher_shop
n02930766
:
cab
n02939185
:
caldron
n02948072
:
candle
n02950826
:
cannon
n02951358
:
canoe
n02951585
:
can_opener
n02963159
:
cardigan
n02965783
:
car_mirror
n02966193
:
carousel
n02966687
:
carpenter's_kit
n02971356
:
carton
n02974003
:
car_wheel
n02977058
:
cash_machine
n02978881
:
cassette
n02979186
:
cassette_player
n02980441
:
castle
n02981792
:
catamaran
n02988304
:
CD_player
n02992211
:
cello
n02992529
:
cellular_telephone
n02999410
:
chain
n03000134
:
chainlink_fence
n03000247
:
chain_mail
n03000684
:
chain_saw
n03014705
:
chest
n03016953
:
chiffonier
n03017168
:
chime
n03018349
:
china_cabinet
n03026506
:
Christmas_stocking
n03028079
:
church
n03032252
:
cinema
n03041632
:
cleaver
n03042490
:
cliff_dwelling
n03045698
:
cloak
n03047690
:
clog
n03062245
:
cocktail_shaker
n03063599
:
coffee_mug
n03063689
:
coffeepot
n03065424
:
coil
n03075370
:
combination_lock
n03085013
:
computer_keyboard
n03089624
:
confectionery
n03095699
:
container_ship
n03100240
:
convertible
n03109150
:
corkscrew
n03110669
:
cornet
n03124043
:
cowboy_boot
n03124170
:
cowboy_hat
n03125729
:
cradle
n03126707
:
crane_(machine)
n03127747
:
crash_helmet
n03127925
:
crate
n03131574
:
crib
n03133878
:
Crock_Pot
n03134739
:
croquet_ball
n03141823
:
crutch
n03146219
:
cuirass
n03160309
:
dam
n03179701
:
desk
n03180011
:
desktop_computer
n03187595
:
dial_telephone
n03188531
:
diaper
n03196217
:
digital_clock
n03197337
:
digital_watch
n03201208
:
dining_table
n03207743
:
dishrag
n03207941
:
dishwasher
n03208938
:
disk_brake
n03216828
:
dock
n03218198
:
dogsled
n03220513
:
dome
n03223299
:
doormat
n03240683
:
drilling_platform
n03249569
:
drum
n03250847
:
drumstick
n03255030
:
dumbbell
n03259280
:
Dutch_oven
n03271574
:
electric_fan
n03272010
:
electric_guitar
n03272562
:
electric_locomotive
n03290653
:
entertainment_center
n03291819
:
envelope
n03297495
:
espresso_maker
n03314780
:
face_powder
n03325584
:
feather_boa
n03337140
:
file
n03344393
:
fireboat
n03345487
:
fire_engine
n03347037
:
fire_screen
n03355925
:
flagpole
n03372029
:
flute
n03376595
:
folding_chair
n03379051
:
football_helmet
n03384352
:
forklift
n03388043
:
fountain
n03388183
:
fountain_pen
n03388549
:
four-poster
n03393912
:
freight_car
n03394916
:
French_horn
n03400231
:
frying_pan
n03404251
:
fur_coat
n03417042
:
garbage_truck
n03424325
:
gasmask
n03425413
:
gas_pump
n03443371
:
goblet
n03444034
:
go-kart
n03445777
:
golf_ball
n03445924
:
golfcart
n03447447
:
gondola
n03447721
:
gong
n03450230
:
gown
n03452741
:
grand_piano
n03457902
:
greenhouse
n03459775
:
grille
n03461385
:
grocery_store
n03467068
:
guillotine
n03476684
:
hair_slide
n03476991
:
hair_spray
n03478589
:
half_track
n03481172
:
hammer
n03482405
:
hamper
n03483316
:
hand_blower
n03485407
:
hand-held_computer
n03485794
:
handkerchief
n03492542
:
hard_disc
n03494278
:
harmonica
n03495258
:
harp
n03496892
:
harvester
n03498962
:
hatchet
n03527444
:
holster
n03529860
:
home_theater
n03530642
:
honeycomb
n03532672
:
hook
n03534580
:
hoopskirt
n03535780
:
horizontal_bar
n03538406
:
horse_cart
n03544143
:
hourglass
n03584254
:
iPod
n03584829
:
iron
n03590841
:
jack-o'-lantern
n03594734
:
jean
n03594945
:
jeep
n03595614
:
jersey
n03598930
:
jigsaw_puzzle
n03599486
:
jinrikisha
n03602883
:
joystick
n03617480
:
kimono
n03623198
:
knee_pad
n03627232
:
knot
n03630383
:
lab_coat
n03633091
:
ladle
n03637318
:
lampshade
n03642806
:
laptop
n03649909
:
lawn_mower
n03657121
:
lens_cap
n03658185
:
letter_opener
n03661043
:
library
n03662601
:
lifeboat
n03666591
:
lighter
n03670208
:
limousine
n03673027
:
liner
n03676483
:
lipstick
n03680355
:
Loafer
n03690938
:
lotion
n03691459
:
loudspeaker
n03692522
:
loupe
n03697007
:
lumbermill
n03706229
:
magnetic_compass
n03709823
:
mailbag
n03710193
:
mailbox
n03710637
:
maillot_(tights)
n03710721
:
maillot_(tank_suit)
n03717622
:
manhole_cover
n03720891
:
maraca
n03721384
:
marimba
n03724870
:
mask
n03729826
:
matchstick
n03733131
:
maypole
n03733281
:
maze
n03733805
:
measuring_cup
n03742115
:
medicine_chest
n03743016
:
megalith
n03759954
:
microphone
n03761084
:
microwave
n03763968
:
military_uniform
n03764736
:
milk_can
n03769881
:
minibus
n03770439
:
miniskirt
n03770679
:
minivan
n03773504
:
missile
n03775071
:
mitten
n03775546
:
mixing_bowl
n03776460
:
mobile_home
n03777568
:
Model_T
n03777754
:
modem
n03781244
:
monastery
n03782006
:
monitor
n03785016
:
moped
n03786901
:
mortar
n03787032
:
mortarboard
n03788195
:
mosque
n03788365
:
mosquito_net
n03791053
:
motor_scooter
n03792782
:
mountain_bike
n03792972
:
mountain_tent
n03793489
:
mouse
n03794056
:
mousetrap
n03796401
:
moving_van
n03803284
:
muzzle
n03804744
:
nail
n03814639
:
neck_brace
n03814906
:
necklace
n03825788
:
nipple
n03832673
:
notebook
n03837869
:
obelisk
n03838899
:
oboe
n03840681
:
ocarina
n03841143
:
odometer
n03843555
:
oil_filter
n03854065
:
organ
n03857828
:
oscilloscope
n03866082
:
overskirt
n03868242
:
oxcart
n03868863
:
oxygen_mask
n03871628
:
packet
n03873416
:
paddle
n03874293
:
paddlewheel
n03874599
:
padlock
n03876231
:
paintbrush
n03877472
:
pajama
n03877845
:
palace
n03884397
:
panpipe
n03887697
:
paper_towel
n03888257
:
parachute
n03888605
:
parallel_bars
n03891251
:
park_bench
n03891332
:
parking_meter
n03895866
:
passenger_car
n03899768
:
patio
n03902125
:
pay-phone
n03903868
:
pedestal
n03908618
:
pencil_box
n03908714
:
pencil_sharpener
n03916031
:
perfume
n03920288
:
Petri_dish
n03924679
:
photocopier
n03929660
:
pick
n03929855
:
pickelhaube
n03930313
:
picket_fence
n03930630
:
pickup
n03933933
:
pier
n03935335
:
piggy_bank
n03937543
:
pill_bottle
n03938244
:
pillow
n03942813
:
ping-pong_ball
n03944341
:
pinwheel
n03947888
:
pirate
n03950228
:
pitcher
n03954731
:
plane
n03956157
:
planetarium
n03958227
:
plastic_bag
n03961711
:
plate_rack
n03967562
:
plow
n03970156
:
plunger
n03976467
:
Polaroid_camera
n03976657
:
pole
n03977966
:
police_van
n03980874
:
poncho
n03982430
:
pool_table
n03983396
:
pop_bottle
n03991062
:
pot
n03992509
:
potter's_wheel
n03995372
:
power_drill
n03998194
:
prayer_rug
n04004767
:
printer
n04005630
:
prison
n04008634
:
projectile
n04009552
:
projector
n04019541
:
puck
n04023962
:
punching_bag
n04026417
:
purse
n04033901
:
quill
n04033995
:
quilt
n04037443
:
racer
n04039381
:
racket
n04040759
:
radiator
n04041544
:
radio
n04044716
:
radio_telescope
n04049303
:
rain_barrel
n04065272
:
recreational_vehicle
n04067472
:
reel
n04069434
:
reflex_camera
n04070727
:
refrigerator
n04074963
:
remote_control
n04081281
:
restaurant
n04086273
:
revolver
n04090263
:
rifle
n04099969
:
rocking_chair
n04111531
:
rotisserie
n04116512
:
rubber_eraser
n04118538
:
rugby_ball
n04118776
:
rule
n04120489
:
running_shoe
n04125021
:
safe
n04127249
:
safety_pin
n04131690
:
saltshaker
n04133789
:
sandal
n04136333
:
sarong
n04141076
:
sax
n04141327
:
scabbard
n04141975
:
scale
n04146614
:
school_bus
n04147183
:
schooner
n04149813
:
scoreboard
n04152593
:
screen
n04153751
:
screw
n04154565
:
screwdriver
n04162706
:
seat_belt
n04179913
:
sewing_machine
n04192698
:
shield
n04200800
:
shoe_shop
n04201297
:
shoji
n04204238
:
shopping_basket
n04204347
:
shopping_cart
n04208210
:
shovel
n04209133
:
shower_cap
n04209239
:
shower_curtain
n04228054
:
ski
n04229816
:
ski_mask
n04235860
:
sleeping_bag
n04238763
:
slide_rule
n04239074
:
sliding_door
n04243546
:
slot
n04251144
:
snorkel
n04252077
:
snowmobile
n04252225
:
snowplow
n04254120
:
soap_dispenser
n04254680
:
soccer_ball
n04254777
:
sock
n04258138
:
solar_dish
n04259630
:
sombrero
n04263257
:
soup_bowl
n04264628
:
space_bar
n04265275
:
space_heater
n04266014
:
space_shuttle
n04270147
:
spatula
n04273569
:
speedboat
n04275548
:
spider_web
n04277352
:
spindle
n04285008
:
sports_car
n04286575
:
spotlight
n04296562
:
stage
n04310018
:
steam_locomotive
n04311004
:
steel_arch_bridge
n04311174
:
steel_drum
n04317175
:
stethoscope
n04325704
:
stole
n04326547
:
stone_wall
n04328186
:
stopwatch
n04330267
:
stove
n04332243
:
strainer
n04335435
:
streetcar
n04336792
:
stretcher
n04344873
:
studio_couch
n04346328
:
stupa
n04347754
:
submarine
n04350905
:
suit
n04355338
:
sundial
n04355933
:
sunglass
n04356056
:
sunglasses
n04357314
:
sunscreen
n04366367
:
suspension_bridge
n04367480
:
swab
n04370456
:
sweatshirt
n04371430
:
swimming_trunks
n04371774
:
swing
n04372370
:
switch
n04376876
:
syringe
n04380533
:
table_lamp
n04389033
:
tank
n04392985
:
tape_player
n04398044
:
teapot
n04399382
:
teddy
n04404412
:
television
n04409515
:
tennis_ball
n04417672
:
thatch
n04418357
:
theater_curtain
n04423845
:
thimble
n04428191
:
thresher
n04429376
:
throne
n04435653
:
tile_roof
n04442312
:
toaster
n04443257
:
tobacco_shop
n04447861
:
toilet_seat
n04456115
:
torch
n04458633
:
totem_pole
n04461696
:
tow_truck
n04462240
:
toyshop
n04465501
:
tractor
n04467665
:
trailer_truck
n04476259
:
tray
n04479046
:
trench_coat
n04482393
:
tricycle
n04483307
:
trimaran
n04485082
:
tripod
n04486054
:
triumphal_arch
n04487081
:
trolleybus
n04487394
:
trombone
n04493381
:
tub
n04501370
:
turnstile
n04505470
:
typewriter_keyboard
n04507155
:
umbrella
n04509417
:
unicycle
n04515003
:
upright
n04517823
:
vacuum
n04522168
:
vase
n04523525
:
vault
n04525038
:
velvet
n04525305
:
vending_machine
n04532106
:
vestment
n04532670
:
viaduct
n04536866
:
violin
n04540053
:
volleyball
n04542943
:
waffle_iron
n04548280
:
wall_clock
n04548362
:
wallet
n04550184
:
wardrobe
n04552348
:
warplane
n04553703
:
washbasin
n04554684
:
washer
n04557648
:
water_bottle
n04560804
:
water_jug
n04562935
:
water_tower
n04579145
:
whiskey_jug
n04579432
:
whistle
n04584207
:
wig
n04589890
:
window_screen
n04590129
:
window_shade
n04591157
:
Windsor_tie
n04591713
:
wine_bottle
n04592741
:
wing
n04596742
:
wok
n04597913
:
wooden_spoon
n04599235
:
wool
n04604644
:
worm_fence
n04606251
:
wreck
n04612504
:
yawl
n04613696
:
yurt
n06359193
:
web_site
n06596364
:
comic_book
n06785654
:
crossword_puzzle
n06794110
:
street_sign
n06874185
:
traffic_light
n07248320
:
book_jacket
n07565083
:
menu
n07579787
:
plate
n07583066
:
guacamole
n07584110
:
consomme
n07590611
:
hot_pot
n07613480
:
trifle
n07614500
:
ice_cream
n07615774
:
ice_lolly
n07684084
:
French_loaf
n07693725
:
bagel
n07695742
:
pretzel
n07697313
:
cheeseburger
n07697537
:
hotdog
n07711569
:
mashed_potato
n07714571
:
head_cabbage
n07714990
:
broccoli
n07715103
:
cauliflower
n07716358
:
zucchini
n07716906
:
spaghetti_squash
n07717410
:
acorn_squash
n07717556
:
butternut_squash
n07718472
:
cucumber
n07718747
:
artichoke
n07720875
:
bell_pepper
n07730033
:
cardoon
n07734744
:
mushroom
n07742313
:
Granny_Smith
n07745940
:
strawberry
n07747607
:
orange
n07749582
:
lemon
n07753113
:
fig
n07753275
:
pineapple
n07753592
:
banana
n07754684
:
jackfruit
n07760859
:
custard_apple
n07768694
:
pomegranate
n07802026
:
hay
n07831146
:
carbonara
n07836838
:
chocolate_sauce
n07860988
:
dough
n07871810
:
meat_loaf
n07873807
:
pizza
n07875152
:
potpie
n07880968
:
burrito
n07892512
:
red_wine
n07920052
:
espresso
n07930864
:
cup
n07932039
:
eggnog
n09193705
:
alp
n09229709
:
bubble
n09246464
:
cliff
n09256479
:
coral_reef
n09288635
:
geyser
n09332890
:
lakeside
n09399592
:
promontory
n09421951
:
sandbar
n09428293
:
seashore
n09468604
:
valley
n09472597
:
volcano
n09835506
:
ballplayer
n10148035
:
groom
n10565667
:
scuba_diver
n11879895
:
rapeseed
n11939491
:
daisy
n12057211
:
yellow_lady's_slipper
n12144580
:
corn
n12267677
:
acorn
n12620546
:
hip
n12768682
:
buckeye
n12985857
:
coral_fungus
n12998815
:
agaric
n13037406
:
gyromitra
n13040303
:
stinkhorn
n13044778
:
earthstar
n13052670
:
hen-of-the-woods
n13054560
:
bolete
n13133613
:
ear
n15075141
:
toilet_tissue
# Download script/URL (optional)
download
:
yolo/data/scripts/get_imagenet.sh
ultralytics/cfg/datasets/Objects365.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Objects365 dataset https://www.objects365.org/ by Megvii
# Documentation: https://docs.ultralytics.com/datasets/detect/objects365/
# Example usage: yolo train data=Objects365.yaml
# parent
# ├── ultralytics
# └── datasets
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/Objects365
# dataset root dir
train
:
images/train
# train images (relative to 'path') 1742289 images
val
:
images/val
# val images (relative to 'path') 80000 images
test
:
# test images (optional)
# Classes
names
:
0
:
Person
1
:
Sneakers
2
:
Chair
3
:
Other Shoes
4
:
Hat
5
:
Car
6
:
Lamp
7
:
Glasses
8
:
Bottle
9
:
Desk
10
:
Cup
11
:
Street Lights
12
:
Cabinet/shelf
13
:
Handbag/Satchel
14
:
Bracelet
15
:
Plate
16
:
Picture/Frame
17
:
Helmet
18
:
Book
19
:
Gloves
20
:
Storage box
21
:
Boat
22
:
Leather Shoes
23
:
Flower
24
:
Bench
25
:
Potted Plant
26
:
Bowl/Basin
27
:
Flag
28
:
Pillow
29
:
Boots
30
:
Vase
31
:
Microphone
32
:
Necklace
33
:
Ring
34
:
SUV
35
:
Wine Glass
36
:
Belt
37
:
Monitor/TV
38
:
Backpack
39
:
Umbrella
40
:
Traffic Light
41
:
Speaker
42
:
Watch
43
:
Tie
44
:
Trash bin Can
45
:
Slippers
46
:
Bicycle
47
:
Stool
48
:
Barrel/bucket
49
:
Van
50
:
Couch
51
:
Sandals
52
:
Basket
53
:
Drum
54
:
Pen/Pencil
55
:
Bus
56
:
Wild Bird
57
:
High Heels
58
:
Motorcycle
59
:
Guitar
60
:
Carpet
61
:
Cell Phone
62
:
Bread
63
:
Camera
64
:
Canned
65
:
Truck
66
:
Traffic cone
67
:
Cymbal
68
:
Lifesaver
69
:
Towel
70
:
Stuffed Toy
71
:
Candle
72
:
Sailboat
73
:
Laptop
74
:
Awning
75
:
Bed
76
:
Faucet
77
:
Tent
78
:
Horse
79
:
Mirror
80
:
Power outlet
81
:
Sink
82
:
Apple
83
:
Air Conditioner
84
:
Knife
85
:
Hockey Stick
86
:
Paddle
87
:
Pickup Truck
88
:
Fork
89
:
Traffic Sign
90
:
Balloon
91
:
Tripod
92
:
Dog
93
:
Spoon
94
:
Clock
95
:
Pot
96
:
Cow
97
:
Cake
98
:
Dining Table
99
:
Sheep
100
:
Hanger
101
:
Blackboard/Whiteboard
102
:
Napkin
103
:
Other Fish
104
:
Orange/Tangerine
105
:
Toiletry
106
:
Keyboard
107
:
Tomato
108
:
Lantern
109
:
Machinery Vehicle
110
:
Fan
111
:
Green Vegetables
112
:
Banana
113
:
Baseball Glove
114
:
Airplane
115
:
Mouse
116
:
Train
117
:
Pumpkin
118
:
Soccer
119
:
Skiboard
120
:
Luggage
121
:
Nightstand
122
:
Tea pot
123
:
Telephone
124
:
Trolley
125
:
Head Phone
126
:
Sports Car
127
:
Stop Sign
128
:
Dessert
129
:
Scooter
130
:
Stroller
131
:
Crane
132
:
Remote
133
:
Refrigerator
134
:
Oven
135
:
Lemon
136
:
Duck
137
:
Baseball Bat
138
:
Surveillance Camera
139
:
Cat
140
:
Jug
141
:
Broccoli
142
:
Piano
143
:
Pizza
144
:
Elephant
145
:
Skateboard
146
:
Surfboard
147
:
Gun
148
:
Skating and Skiing shoes
149
:
Gas stove
150
:
Donut
151
:
Bow Tie
152
:
Carrot
153
:
Toilet
154
:
Kite
155
:
Strawberry
156
:
Other Balls
157
:
Shovel
158
:
Pepper
159
:
Computer Box
160
:
Toilet Paper
161
:
Cleaning Products
162
:
Chopsticks
163
:
Microwave
164
:
Pigeon
165
:
Baseball
166
:
Cutting/chopping Board
167
:
Coffee Table
168
:
Side Table
169
:
Scissors
170
:
Marker
171
:
Pie
172
:
Ladder
173
:
Snowboard
174
:
Cookies
175
:
Radiator
176
:
Fire Hydrant
177
:
Basketball
178
:
Zebra
179
:
Grape
180
:
Giraffe
181
:
Potato
182
:
Sausage
183
:
Tricycle
184
:
Violin
185
:
Egg
186
:
Fire Extinguisher
187
:
Candy
188
:
Fire Truck
189
:
Billiards
190
:
Converter
191
:
Bathtub
192
:
Wheelchair
193
:
Golf Club
194
:
Briefcase
195
:
Cucumber
196
:
Cigar/Cigarette
197
:
Paint Brush
198
:
Pear
199
:
Heavy Truck
200
:
Hamburger
201
:
Extractor
202
:
Extension Cord
203
:
Tong
204
:
Tennis Racket
205
:
Folder
206
:
American Football
207
:
earphone
208
:
Mask
209
:
Kettle
210
:
Tennis
211
:
Ship
212
:
Swing
213
:
Coffee Machine
214
:
Slide
215
:
Carriage
216
:
Onion
217
:
Green beans
218
:
Projector
219
:
Frisbee
220
:
Washing Machine/Drying Machine
221
:
Chicken
222
:
Printer
223
:
Watermelon
224
:
Saxophone
225
:
Tissue
226
:
Toothbrush
227
:
Ice cream
228
:
Hot-air balloon
229
:
Cello
230
:
French Fries
231
:
Scale
232
:
Trophy
233
:
Cabbage
234
:
Hot dog
235
:
Blender
236
:
Peach
237
:
Rice
238
:
Wallet/Purse
239
:
Volleyball
240
:
Deer
241
:
Goose
242
:
Tape
243
:
Tablet
244
:
Cosmetics
245
:
Trumpet
246
:
Pineapple
247
:
Golf Ball
248
:
Ambulance
249
:
Parking meter
250
:
Mango
251
:
Key
252
:
Hurdle
253
:
Fishing Rod
254
:
Medal
255
:
Flute
256
:
Brush
257
:
Penguin
258
:
Megaphone
259
:
Corn
260
:
Lettuce
261
:
Garlic
262
:
Swan
263
:
Helicopter
264
:
Green Onion
265
:
Sandwich
266
:
Nuts
267
:
Speed Limit Sign
268
:
Induction Cooker
269
:
Broom
270
:
Trombone
271
:
Plum
272
:
Rickshaw
273
:
Goldfish
274
:
Kiwi fruit
275
:
Router/modem
276
:
Poker Card
277
:
Toaster
278
:
Shrimp
279
:
Sushi
280
:
Cheese
281
:
Notepaper
282
:
Cherry
283
:
Pliers
284
:
CD
285
:
Pasta
286
:
Hammer
287
:
Cue
288
:
Avocado
289
:
Hami melon
290
:
Flask
291
:
Mushroom
292
:
Screwdriver
293
:
Soap
294
:
Recorder
295
:
Bear
296
:
Eggplant
297
:
Board Eraser
298
:
Coconut
299
:
Tape Measure/Ruler
300
:
Pig
301
:
Showerhead
302
:
Globe
303
:
Chips
304
:
Steak
305
:
Crosswalk Sign
306
:
Stapler
307
:
Camel
308
:
Formula
1
309
:
Pomegranate
310
:
Dishwasher
311
:
Crab
312
:
Hoverboard
313
:
Meatball
314
:
Rice Cooker
315
:
Tuba
316
:
Calculator
317
:
Papaya
318
:
Antelope
319
:
Parrot
320
:
Seal
321
:
Butterfly
322
:
Dumbbell
323
:
Donkey
324
:
Lion
325
:
Urinal
326
:
Dolphin
327
:
Electric Drill
328
:
Hair Dryer
329
:
Egg tart
330
:
Jellyfish
331
:
Treadmill
332
:
Lighter
333
:
Grapefruit
334
:
Game board
335
:
Mop
336
:
Radish
337
:
Baozi
338
:
Target
339
:
French
340
:
Spring Rolls
341
:
Monkey
342
:
Rabbit
343
:
Pencil Case
344
:
Yak
345
:
Red Cabbage
346
:
Binoculars
347
:
Asparagus
348
:
Barbell
349
:
Scallop
350
:
Noddles
351
:
Comb
352
:
Dumpling
353
:
Oyster
354
:
Table Tennis paddle
355
:
Cosmetics Brush/Eyeliner Pencil
356
:
Chainsaw
357
:
Eraser
358
:
Lobster
359
:
Durian
360
:
Okra
361
:
Lipstick
362
:
Cosmetics Mirror
363
:
Curling
364
:
Table Tennis
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download
:
|
from tqdm import tqdm
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.downloads import download
from ultralytics.utils.ops import xyxy2xywhn
import numpy as np
from pathlib import Path
check_requirements(('pycocotools>=2.0',))
from pycocotools.coco import COCO
# Make Directories
dir = Path(yaml['path']) # dataset root dir
for p in 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
for q in 'train', 'val':
(dir / p / q).mkdir(parents=True, exist_ok=True)
# Train, Val Splits
for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
print(f"Processing {split} in {patches} patches ...")
images, labels = dir / 'images' / split, dir / 'labels' / split
# Download
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
if split == 'train':
download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir) # annotations json
download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, threads=8)
elif split == 'val':
download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir) # annotations json
download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, threads=8)
download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, threads=8)
# Move
for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
f.rename(images / f.name) # move to /images/{split}
# Labels
coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
for cid, cat in enumerate(names):
catIds = coco.getCatIds(catNms=[cat])
imgIds = coco.getImgIds(catIds=catIds)
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
width, height = im["width"], im["height"]
path = Path(im["file_name"]) # image filename
try:
with open(labels / path.with_suffix('.txt').name, 'a') as file:
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
for a in coco.loadAnns(annIds):
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
except Exception as e:
print(e)
ultralytics/cfg/datasets/SKU-110K.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
# Documentation: https://docs.ultralytics.com/datasets/detect/sku-110k/
# Example usage: yolo train data=SKU-110K.yaml
# parent
# ├── ultralytics
# └── datasets
# └── SKU-110K ← downloads here (13.6 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/SKU-110K
# dataset root dir
train
:
train.txt
# train images (relative to 'path') 8219 images
val
:
val.txt
# val images (relative to 'path') 588 images
test
:
test.txt
# test images (optional) 2936 images
# Classes
names
:
0
:
object
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download
:
|
import shutil
from pathlib import Path
import numpy as np
import pandas as pd
from tqdm import tqdm
from ultralytics.utils.downloads import download
from ultralytics.utils.ops import xyxy2xywh
# Download
dir = Path(yaml['path']) # dataset root dir
parent = Path(dir.parent) # download dir
urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
download(urls, dir=parent)
# Rename directories
if dir.exists():
shutil.rmtree(dir)
(parent / 'SKU110K_fixed').rename(dir) # rename dir
(dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
# Convert labels
names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
images, unique_images = x[:, 0], np.unique(x[:, 0])
with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
f.writelines(f'./images/{s}\n' for s in unique_images)
for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
cls = 0 # single-class dataset
with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
for r in x[images == im]:
w, h = r[6], r[7] # image width, height
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
ultralytics/cfg/datasets/VOC.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
# Documentation: # Documentation: https://docs.ultralytics.com/datasets/detect/voc/
# Example usage: yolo train data=VOC.yaml
# parent
# ├── ultralytics
# └── datasets
# └── VOC ← downloads here (2.8 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/VOC
train
:
# train images (relative to 'path') 16551 images
-
images/train2012
-
images/train2007
-
images/val2012
-
images/val2007
val
:
# val images (relative to 'path') 4952 images
-
images/test2007
test
:
# test images (optional)
-
images/test2007
# Classes
names
:
0
:
aeroplane
1
:
bicycle
2
:
bird
3
:
boat
4
:
bottle
5
:
bus
6
:
car
7
:
cat
8
:
chair
9
:
cow
10
:
diningtable
11
:
dog
12
:
horse
13
:
motorbike
14
:
person
15
:
pottedplant
16
:
sheep
17
:
sofa
18
:
train
19
:
tvmonitor
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download
:
|
import xml.etree.ElementTree as ET
from tqdm import tqdm
from ultralytics.utils.downloads import download
from pathlib import Path
def convert_label(path, lb_path, year, image_id):
def convert_box(size, box):
dw, dh = 1. / size[0], 1. / size[1]
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
return x * dw, y * dh, w * dw, h * dh
in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
out_file = open(lb_path, 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
names = list(yaml['names'].values()) # names list
for obj in root.iter('object'):
cls = obj.find('name').text
if cls in names and int(obj.find('difficult').text) != 1:
xmlbox = obj.find('bndbox')
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
cls_id = names.index(cls) # class id
out_file.write(" ".join(str(a) for a in (cls_id, *bb)) + '\n')
# Download
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
download(urls, dir=dir / 'images', curl=True, threads=3, exist_ok=True) # download and unzip over existing paths (required)
# Convert
path = dir / 'images/VOCdevkit'
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
imgs_path = dir / 'images' / f'{image_set}{year}'
lbs_path = dir / 'labels' / f'{image_set}{year}'
imgs_path.mkdir(exist_ok=True, parents=True)
lbs_path.mkdir(exist_ok=True, parents=True)
with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
image_ids = f.read().strip().split()
for id in tqdm(image_ids, desc=f'{image_set}{year}'):
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
f.rename(imgs_path / f.name) # move image
convert_label(path, lb_path, year, id) # convert labels to YOLO format
\ No newline at end of file
ultralytics/cfg/datasets/VisDrone.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
# Documentation: https://docs.ultralytics.com/datasets/detect/visdrone/
# Example usage: yolo train data=VisDrone.yaml
# parent
# ├── ultralytics
# └── datasets
# └── VisDrone ← downloads here (2.3 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/VisDrone
# dataset root dir
train
:
VisDrone2019-DET-train/images
# train images (relative to 'path') 6471 images
val
:
VisDrone2019-DET-val/images
# val images (relative to 'path') 548 images
test
:
VisDrone2019-DET-test-dev/images
# test images (optional) 1610 images
# Classes
names
:
0
:
pedestrian
1
:
people
2
:
bicycle
3
:
car
4
:
van
5
:
truck
6
:
tricycle
7
:
awning-tricycle
8
:
bus
9
:
motor
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download
:
|
import os
from pathlib import Path
from ultralytics.utils.downloads import download
def visdrone2yolo(dir):
from PIL import Image
from tqdm import tqdm
def convert_box(size, box):
# Convert VisDrone box to YOLO xywh box
dw = 1. / size[0]
dh = 1. / size[1]
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
for f in pbar:
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
lines = []
with open(f, 'r') as file: # read annotation.txt
for row in [x.split(',') for x in file.read().strip().splitlines()]:
if row[4] == '0': # VisDrone 'ignored regions' class 0
continue
cls = int(row[5]) - 1
box = convert_box(img_size, tuple(map(int, row[:4])))
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
with open(str(f).replace(f'{os.sep}annotations{os.sep}', f'{os.sep}labels{os.sep}'), 'w') as fl:
fl.writelines(lines) # write label.txt
# Download
dir = Path(yaml['path']) # dataset root dir
urls = ['https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-train.zip',
'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-val.zip',
'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-dev.zip',
'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-challenge.zip']
download(urls, dir=dir, curl=True, threads=4)
# Convert
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
ultralytics/cfg/datasets/african-wildlife.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# African-wildlife dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
# Example usage: yolo train data=african-wildlife.yaml
# parent
# ├── ultralytics
# └── datasets
# └── african-wildlife ← downloads here (100 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/african-wildlife
# dataset root dir
train
:
train/images
# train images (relative to 'path') 1052 images
val
:
valid/images
# val images (relative to 'path') 225 images
test
:
test/images
# test images (relative to 'path') 227 images
# Classes
names
:
0
:
buffalo
1
:
elephant
2
:
rhino
3
:
zebra
# Download script/URL (optional)
download
:
https://github.com/ultralytics/assets/releases/download/v0.0.0/african-wildlife.zip
ultralytics/cfg/datasets/brain-tumor.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Brain-tumor dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/brain-tumor/
# Example usage: yolo train data=brain-tumor.yaml
# parent
# ├── ultralytics
# └── datasets
# └── brain-tumor ← downloads here (4.05 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/brain-tumor
# dataset root dir
train
:
train/images
# train images (relative to 'path') 893 images
val
:
valid/images
# val images (relative to 'path') 223 images
test
:
# test images (relative to 'path')
# Classes
names
:
0
:
negative
1
:
positive
# Download script/URL (optional)
download
:
https://github.com/ultralytics/assets/releases/download/v0.0.0/brain-tumor.zip
ultralytics/cfg/datasets/carparts-seg.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Carparts-seg dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/carparts-seg/
# Example usage: yolo train data=carparts-seg.yaml
# parent
# ├── ultralytics
# └── datasets
# └── carparts-seg ← downloads here (132 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/carparts-seg
# dataset root dir
train
:
train/images
# train images (relative to 'path') 3516 images
val
:
valid/images
# val images (relative to 'path') 276 images
test
:
test/images
# test images (relative to 'path') 401 images
# Classes
names
:
0
:
back_bumper
1
:
back_door
2
:
back_glass
3
:
back_left_door
4
:
back_left_light
5
:
back_light
6
:
back_right_door
7
:
back_right_light
8
:
front_bumper
9
:
front_door
10
:
front_glass
11
:
front_left_door
12
:
front_left_light
13
:
front_light
14
:
front_right_door
15
:
front_right_light
16
:
hood
17
:
left_mirror
18
:
object
19
:
right_mirror
20
:
tailgate
21
:
trunk
22
:
wheel
# Download script/URL (optional)
download
:
https://github.com/ultralytics/assets/releases/download/v0.0.0/carparts-seg.zip
ultralytics/cfg/datasets/coco-pose.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO 2017 Keypoints dataset https://cocodataset.org by Microsoft
# Documentation: https://docs.ultralytics.com/datasets/pose/coco/
# Example usage: yolo train data=coco-pose.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco-pose ← downloads here (20.1 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/coco-pose
# dataset root dir
train
:
train2017.txt
# train images (relative to 'path') 56599 images
val
:
val2017.txt
# val images (relative to 'path') 2346 images
test
:
test-dev2017.txt
# 20288 of 40670 images, submit to https://codalab.lisn.upsaclay.fr/competitions/7403
# Keypoints
kpt_shape
:
[
17
,
3
]
# number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx
:
[
0
,
2
,
1
,
4
,
3
,
6
,
5
,
8
,
7
,
10
,
9
,
12
,
11
,
14
,
13
,
16
,
15
]
# Classes
names
:
0
:
person
# Download script/URL (optional)
download
:
|
from ultralytics.utils.downloads import download
from pathlib import Path
# Download labels
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
urls = [url + 'coco2017labels-pose.zip'] # labels
download(urls, dir=dir.parent)
# Download data
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
download(urls, dir=dir / 'images', threads=3)
ultralytics/cfg/datasets/coco.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO 2017 dataset https://cocodataset.org by Microsoft
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco ← downloads here (20.1 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
./coco
# dataset root dir
train
:
train2017.txt
# train images (relative to 'path') 118287 images
val
:
val2017.txt
# val images (relative to 'path') 5000 images
test
:
test-dev2017.txt
# 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# Classes
names
:
0
:
person
1
:
bicycle
2
:
car
3
:
motorcycle
4
:
airplane
5
:
bus
6
:
train
7
:
truck
8
:
boat
9
:
traffic light
10
:
fire hydrant
11
:
stop sign
12
:
parking meter
13
:
bench
14
:
bird
15
:
cat
16
:
dog
17
:
horse
18
:
sheep
19
:
cow
20
:
elephant
21
:
bear
22
:
zebra
23
:
giraffe
24
:
backpack
25
:
umbrella
26
:
handbag
27
:
tie
28
:
suitcase
29
:
frisbee
30
:
skis
31
:
snowboard
32
:
sports ball
33
:
kite
34
:
baseball bat
35
:
baseball glove
36
:
skateboard
37
:
surfboard
38
:
tennis racket
39
:
bottle
40
:
wine glass
41
:
cup
42
:
fork
43
:
knife
44
:
spoon
45
:
bowl
46
:
banana
47
:
apple
48
:
sandwich
49
:
orange
50
:
broccoli
51
:
carrot
52
:
hot dog
53
:
pizza
54
:
donut
55
:
cake
56
:
chair
57
:
couch
58
:
potted plant
59
:
bed
60
:
dining table
61
:
toilet
62
:
tv
63
:
laptop
64
:
mouse
65
:
remote
66
:
keyboard
67
:
cell phone
68
:
microwave
69
:
oven
70
:
toaster
71
:
sink
72
:
refrigerator
73
:
book
74
:
clock
75
:
vase
76
:
scissors
77
:
teddy bear
78
:
hair drier
79
:
toothbrush
# Download script/URL (optional)
download
:
|
from ultralytics.utils.downloads import download
from pathlib import Path
# Download labels
segments = True # segment or box labels
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
download(urls, dir=dir.parent)
# Download data
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
download(urls, dir=dir / 'images', threads=3)
ultralytics/cfg/datasets/coco128-seg.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/coco/
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco128-seg ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/coco128-seg
# dataset root dir
train
:
images/train2017
# train images (relative to 'path') 128 images
val
:
images/train2017
# val images (relative to 'path') 128 images
test
:
# test images (optional)
# Classes
names
:
0
:
person
1
:
bicycle
2
:
car
3
:
motorcycle
4
:
airplane
5
:
bus
6
:
train
7
:
truck
8
:
boat
9
:
traffic light
10
:
fire hydrant
11
:
stop sign
12
:
parking meter
13
:
bench
14
:
bird
15
:
cat
16
:
dog
17
:
horse
18
:
sheep
19
:
cow
20
:
elephant
21
:
bear
22
:
zebra
23
:
giraffe
24
:
backpack
25
:
umbrella
26
:
handbag
27
:
tie
28
:
suitcase
29
:
frisbee
30
:
skis
31
:
snowboard
32
:
sports ball
33
:
kite
34
:
baseball bat
35
:
baseball glove
36
:
skateboard
37
:
surfboard
38
:
tennis racket
39
:
bottle
40
:
wine glass
41
:
cup
42
:
fork
43
:
knife
44
:
spoon
45
:
bowl
46
:
banana
47
:
apple
48
:
sandwich
49
:
orange
50
:
broccoli
51
:
carrot
52
:
hot dog
53
:
pizza
54
:
donut
55
:
cake
56
:
chair
57
:
couch
58
:
potted plant
59
:
bed
60
:
dining table
61
:
toilet
62
:
tv
63
:
laptop
64
:
mouse
65
:
remote
66
:
keyboard
67
:
cell phone
68
:
microwave
69
:
oven
70
:
toaster
71
:
sink
72
:
refrigerator
73
:
book
74
:
clock
75
:
vase
76
:
scissors
77
:
teddy bear
78
:
hair drier
79
:
toothbrush
# Download script/URL (optional)
download
:
https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128-seg.zip
ultralytics/cfg/datasets/coco128.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco128 ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/coco128
# dataset root dir
train
:
images/train2017
# train images (relative to 'path') 128 images
val
:
images/train2017
# val images (relative to 'path') 128 images
test
:
# test images (optional)
# Classes
names
:
0
:
person
1
:
bicycle
2
:
car
3
:
motorcycle
4
:
airplane
5
:
bus
6
:
train
7
:
truck
8
:
boat
9
:
traffic light
10
:
fire hydrant
11
:
stop sign
12
:
parking meter
13
:
bench
14
:
bird
15
:
cat
16
:
dog
17
:
horse
18
:
sheep
19
:
cow
20
:
elephant
21
:
bear
22
:
zebra
23
:
giraffe
24
:
backpack
25
:
umbrella
26
:
handbag
27
:
tie
28
:
suitcase
29
:
frisbee
30
:
skis
31
:
snowboard
32
:
sports ball
33
:
kite
34
:
baseball bat
35
:
baseball glove
36
:
skateboard
37
:
surfboard
38
:
tennis racket
39
:
bottle
40
:
wine glass
41
:
cup
42
:
fork
43
:
knife
44
:
spoon
45
:
bowl
46
:
banana
47
:
apple
48
:
sandwich
49
:
orange
50
:
broccoli
51
:
carrot
52
:
hot dog
53
:
pizza
54
:
donut
55
:
cake
56
:
chair
57
:
couch
58
:
potted plant
59
:
bed
60
:
dining table
61
:
toilet
62
:
tv
63
:
laptop
64
:
mouse
65
:
remote
66
:
keyboard
67
:
cell phone
68
:
microwave
69
:
oven
70
:
toaster
71
:
sink
72
:
refrigerator
73
:
book
74
:
clock
75
:
vase
76
:
scissors
77
:
teddy bear
78
:
hair drier
79
:
toothbrush
# Download script/URL (optional)
download
:
https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip
ultralytics/cfg/datasets/coco8-pose.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
# Example usage: yolo train data=coco8-pose.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco8-pose ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/coco8-pose
# dataset root dir
train
:
images/train
# train images (relative to 'path') 4 images
val
:
images/val
# val images (relative to 'path') 4 images
test
:
# test images (optional)
# Keypoints
kpt_shape
:
[
17
,
3
]
# number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx
:
[
0
,
2
,
1
,
4
,
3
,
6
,
5
,
8
,
7
,
10
,
9
,
12
,
11
,
14
,
13
,
16
,
15
]
# Classes
names
:
0
:
person
# Download script/URL (optional)
download
:
https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
ultralytics/cfg/datasets/coco8-seg.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
# Example usage: yolo train data=coco8-seg.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco8-seg ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/coco8-seg
# dataset root dir
train
:
images/train
# train images (relative to 'path') 4 images
val
:
images/val
# val images (relative to 'path') 4 images
test
:
# test images (optional)
# Classes
names
:
0
:
person
1
:
bicycle
2
:
car
3
:
motorcycle
4
:
airplane
5
:
bus
6
:
train
7
:
truck
8
:
boat
9
:
traffic light
10
:
fire hydrant
11
:
stop sign
12
:
parking meter
13
:
bench
14
:
bird
15
:
cat
16
:
dog
17
:
horse
18
:
sheep
19
:
cow
20
:
elephant
21
:
bear
22
:
zebra
23
:
giraffe
24
:
backpack
25
:
umbrella
26
:
handbag
27
:
tie
28
:
suitcase
29
:
frisbee
30
:
skis
31
:
snowboard
32
:
sports ball
33
:
kite
34
:
baseball bat
35
:
baseball glove
36
:
skateboard
37
:
surfboard
38
:
tennis racket
39
:
bottle
40
:
wine glass
41
:
cup
42
:
fork
43
:
knife
44
:
spoon
45
:
bowl
46
:
banana
47
:
apple
48
:
sandwich
49
:
orange
50
:
broccoli
51
:
carrot
52
:
hot dog
53
:
pizza
54
:
donut
55
:
cake
56
:
chair
57
:
couch
58
:
potted plant
59
:
bed
60
:
dining table
61
:
toilet
62
:
tv
63
:
laptop
64
:
mouse
65
:
remote
66
:
keyboard
67
:
cell phone
68
:
microwave
69
:
oven
70
:
toaster
71
:
sink
72
:
refrigerator
73
:
book
74
:
clock
75
:
vase
76
:
scissors
77
:
teddy bear
78
:
hair drier
79
:
toothbrush
# Download script/URL (optional)
download
:
https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-seg.zip
ultralytics/cfg/datasets/coco8.yaml
0 → 100644
View file @
e63cf68a
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8/
# Example usage: yolo train data=coco8.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco8 ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path
:
../datasets/coco8
# dataset root dir
train
:
images/train
# train images (relative to 'path') 4 images
val
:
images/val
# val images (relative to 'path') 4 images
test
:
# test images (optional)
# Classes
names
:
0
:
person
1
:
bicycle
2
:
car
3
:
motorcycle
4
:
airplane
5
:
bus
6
:
train
7
:
truck
8
:
boat
9
:
traffic light
10
:
fire hydrant
11
:
stop sign
12
:
parking meter
13
:
bench
14
:
bird
15
:
cat
16
:
dog
17
:
horse
18
:
sheep
19
:
cow
20
:
elephant
21
:
bear
22
:
zebra
23
:
giraffe
24
:
backpack
25
:
umbrella
26
:
handbag
27
:
tie
28
:
suitcase
29
:
frisbee
30
:
skis
31
:
snowboard
32
:
sports ball
33
:
kite
34
:
baseball bat
35
:
baseball glove
36
:
skateboard
37
:
surfboard
38
:
tennis racket
39
:
bottle
40
:
wine glass
41
:
cup
42
:
fork
43
:
knife
44
:
spoon
45
:
bowl
46
:
banana
47
:
apple
48
:
sandwich
49
:
orange
50
:
broccoli
51
:
carrot
52
:
hot dog
53
:
pizza
54
:
donut
55
:
cake
56
:
chair
57
:
couch
58
:
potted plant
59
:
bed
60
:
dining table
61
:
toilet
62
:
tv
63
:
laptop
64
:
mouse
65
:
remote
66
:
keyboard
67
:
cell phone
68
:
microwave
69
:
oven
70
:
toaster
71
:
sink
72
:
refrigerator
73
:
book
74
:
clock
75
:
vase
76
:
scissors
77
:
teddy bear
78
:
hair drier
79
:
toothbrush
# Download script/URL (optional)
download
:
https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8.zip
Prev
1
2
3
4
5
6
7
8
9
10
…
18
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment