Commit e63cf68a authored by chenzk's avatar chenzk
Browse files

v1.0

parents
Pipeline #2842 canceled with stages
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
# Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
# Example usage: yolo train data=Argoverse.yaml
# parent
# ├── ultralytics
# └── datasets
# └── Argoverse ← downloads here (31.5 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Argoverse # dataset root dir
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: bus
5: truck
6: traffic_light
7: stop_sign
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import json
from tqdm import tqdm
from ultralytics.utils.downloads import download
from pathlib import Path
def argoverse2yolo(set):
labels = {}
a = json.load(open(set, "rb"))
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
img_id = annot['image_id']
img_name = a['images'][img_id]['name']
img_label_name = f'{img_name[:-3]}txt'
cls = annot['category_id'] # instance class id
x_center, y_center, width, height = annot['bbox']
x_center = (x_center + width / 2) / 1920.0 # offset and scale
y_center = (y_center + height / 2) / 1200.0 # offset and scale
width /= 1920.0 # scale
height /= 1200.0 # scale
img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
if not img_dir.exists():
img_dir.mkdir(parents=True, exist_ok=True)
k = str(img_dir / img_label_name)
if k not in labels:
labels[k] = []
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
for k in labels:
with open(k, "w") as f:
f.writelines(labels[k])
# Download 'https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip' (deprecated S3 link)
dir = Path(yaml['path']) # dataset root dir
urls = ['https://drive.google.com/file/d/1st9qW3BeIwQsnR0t8mRpvbsSWIo16ACi/view?usp=drive_link']
print("\n\nWARNING: Argoverse dataset MUST be downloaded manually, autodownload will NOT work.")
print(f"WARNING: Manually download Argoverse dataset '{urls[0]}' to '{dir}' and re-run your command.\n\n")
# download(urls, dir=dir)
# Convert
annotations_dir = 'Argoverse-HD/annotations/'
(dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
for d in "train.json", "val.json":
argoverse2yolo(dir / annotations_dir / d) # convert Argoverse annotations to YOLO labels
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DOTA 1.5 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.5.yaml
# parent
# ├── ultralytics
# └── datasets
# └── dota1.5 ← downloads here (2GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/DOTAv1.5 # dataset root dir
train: images/train # train images (relative to 'path') 1411 images
val: images/val # val images (relative to 'path') 458 images
test: images/test # test images (optional) 937 images
# Classes for DOTA 1.5
names:
0: plane
1: ship
2: storage tank
3: baseball diamond
4: tennis court
5: basketball court
6: ground track field
7: harbor
8: bridge
9: large vehicle
10: small vehicle
11: helicopter
12: roundabout
13: soccer ball field
14: swimming pool
15: container crane
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/DOTAv1.5.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DOTA 1.0 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.yaml
# parent
# ├── ultralytics
# └── datasets
# └── dota1 ← downloads here (2GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/DOTAv1 # dataset root dir
train: images/train # train images (relative to 'path') 1411 images
val: images/val # val images (relative to 'path') 458 images
test: images/test # test images (optional) 937 images
# Classes for DOTA 1.0
names:
0: plane
1: ship
2: storage tank
3: baseball diamond
4: tennis court
5: basketball court
6: ground track field
7: harbor
8: bridge
9: large vehicle
10: small vehicle
11: helicopter
12: roundabout
13: soccer ball field
14: swimming pool
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/DOTAv1.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Global Wheat 2020 dataset https://www.global-wheat.com/ by University of Saskatchewan
# Documentation: https://docs.ultralytics.com/datasets/detect/globalwheat2020/
# Example usage: yolo train data=GlobalWheat2020.yaml
# parent
# ├── ultralytics
# └── datasets
# └── GlobalWheat2020 ← downloads here (7.0 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/GlobalWheat2020 # dataset root dir
train: # train images (relative to 'path') 3422 images
- images/arvalis_1
- images/arvalis_2
- images/arvalis_3
- images/ethz_1
- images/rres_1
- images/inrae_1
- images/usask_1
val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
- images/ethz_1
test: # test images (optional) 1276 images
- images/utokyo_1
- images/utokyo_2
- images/nau_1
- images/uq_1
# Classes
names:
0: wheat_head
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from ultralytics.utils.downloads import download
from pathlib import Path
# Download
dir = Path(yaml['path']) # dataset root dir
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
'https://github.com/ultralytics/assets/releases/download/v0.0.0/GlobalWheat2020_labels.zip']
download(urls, dir=dir)
# Make Directories
for p in 'annotations', 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
# Move
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
(dir / 'global-wheat-codalab-official' / p).rename(dir / 'images' / p) # move to /images
f = (dir / 'global-wheat-codalab-official' / p).with_suffix('.json') # json file
if f.exists():
f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
# Documentation: https://docs.ultralytics.com/datasets/classify/imagenet/
# Example usage: yolo train task=classify data=imagenet
# parent
# ├── ultralytics
# └── datasets
# └── imagenet ← downloads here (144 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/imagenet # dataset root dir
train: train # train images (relative to 'path') 1281167 images
val: val # val images (relative to 'path') 50000 images
test: # test images (optional)
# Classes
names:
0: tench
1: goldfish
2: great white shark
3: tiger shark
4: hammerhead shark
5: electric ray
6: stingray
7: cock
8: hen
9: ostrich
10: brambling
11: goldfinch
12: house finch
13: junco
14: indigo bunting
15: American robin
16: bulbul
17: jay
18: magpie
19: chickadee
20: American dipper
21: kite
22: bald eagle
23: vulture
24: great grey owl
25: fire salamander
26: smooth newt
27: newt
28: spotted salamander
29: axolotl
30: American bullfrog
31: tree frog
32: tailed frog
33: loggerhead sea turtle
34: leatherback sea turtle
35: mud turtle
36: terrapin
37: box turtle
38: banded gecko
39: green iguana
40: Carolina anole
41: desert grassland whiptail lizard
42: agama
43: frilled-necked lizard
44: alligator lizard
45: Gila monster
46: European green lizard
47: chameleon
48: Komodo dragon
49: Nile crocodile
50: American alligator
51: triceratops
52: worm snake
53: ring-necked snake
54: eastern hog-nosed snake
55: smooth green snake
56: kingsnake
57: garter snake
58: water snake
59: vine snake
60: night snake
61: boa constrictor
62: African rock python
63: Indian cobra
64: green mamba
65: sea snake
66: Saharan horned viper
67: eastern diamondback rattlesnake
68: sidewinder
69: trilobite
70: harvestman
71: scorpion
72: yellow garden spider
73: barn spider
74: European garden spider
75: southern black widow
76: tarantula
77: wolf spider
78: tick
79: centipede
80: black grouse
81: ptarmigan
82: ruffed grouse
83: prairie grouse
84: peacock
85: quail
86: partridge
87: grey parrot
88: macaw
89: sulphur-crested cockatoo
90: lorikeet
91: coucal
92: bee eater
93: hornbill
94: hummingbird
95: jacamar
96: toucan
97: duck
98: red-breasted merganser
99: goose
100: black swan
101: tusker
102: echidna
103: platypus
104: wallaby
105: koala
106: wombat
107: jellyfish
108: sea anemone
109: brain coral
110: flatworm
111: nematode
112: conch
113: snail
114: slug
115: sea slug
116: chiton
117: chambered nautilus
118: Dungeness crab
119: rock crab
120: fiddler crab
121: red king crab
122: American lobster
123: spiny lobster
124: crayfish
125: hermit crab
126: isopod
127: white stork
128: black stork
129: spoonbill
130: flamingo
131: little blue heron
132: great egret
133: bittern
134: crane (bird)
135: limpkin
136: common gallinule
137: American coot
138: bustard
139: ruddy turnstone
140: dunlin
141: common redshank
142: dowitcher
143: oystercatcher
144: pelican
145: king penguin
146: albatross
147: grey whale
148: killer whale
149: dugong
150: sea lion
151: Chihuahua
152: Japanese Chin
153: Maltese
154: Pekingese
155: Shih Tzu
156: King Charles Spaniel
157: Papillon
158: toy terrier
159: Rhodesian Ridgeback
160: Afghan Hound
161: Basset Hound
162: Beagle
163: Bloodhound
164: Bluetick Coonhound
165: Black and Tan Coonhound
166: Treeing Walker Coonhound
167: English foxhound
168: Redbone Coonhound
169: borzoi
170: Irish Wolfhound
171: Italian Greyhound
172: Whippet
173: Ibizan Hound
174: Norwegian Elkhound
175: Otterhound
176: Saluki
177: Scottish Deerhound
178: Weimaraner
179: Staffordshire Bull Terrier
180: American Staffordshire Terrier
181: Bedlington Terrier
182: Border Terrier
183: Kerry Blue Terrier
184: Irish Terrier
185: Norfolk Terrier
186: Norwich Terrier
187: Yorkshire Terrier
188: Wire Fox Terrier
189: Lakeland Terrier
190: Sealyham Terrier
191: Airedale Terrier
192: Cairn Terrier
193: Australian Terrier
194: Dandie Dinmont Terrier
195: Boston Terrier
196: Miniature Schnauzer
197: Giant Schnauzer
198: Standard Schnauzer
199: Scottish Terrier
200: Tibetan Terrier
201: Australian Silky Terrier
202: Soft-coated Wheaten Terrier
203: West Highland White Terrier
204: Lhasa Apso
205: Flat-Coated Retriever
206: Curly-coated Retriever
207: Golden Retriever
208: Labrador Retriever
209: Chesapeake Bay Retriever
210: German Shorthaired Pointer
211: Vizsla
212: English Setter
213: Irish Setter
214: Gordon Setter
215: Brittany
216: Clumber Spaniel
217: English Springer Spaniel
218: Welsh Springer Spaniel
219: Cocker Spaniels
220: Sussex Spaniel
221: Irish Water Spaniel
222: Kuvasz
223: Schipperke
224: Groenendael
225: Malinois
226: Briard
227: Australian Kelpie
228: Komondor
229: Old English Sheepdog
230: Shetland Sheepdog
231: collie
232: Border Collie
233: Bouvier des Flandres
234: Rottweiler
235: German Shepherd Dog
236: Dobermann
237: Miniature Pinscher
238: Greater Swiss Mountain Dog
239: Bernese Mountain Dog
240: Appenzeller Sennenhund
241: Entlebucher Sennenhund
242: Boxer
243: Bullmastiff
244: Tibetan Mastiff
245: French Bulldog
246: Great Dane
247: St. Bernard
248: husky
249: Alaskan Malamute
250: Siberian Husky
251: Dalmatian
252: Affenpinscher
253: Basenji
254: pug
255: Leonberger
256: Newfoundland
257: Pyrenean Mountain Dog
258: Samoyed
259: Pomeranian
260: Chow Chow
261: Keeshond
262: Griffon Bruxellois
263: Pembroke Welsh Corgi
264: Cardigan Welsh Corgi
265: Toy Poodle
266: Miniature Poodle
267: Standard Poodle
268: Mexican hairless dog
269: grey wolf
270: Alaskan tundra wolf
271: red wolf
272: coyote
273: dingo
274: dhole
275: African wild dog
276: hyena
277: red fox
278: kit fox
279: Arctic fox
280: grey fox
281: tabby cat
282: tiger cat
283: Persian cat
284: Siamese cat
285: Egyptian Mau
286: cougar
287: lynx
288: leopard
289: snow leopard
290: jaguar
291: lion
292: tiger
293: cheetah
294: brown bear
295: American black bear
296: polar bear
297: sloth bear
298: mongoose
299: meerkat
300: tiger beetle
301: ladybug
302: ground beetle
303: longhorn beetle
304: leaf beetle
305: dung beetle
306: rhinoceros beetle
307: weevil
308: fly
309: bee
310: ant
311: grasshopper
312: cricket
313: stick insect
314: cockroach
315: mantis
316: cicada
317: leafhopper
318: lacewing
319: dragonfly
320: damselfly
321: red admiral
322: ringlet
323: monarch butterfly
324: small white
325: sulphur butterfly
326: gossamer-winged butterfly
327: starfish
328: sea urchin
329: sea cucumber
330: cottontail rabbit
331: hare
332: Angora rabbit
333: hamster
334: porcupine
335: fox squirrel
336: marmot
337: beaver
338: guinea pig
339: common sorrel
340: zebra
341: pig
342: wild boar
343: warthog
344: hippopotamus
345: ox
346: water buffalo
347: bison
348: ram
349: bighorn sheep
350: Alpine ibex
351: hartebeest
352: impala
353: gazelle
354: dromedary
355: llama
356: weasel
357: mink
358: European polecat
359: black-footed ferret
360: otter
361: skunk
362: badger
363: armadillo
364: three-toed sloth
365: orangutan
366: gorilla
367: chimpanzee
368: gibbon
369: siamang
370: guenon
371: patas monkey
372: baboon
373: macaque
374: langur
375: black-and-white colobus
376: proboscis monkey
377: marmoset
378: white-headed capuchin
379: howler monkey
380: titi
381: Geoffroy's spider monkey
382: common squirrel monkey
383: ring-tailed lemur
384: indri
385: Asian elephant
386: African bush elephant
387: red panda
388: giant panda
389: snoek
390: eel
391: coho salmon
392: rock beauty
393: clownfish
394: sturgeon
395: garfish
396: lionfish
397: pufferfish
398: abacus
399: abaya
400: academic gown
401: accordion
402: acoustic guitar
403: aircraft carrier
404: airliner
405: airship
406: altar
407: ambulance
408: amphibious vehicle
409: analog clock
410: apiary
411: apron
412: waste container
413: assault rifle
414: backpack
415: bakery
416: balance beam
417: balloon
418: ballpoint pen
419: Band-Aid
420: banjo
421: baluster
422: barbell
423: barber chair
424: barbershop
425: barn
426: barometer
427: barrel
428: wheelbarrow
429: baseball
430: basketball
431: bassinet
432: bassoon
433: swimming cap
434: bath towel
435: bathtub
436: station wagon
437: lighthouse
438: beaker
439: military cap
440: beer bottle
441: beer glass
442: bell-cot
443: bib
444: tandem bicycle
445: bikini
446: ring binder
447: binoculars
448: birdhouse
449: boathouse
450: bobsleigh
451: bolo tie
452: poke bonnet
453: bookcase
454: bookstore
455: bottle cap
456: bow
457: bow tie
458: brass
459: bra
460: breakwater
461: breastplate
462: broom
463: bucket
464: buckle
465: bulletproof vest
466: high-speed train
467: butcher shop
468: taxicab
469: cauldron
470: candle
471: cannon
472: canoe
473: can opener
474: cardigan
475: car mirror
476: carousel
477: tool kit
478: carton
479: car wheel
480: automated teller machine
481: cassette
482: cassette player
483: castle
484: catamaran
485: CD player
486: cello
487: mobile phone
488: chain
489: chain-link fence
490: chain mail
491: chainsaw
492: chest
493: chiffonier
494: chime
495: china cabinet
496: Christmas stocking
497: church
498: movie theater
499: cleaver
500: cliff dwelling
501: cloak
502: clogs
503: cocktail shaker
504: coffee mug
505: coffeemaker
506: coil
507: combination lock
508: computer keyboard
509: confectionery store
510: container ship
511: convertible
512: corkscrew
513: cornet
514: cowboy boot
515: cowboy hat
516: cradle
517: crane (machine)
518: crash helmet
519: crate
520: infant bed
521: Crock Pot
522: croquet ball
523: crutch
524: cuirass
525: dam
526: desk
527: desktop computer
528: rotary dial telephone
529: diaper
530: digital clock
531: digital watch
532: dining table
533: dishcloth
534: dishwasher
535: disc brake
536: dock
537: dog sled
538: dome
539: doormat
540: drilling rig
541: drum
542: drumstick
543: dumbbell
544: Dutch oven
545: electric fan
546: electric guitar
547: electric locomotive
548: entertainment center
549: envelope
550: espresso machine
551: face powder
552: feather boa
553: filing cabinet
554: fireboat
555: fire engine
556: fire screen sheet
557: flagpole
558: flute
559: folding chair
560: football helmet
561: forklift
562: fountain
563: fountain pen
564: four-poster bed
565: freight car
566: French horn
567: frying pan
568: fur coat
569: garbage truck
570: gas mask
571: gas pump
572: goblet
573: go-kart
574: golf ball
575: golf cart
576: gondola
577: gong
578: gown
579: grand piano
580: greenhouse
581: grille
582: grocery store
583: guillotine
584: barrette
585: hair spray
586: half-track
587: hammer
588: hamper
589: hair dryer
590: hand-held computer
591: handkerchief
592: hard disk drive
593: harmonica
594: harp
595: harvester
596: hatchet
597: holster
598: home theater
599: honeycomb
600: hook
601: hoop skirt
602: horizontal bar
603: horse-drawn vehicle
604: hourglass
605: iPod
606: clothes iron
607: jack-o'-lantern
608: jeans
609: jeep
610: T-shirt
611: jigsaw puzzle
612: pulled rickshaw
613: joystick
614: kimono
615: knee pad
616: knot
617: lab coat
618: ladle
619: lampshade
620: laptop computer
621: lawn mower
622: lens cap
623: paper knife
624: library
625: lifeboat
626: lighter
627: limousine
628: ocean liner
629: lipstick
630: slip-on shoe
631: lotion
632: speaker
633: loupe
634: sawmill
635: magnetic compass
636: mail bag
637: mailbox
638: tights
639: tank suit
640: manhole cover
641: maraca
642: marimba
643: mask
644: match
645: maypole
646: maze
647: measuring cup
648: medicine chest
649: megalith
650: microphone
651: microwave oven
652: military uniform
653: milk can
654: minibus
655: miniskirt
656: minivan
657: missile
658: mitten
659: mixing bowl
660: mobile home
661: Model T
662: modem
663: monastery
664: monitor
665: moped
666: mortar
667: square academic cap
668: mosque
669: mosquito net
670: scooter
671: mountain bike
672: tent
673: computer mouse
674: mousetrap
675: moving van
676: muzzle
677: nail
678: neck brace
679: necklace
680: nipple
681: notebook computer
682: obelisk
683: oboe
684: ocarina
685: odometer
686: oil filter
687: organ
688: oscilloscope
689: overskirt
690: bullock cart
691: oxygen mask
692: packet
693: paddle
694: paddle wheel
695: padlock
696: paintbrush
697: pajamas
698: palace
699: pan flute
700: paper towel
701: parachute
702: parallel bars
703: park bench
704: parking meter
705: passenger car
706: patio
707: payphone
708: pedestal
709: pencil case
710: pencil sharpener
711: perfume
712: Petri dish
713: photocopier
714: plectrum
715: Pickelhaube
716: picket fence
717: pickup truck
718: pier
719: piggy bank
720: pill bottle
721: pillow
722: ping-pong ball
723: pinwheel
724: pirate ship
725: pitcher
726: hand plane
727: planetarium
728: plastic bag
729: plate rack
730: plow
731: plunger
732: Polaroid camera
733: pole
734: police van
735: poncho
736: billiard table
737: soda bottle
738: pot
739: potter's wheel
740: power drill
741: prayer rug
742: printer
743: prison
744: projectile
745: projector
746: hockey puck
747: punching bag
748: purse
749: quill
750: quilt
751: race car
752: racket
753: radiator
754: radio
755: radio telescope
756: rain barrel
757: recreational vehicle
758: reel
759: reflex camera
760: refrigerator
761: remote control
762: restaurant
763: revolver
764: rifle
765: rocking chair
766: rotisserie
767: eraser
768: rugby ball
769: ruler
770: running shoe
771: safe
772: safety pin
773: salt shaker
774: sandal
775: sarong
776: saxophone
777: scabbard
778: weighing scale
779: school bus
780: schooner
781: scoreboard
782: CRT screen
783: screw
784: screwdriver
785: seat belt
786: sewing machine
787: shield
788: shoe store
789: shoji
790: shopping basket
791: shopping cart
792: shovel
793: shower cap
794: shower curtain
795: ski
796: ski mask
797: sleeping bag
798: slide rule
799: sliding door
800: slot machine
801: snorkel
802: snowmobile
803: snowplow
804: soap dispenser
805: soccer ball
806: sock
807: solar thermal collector
808: sombrero
809: soup bowl
810: space bar
811: space heater
812: space shuttle
813: spatula
814: motorboat
815: spider web
816: spindle
817: sports car
818: spotlight
819: stage
820: steam locomotive
821: through arch bridge
822: steel drum
823: stethoscope
824: scarf
825: stone wall
826: stopwatch
827: stove
828: strainer
829: tram
830: stretcher
831: couch
832: stupa
833: submarine
834: suit
835: sundial
836: sunglass
837: sunglasses
838: sunscreen
839: suspension bridge
840: mop
841: sweatshirt
842: swimsuit
843: swing
844: switch
845: syringe
846: table lamp
847: tank
848: tape player
849: teapot
850: teddy bear
851: television
852: tennis ball
853: thatched roof
854: front curtain
855: thimble
856: threshing machine
857: throne
858: tile roof
859: toaster
860: tobacco shop
861: toilet seat
862: torch
863: totem pole
864: tow truck
865: toy store
866: tractor
867: semi-trailer truck
868: tray
869: trench coat
870: tricycle
871: trimaran
872: tripod
873: triumphal arch
874: trolleybus
875: trombone
876: tub
877: turnstile
878: typewriter keyboard
879: umbrella
880: unicycle
881: upright piano
882: vacuum cleaner
883: vase
884: vault
885: velvet
886: vending machine
887: vestment
888: viaduct
889: violin
890: volleyball
891: waffle iron
892: wall clock
893: wallet
894: wardrobe
895: military aircraft
896: sink
897: washing machine
898: water bottle
899: water jug
900: water tower
901: whiskey jug
902: whistle
903: wig
904: window screen
905: window shade
906: Windsor tie
907: wine bottle
908: wing
909: wok
910: wooden spoon
911: wool
912: split-rail fence
913: shipwreck
914: yawl
915: yurt
916: website
917: comic book
918: crossword
919: traffic sign
920: traffic light
921: dust jacket
922: menu
923: plate
924: guacamole
925: consomme
926: hot pot
927: trifle
928: ice cream
929: ice pop
930: baguette
931: bagel
932: pretzel
933: cheeseburger
934: hot dog
935: mashed potato
936: cabbage
937: broccoli
938: cauliflower
939: zucchini
940: spaghetti squash
941: acorn squash
942: butternut squash
943: cucumber
944: artichoke
945: bell pepper
946: cardoon
947: mushroom
948: Granny Smith
949: strawberry
950: orange
951: lemon
952: fig
953: pineapple
954: banana
955: jackfruit
956: custard apple
957: pomegranate
958: hay
959: carbonara
960: chocolate syrup
961: dough
962: meatloaf
963: pizza
964: pot pie
965: burrito
966: red wine
967: espresso
968: cup
969: eggnog
970: alp
971: bubble
972: cliff
973: coral reef
974: geyser
975: lakeshore
976: promontory
977: shoal
978: seashore
979: valley
980: volcano
981: baseball player
982: bridegroom
983: scuba diver
984: rapeseed
985: daisy
986: yellow lady's slipper
987: corn
988: acorn
989: rose hip
990: horse chestnut seed
991: coral fungus
992: agaric
993: gyromitra
994: stinkhorn mushroom
995: earth star
996: hen-of-the-woods
997: bolete
998: ear
999: toilet paper
# Imagenet class codes to human-readable names
map:
n01440764: tench
n01443537: goldfish
n01484850: great_white_shark
n01491361: tiger_shark
n01494475: hammerhead
n01496331: electric_ray
n01498041: stingray
n01514668: cock
n01514859: hen
n01518878: ostrich
n01530575: brambling
n01531178: goldfinch
n01532829: house_finch
n01534433: junco
n01537544: indigo_bunting
n01558993: robin
n01560419: bulbul
n01580077: jay
n01582220: magpie
n01592084: chickadee
n01601694: water_ouzel
n01608432: kite
n01614925: bald_eagle
n01616318: vulture
n01622779: great_grey_owl
n01629819: European_fire_salamander
n01630670: common_newt
n01631663: eft
n01632458: spotted_salamander
n01632777: axolotl
n01641577: bullfrog
n01644373: tree_frog
n01644900: tailed_frog
n01664065: loggerhead
n01665541: leatherback_turtle
n01667114: mud_turtle
n01667778: terrapin
n01669191: box_turtle
n01675722: banded_gecko
n01677366: common_iguana
n01682714: American_chameleon
n01685808: whiptail
n01687978: agama
n01688243: frilled_lizard
n01689811: alligator_lizard
n01692333: Gila_monster
n01693334: green_lizard
n01694178: African_chameleon
n01695060: Komodo_dragon
n01697457: African_crocodile
n01698640: American_alligator
n01704323: triceratops
n01728572: thunder_snake
n01728920: ringneck_snake
n01729322: hognose_snake
n01729977: green_snake
n01734418: king_snake
n01735189: garter_snake
n01737021: water_snake
n01739381: vine_snake
n01740131: night_snake
n01742172: boa_constrictor
n01744401: rock_python
n01748264: Indian_cobra
n01749939: green_mamba
n01751748: sea_snake
n01753488: horned_viper
n01755581: diamondback
n01756291: sidewinder
n01768244: trilobite
n01770081: harvestman
n01770393: scorpion
n01773157: black_and_gold_garden_spider
n01773549: barn_spider
n01773797: garden_spider
n01774384: black_widow
n01774750: tarantula
n01775062: wolf_spider
n01776313: tick
n01784675: centipede
n01795545: black_grouse
n01796340: ptarmigan
n01797886: ruffed_grouse
n01798484: prairie_chicken
n01806143: peacock
n01806567: quail
n01807496: partridge
n01817953: African_grey
n01818515: macaw
n01819313: sulphur-crested_cockatoo
n01820546: lorikeet
n01824575: coucal
n01828970: bee_eater
n01829413: hornbill
n01833805: hummingbird
n01843065: jacamar
n01843383: toucan
n01847000: drake
n01855032: red-breasted_merganser
n01855672: goose
n01860187: black_swan
n01871265: tusker
n01872401: echidna
n01873310: platypus
n01877812: wallaby
n01882714: koala
n01883070: wombat
n01910747: jellyfish
n01914609: sea_anemone
n01917289: brain_coral
n01924916: flatworm
n01930112: nematode
n01943899: conch
n01944390: snail
n01945685: slug
n01950731: sea_slug
n01955084: chiton
n01968897: chambered_nautilus
n01978287: Dungeness_crab
n01978455: rock_crab
n01980166: fiddler_crab
n01981276: king_crab
n01983481: American_lobster
n01984695: spiny_lobster
n01985128: crayfish
n01986214: hermit_crab
n01990800: isopod
n02002556: white_stork
n02002724: black_stork
n02006656: spoonbill
n02007558: flamingo
n02009229: little_blue_heron
n02009912: American_egret
n02011460: bittern
n02012849: crane_(bird)
n02013706: limpkin
n02017213: European_gallinule
n02018207: American_coot
n02018795: bustard
n02025239: ruddy_turnstone
n02027492: red-backed_sandpiper
n02028035: redshank
n02033041: dowitcher
n02037110: oystercatcher
n02051845: pelican
n02056570: king_penguin
n02058221: albatross
n02066245: grey_whale
n02071294: killer_whale
n02074367: dugong
n02077923: sea_lion
n02085620: Chihuahua
n02085782: Japanese_spaniel
n02085936: Maltese_dog
n02086079: Pekinese
n02086240: Shih-Tzu
n02086646: Blenheim_spaniel
n02086910: papillon
n02087046: toy_terrier
n02087394: Rhodesian_ridgeback
n02088094: Afghan_hound
n02088238: basset
n02088364: beagle
n02088466: bloodhound
n02088632: bluetick
n02089078: black-and-tan_coonhound
n02089867: Walker_hound
n02089973: English_foxhound
n02090379: redbone
n02090622: borzoi
n02090721: Irish_wolfhound
n02091032: Italian_greyhound
n02091134: whippet
n02091244: Ibizan_hound
n02091467: Norwegian_elkhound
n02091635: otterhound
n02091831: Saluki
n02092002: Scottish_deerhound
n02092339: Weimaraner
n02093256: Staffordshire_bullterrier
n02093428: American_Staffordshire_terrier
n02093647: Bedlington_terrier
n02093754: Border_terrier
n02093859: Kerry_blue_terrier
n02093991: Irish_terrier
n02094114: Norfolk_terrier
n02094258: Norwich_terrier
n02094433: Yorkshire_terrier
n02095314: wire-haired_fox_terrier
n02095570: Lakeland_terrier
n02095889: Sealyham_terrier
n02096051: Airedale
n02096177: cairn
n02096294: Australian_terrier
n02096437: Dandie_Dinmont
n02096585: Boston_bull
n02097047: miniature_schnauzer
n02097130: giant_schnauzer
n02097209: standard_schnauzer
n02097298: Scotch_terrier
n02097474: Tibetan_terrier
n02097658: silky_terrier
n02098105: soft-coated_wheaten_terrier
n02098286: West_Highland_white_terrier
n02098413: Lhasa
n02099267: flat-coated_retriever
n02099429: curly-coated_retriever
n02099601: golden_retriever
n02099712: Labrador_retriever
n02099849: Chesapeake_Bay_retriever
n02100236: German_short-haired_pointer
n02100583: vizsla
n02100735: English_setter
n02100877: Irish_setter
n02101006: Gordon_setter
n02101388: Brittany_spaniel
n02101556: clumber
n02102040: English_springer
n02102177: Welsh_springer_spaniel
n02102318: cocker_spaniel
n02102480: Sussex_spaniel
n02102973: Irish_water_spaniel
n02104029: kuvasz
n02104365: schipperke
n02105056: groenendael
n02105162: malinois
n02105251: briard
n02105412: kelpie
n02105505: komondor
n02105641: Old_English_sheepdog
n02105855: Shetland_sheepdog
n02106030: collie
n02106166: Border_collie
n02106382: Bouvier_des_Flandres
n02106550: Rottweiler
n02106662: German_shepherd
n02107142: Doberman
n02107312: miniature_pinscher
n02107574: Greater_Swiss_Mountain_dog
n02107683: Bernese_mountain_dog
n02107908: Appenzeller
n02108000: EntleBucher
n02108089: boxer
n02108422: bull_mastiff
n02108551: Tibetan_mastiff
n02108915: French_bulldog
n02109047: Great_Dane
n02109525: Saint_Bernard
n02109961: Eskimo_dog
n02110063: malamute
n02110185: Siberian_husky
n02110341: dalmatian
n02110627: affenpinscher
n02110806: basenji
n02110958: pug
n02111129: Leonberg
n02111277: Newfoundland
n02111500: Great_Pyrenees
n02111889: Samoyed
n02112018: Pomeranian
n02112137: chow
n02112350: keeshond
n02112706: Brabancon_griffon
n02113023: Pembroke
n02113186: Cardigan
n02113624: toy_poodle
n02113712: miniature_poodle
n02113799: standard_poodle
n02113978: Mexican_hairless
n02114367: timber_wolf
n02114548: white_wolf
n02114712: red_wolf
n02114855: coyote
n02115641: dingo
n02115913: dhole
n02116738: African_hunting_dog
n02117135: hyena
n02119022: red_fox
n02119789: kit_fox
n02120079: Arctic_fox
n02120505: grey_fox
n02123045: tabby
n02123159: tiger_cat
n02123394: Persian_cat
n02123597: Siamese_cat
n02124075: Egyptian_cat
n02125311: cougar
n02127052: lynx
n02128385: leopard
n02128757: snow_leopard
n02128925: jaguar
n02129165: lion
n02129604: tiger
n02130308: cheetah
n02132136: brown_bear
n02133161: American_black_bear
n02134084: ice_bear
n02134418: sloth_bear
n02137549: mongoose
n02138441: meerkat
n02165105: tiger_beetle
n02165456: ladybug
n02167151: ground_beetle
n02168699: long-horned_beetle
n02169497: leaf_beetle
n02172182: dung_beetle
n02174001: rhinoceros_beetle
n02177972: weevil
n02190166: fly
n02206856: bee
n02219486: ant
n02226429: grasshopper
n02229544: cricket
n02231487: walking_stick
n02233338: cockroach
n02236044: mantis
n02256656: cicada
n02259212: leafhopper
n02264363: lacewing
n02268443: dragonfly
n02268853: damselfly
n02276258: admiral
n02277742: ringlet
n02279972: monarch
n02280649: cabbage_butterfly
n02281406: sulphur_butterfly
n02281787: lycaenid
n02317335: starfish
n02319095: sea_urchin
n02321529: sea_cucumber
n02325366: wood_rabbit
n02326432: hare
n02328150: Angora
n02342885: hamster
n02346627: porcupine
n02356798: fox_squirrel
n02361337: marmot
n02363005: beaver
n02364673: guinea_pig
n02389026: sorrel
n02391049: zebra
n02395406: hog
n02396427: wild_boar
n02397096: warthog
n02398521: hippopotamus
n02403003: ox
n02408429: water_buffalo
n02410509: bison
n02412080: ram
n02415577: bighorn
n02417914: ibex
n02422106: hartebeest
n02422699: impala
n02423022: gazelle
n02437312: Arabian_camel
n02437616: llama
n02441942: weasel
n02442845: mink
n02443114: polecat
n02443484: black-footed_ferret
n02444819: otter
n02445715: skunk
n02447366: badger
n02454379: armadillo
n02457408: three-toed_sloth
n02480495: orangutan
n02480855: gorilla
n02481823: chimpanzee
n02483362: gibbon
n02483708: siamang
n02484975: guenon
n02486261: patas
n02486410: baboon
n02487347: macaque
n02488291: langur
n02488702: colobus
n02489166: proboscis_monkey
n02490219: marmoset
n02492035: capuchin
n02492660: howler_monkey
n02493509: titi
n02493793: spider_monkey
n02494079: squirrel_monkey
n02497673: Madagascar_cat
n02500267: indri
n02504013: Indian_elephant
n02504458: African_elephant
n02509815: lesser_panda
n02510455: giant_panda
n02514041: barracouta
n02526121: eel
n02536864: coho
n02606052: rock_beauty
n02607072: anemone_fish
n02640242: sturgeon
n02641379: gar
n02643566: lionfish
n02655020: puffer
n02666196: abacus
n02667093: abaya
n02669723: academic_gown
n02672831: accordion
n02676566: acoustic_guitar
n02687172: aircraft_carrier
n02690373: airliner
n02692877: airship
n02699494: altar
n02701002: ambulance
n02704792: amphibian
n02708093: analog_clock
n02727426: apiary
n02730930: apron
n02747177: ashcan
n02749479: assault_rifle
n02769748: backpack
n02776631: bakery
n02777292: balance_beam
n02782093: balloon
n02783161: ballpoint
n02786058: Band_Aid
n02787622: banjo
n02788148: bannister
n02790996: barbell
n02791124: barber_chair
n02791270: barbershop
n02793495: barn
n02794156: barometer
n02795169: barrel
n02797295: barrow
n02799071: baseball
n02802426: basketball
n02804414: bassinet
n02804610: bassoon
n02807133: bathing_cap
n02808304: bath_towel
n02808440: bathtub
n02814533: beach_wagon
n02814860: beacon
n02815834: beaker
n02817516: bearskin
n02823428: beer_bottle
n02823750: beer_glass
n02825657: bell_cote
n02834397: bib
n02835271: bicycle-built-for-two
n02837789: bikini
n02840245: binder
n02841315: binoculars
n02843684: birdhouse
n02859443: boathouse
n02860847: bobsled
n02865351: bolo_tie
n02869837: bonnet
n02870880: bookcase
n02871525: bookshop
n02877765: bottlecap
n02879718: bow
n02883205: bow_tie
n02892201: brass
n02892767: brassiere
n02894605: breakwater
n02895154: breastplate
n02906734: broom
n02909870: bucket
n02910353: buckle
n02916936: bulletproof_vest
n02917067: bullet_train
n02927161: butcher_shop
n02930766: cab
n02939185: caldron
n02948072: candle
n02950826: cannon
n02951358: canoe
n02951585: can_opener
n02963159: cardigan
n02965783: car_mirror
n02966193: carousel
n02966687: carpenter's_kit
n02971356: carton
n02974003: car_wheel
n02977058: cash_machine
n02978881: cassette
n02979186: cassette_player
n02980441: castle
n02981792: catamaran
n02988304: CD_player
n02992211: cello
n02992529: cellular_telephone
n02999410: chain
n03000134: chainlink_fence
n03000247: chain_mail
n03000684: chain_saw
n03014705: chest
n03016953: chiffonier
n03017168: chime
n03018349: china_cabinet
n03026506: Christmas_stocking
n03028079: church
n03032252: cinema
n03041632: cleaver
n03042490: cliff_dwelling
n03045698: cloak
n03047690: clog
n03062245: cocktail_shaker
n03063599: coffee_mug
n03063689: coffeepot
n03065424: coil
n03075370: combination_lock
n03085013: computer_keyboard
n03089624: confectionery
n03095699: container_ship
n03100240: convertible
n03109150: corkscrew
n03110669: cornet
n03124043: cowboy_boot
n03124170: cowboy_hat
n03125729: cradle
n03126707: crane_(machine)
n03127747: crash_helmet
n03127925: crate
n03131574: crib
n03133878: Crock_Pot
n03134739: croquet_ball
n03141823: crutch
n03146219: cuirass
n03160309: dam
n03179701: desk
n03180011: desktop_computer
n03187595: dial_telephone
n03188531: diaper
n03196217: digital_clock
n03197337: digital_watch
n03201208: dining_table
n03207743: dishrag
n03207941: dishwasher
n03208938: disk_brake
n03216828: dock
n03218198: dogsled
n03220513: dome
n03223299: doormat
n03240683: drilling_platform
n03249569: drum
n03250847: drumstick
n03255030: dumbbell
n03259280: Dutch_oven
n03271574: electric_fan
n03272010: electric_guitar
n03272562: electric_locomotive
n03290653: entertainment_center
n03291819: envelope
n03297495: espresso_maker
n03314780: face_powder
n03325584: feather_boa
n03337140: file
n03344393: fireboat
n03345487: fire_engine
n03347037: fire_screen
n03355925: flagpole
n03372029: flute
n03376595: folding_chair
n03379051: football_helmet
n03384352: forklift
n03388043: fountain
n03388183: fountain_pen
n03388549: four-poster
n03393912: freight_car
n03394916: French_horn
n03400231: frying_pan
n03404251: fur_coat
n03417042: garbage_truck
n03424325: gasmask
n03425413: gas_pump
n03443371: goblet
n03444034: go-kart
n03445777: golf_ball
n03445924: golfcart
n03447447: gondola
n03447721: gong
n03450230: gown
n03452741: grand_piano
n03457902: greenhouse
n03459775: grille
n03461385: grocery_store
n03467068: guillotine
n03476684: hair_slide
n03476991: hair_spray
n03478589: half_track
n03481172: hammer
n03482405: hamper
n03483316: hand_blower
n03485407: hand-held_computer
n03485794: handkerchief
n03492542: hard_disc
n03494278: harmonica
n03495258: harp
n03496892: harvester
n03498962: hatchet
n03527444: holster
n03529860: home_theater
n03530642: honeycomb
n03532672: hook
n03534580: hoopskirt
n03535780: horizontal_bar
n03538406: horse_cart
n03544143: hourglass
n03584254: iPod
n03584829: iron
n03590841: jack-o'-lantern
n03594734: jean
n03594945: jeep
n03595614: jersey
n03598930: jigsaw_puzzle
n03599486: jinrikisha
n03602883: joystick
n03617480: kimono
n03623198: knee_pad
n03627232: knot
n03630383: lab_coat
n03633091: ladle
n03637318: lampshade
n03642806: laptop
n03649909: lawn_mower
n03657121: lens_cap
n03658185: letter_opener
n03661043: library
n03662601: lifeboat
n03666591: lighter
n03670208: limousine
n03673027: liner
n03676483: lipstick
n03680355: Loafer
n03690938: lotion
n03691459: loudspeaker
n03692522: loupe
n03697007: lumbermill
n03706229: magnetic_compass
n03709823: mailbag
n03710193: mailbox
n03710637: maillot_(tights)
n03710721: maillot_(tank_suit)
n03717622: manhole_cover
n03720891: maraca
n03721384: marimba
n03724870: mask
n03729826: matchstick
n03733131: maypole
n03733281: maze
n03733805: measuring_cup
n03742115: medicine_chest
n03743016: megalith
n03759954: microphone
n03761084: microwave
n03763968: military_uniform
n03764736: milk_can
n03769881: minibus
n03770439: miniskirt
n03770679: minivan
n03773504: missile
n03775071: mitten
n03775546: mixing_bowl
n03776460: mobile_home
n03777568: Model_T
n03777754: modem
n03781244: monastery
n03782006: monitor
n03785016: moped
n03786901: mortar
n03787032: mortarboard
n03788195: mosque
n03788365: mosquito_net
n03791053: motor_scooter
n03792782: mountain_bike
n03792972: mountain_tent
n03793489: mouse
n03794056: mousetrap
n03796401: moving_van
n03803284: muzzle
n03804744: nail
n03814639: neck_brace
n03814906: necklace
n03825788: nipple
n03832673: notebook
n03837869: obelisk
n03838899: oboe
n03840681: ocarina
n03841143: odometer
n03843555: oil_filter
n03854065: organ
n03857828: oscilloscope
n03866082: overskirt
n03868242: oxcart
n03868863: oxygen_mask
n03871628: packet
n03873416: paddle
n03874293: paddlewheel
n03874599: padlock
n03876231: paintbrush
n03877472: pajama
n03877845: palace
n03884397: panpipe
n03887697: paper_towel
n03888257: parachute
n03888605: parallel_bars
n03891251: park_bench
n03891332: parking_meter
n03895866: passenger_car
n03899768: patio
n03902125: pay-phone
n03903868: pedestal
n03908618: pencil_box
n03908714: pencil_sharpener
n03916031: perfume
n03920288: Petri_dish
n03924679: photocopier
n03929660: pick
n03929855: pickelhaube
n03930313: picket_fence
n03930630: pickup
n03933933: pier
n03935335: piggy_bank
n03937543: pill_bottle
n03938244: pillow
n03942813: ping-pong_ball
n03944341: pinwheel
n03947888: pirate
n03950228: pitcher
n03954731: plane
n03956157: planetarium
n03958227: plastic_bag
n03961711: plate_rack
n03967562: plow
n03970156: plunger
n03976467: Polaroid_camera
n03976657: pole
n03977966: police_van
n03980874: poncho
n03982430: pool_table
n03983396: pop_bottle
n03991062: pot
n03992509: potter's_wheel
n03995372: power_drill
n03998194: prayer_rug
n04004767: printer
n04005630: prison
n04008634: projectile
n04009552: projector
n04019541: puck
n04023962: punching_bag
n04026417: purse
n04033901: quill
n04033995: quilt
n04037443: racer
n04039381: racket
n04040759: radiator
n04041544: radio
n04044716: radio_telescope
n04049303: rain_barrel
n04065272: recreational_vehicle
n04067472: reel
n04069434: reflex_camera
n04070727: refrigerator
n04074963: remote_control
n04081281: restaurant
n04086273: revolver
n04090263: rifle
n04099969: rocking_chair
n04111531: rotisserie
n04116512: rubber_eraser
n04118538: rugby_ball
n04118776: rule
n04120489: running_shoe
n04125021: safe
n04127249: safety_pin
n04131690: saltshaker
n04133789: sandal
n04136333: sarong
n04141076: sax
n04141327: scabbard
n04141975: scale
n04146614: school_bus
n04147183: schooner
n04149813: scoreboard
n04152593: screen
n04153751: screw
n04154565: screwdriver
n04162706: seat_belt
n04179913: sewing_machine
n04192698: shield
n04200800: shoe_shop
n04201297: shoji
n04204238: shopping_basket
n04204347: shopping_cart
n04208210: shovel
n04209133: shower_cap
n04209239: shower_curtain
n04228054: ski
n04229816: ski_mask
n04235860: sleeping_bag
n04238763: slide_rule
n04239074: sliding_door
n04243546: slot
n04251144: snorkel
n04252077: snowmobile
n04252225: snowplow
n04254120: soap_dispenser
n04254680: soccer_ball
n04254777: sock
n04258138: solar_dish
n04259630: sombrero
n04263257: soup_bowl
n04264628: space_bar
n04265275: space_heater
n04266014: space_shuttle
n04270147: spatula
n04273569: speedboat
n04275548: spider_web
n04277352: spindle
n04285008: sports_car
n04286575: spotlight
n04296562: stage
n04310018: steam_locomotive
n04311004: steel_arch_bridge
n04311174: steel_drum
n04317175: stethoscope
n04325704: stole
n04326547: stone_wall
n04328186: stopwatch
n04330267: stove
n04332243: strainer
n04335435: streetcar
n04336792: stretcher
n04344873: studio_couch
n04346328: stupa
n04347754: submarine
n04350905: suit
n04355338: sundial
n04355933: sunglass
n04356056: sunglasses
n04357314: sunscreen
n04366367: suspension_bridge
n04367480: swab
n04370456: sweatshirt
n04371430: swimming_trunks
n04371774: swing
n04372370: switch
n04376876: syringe
n04380533: table_lamp
n04389033: tank
n04392985: tape_player
n04398044: teapot
n04399382: teddy
n04404412: television
n04409515: tennis_ball
n04417672: thatch
n04418357: theater_curtain
n04423845: thimble
n04428191: thresher
n04429376: throne
n04435653: tile_roof
n04442312: toaster
n04443257: tobacco_shop
n04447861: toilet_seat
n04456115: torch
n04458633: totem_pole
n04461696: tow_truck
n04462240: toyshop
n04465501: tractor
n04467665: trailer_truck
n04476259: tray
n04479046: trench_coat
n04482393: tricycle
n04483307: trimaran
n04485082: tripod
n04486054: triumphal_arch
n04487081: trolleybus
n04487394: trombone
n04493381: tub
n04501370: turnstile
n04505470: typewriter_keyboard
n04507155: umbrella
n04509417: unicycle
n04515003: upright
n04517823: vacuum
n04522168: vase
n04523525: vault
n04525038: velvet
n04525305: vending_machine
n04532106: vestment
n04532670: viaduct
n04536866: violin
n04540053: volleyball
n04542943: waffle_iron
n04548280: wall_clock
n04548362: wallet
n04550184: wardrobe
n04552348: warplane
n04553703: washbasin
n04554684: washer
n04557648: water_bottle
n04560804: water_jug
n04562935: water_tower
n04579145: whiskey_jug
n04579432: whistle
n04584207: wig
n04589890: window_screen
n04590129: window_shade
n04591157: Windsor_tie
n04591713: wine_bottle
n04592741: wing
n04596742: wok
n04597913: wooden_spoon
n04599235: wool
n04604644: worm_fence
n04606251: wreck
n04612504: yawl
n04613696: yurt
n06359193: web_site
n06596364: comic_book
n06785654: crossword_puzzle
n06794110: street_sign
n06874185: traffic_light
n07248320: book_jacket
n07565083: menu
n07579787: plate
n07583066: guacamole
n07584110: consomme
n07590611: hot_pot
n07613480: trifle
n07614500: ice_cream
n07615774: ice_lolly
n07684084: French_loaf
n07693725: bagel
n07695742: pretzel
n07697313: cheeseburger
n07697537: hotdog
n07711569: mashed_potato
n07714571: head_cabbage
n07714990: broccoli
n07715103: cauliflower
n07716358: zucchini
n07716906: spaghetti_squash
n07717410: acorn_squash
n07717556: butternut_squash
n07718472: cucumber
n07718747: artichoke
n07720875: bell_pepper
n07730033: cardoon
n07734744: mushroom
n07742313: Granny_Smith
n07745940: strawberry
n07747607: orange
n07749582: lemon
n07753113: fig
n07753275: pineapple
n07753592: banana
n07754684: jackfruit
n07760859: custard_apple
n07768694: pomegranate
n07802026: hay
n07831146: carbonara
n07836838: chocolate_sauce
n07860988: dough
n07871810: meat_loaf
n07873807: pizza
n07875152: potpie
n07880968: burrito
n07892512: red_wine
n07920052: espresso
n07930864: cup
n07932039: eggnog
n09193705: alp
n09229709: bubble
n09246464: cliff
n09256479: coral_reef
n09288635: geyser
n09332890: lakeside
n09399592: promontory
n09421951: sandbar
n09428293: seashore
n09468604: valley
n09472597: volcano
n09835506: ballplayer
n10148035: groom
n10565667: scuba_diver
n11879895: rapeseed
n11939491: daisy
n12057211: yellow_lady's_slipper
n12144580: corn
n12267677: acorn
n12620546: hip
n12768682: buckeye
n12985857: coral_fungus
n12998815: agaric
n13037406: gyromitra
n13040303: stinkhorn
n13044778: earthstar
n13052670: hen-of-the-woods
n13054560: bolete
n13133613: ear
n15075141: toilet_tissue
# Download script/URL (optional)
download: yolo/data/scripts/get_imagenet.sh
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Objects365 dataset https://www.objects365.org/ by Megvii
# Documentation: https://docs.ultralytics.com/datasets/detect/objects365/
# Example usage: yolo train data=Objects365.yaml
# parent
# ├── ultralytics
# └── datasets
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Objects365 # dataset root dir
train: images/train # train images (relative to 'path') 1742289 images
val: images/val # val images (relative to 'path') 80000 images
test: # test images (optional)
# Classes
names:
0: Person
1: Sneakers
2: Chair
3: Other Shoes
4: Hat
5: Car
6: Lamp
7: Glasses
8: Bottle
9: Desk
10: Cup
11: Street Lights
12: Cabinet/shelf
13: Handbag/Satchel
14: Bracelet
15: Plate
16: Picture/Frame
17: Helmet
18: Book
19: Gloves
20: Storage box
21: Boat
22: Leather Shoes
23: Flower
24: Bench
25: Potted Plant
26: Bowl/Basin
27: Flag
28: Pillow
29: Boots
30: Vase
31: Microphone
32: Necklace
33: Ring
34: SUV
35: Wine Glass
36: Belt
37: Monitor/TV
38: Backpack
39: Umbrella
40: Traffic Light
41: Speaker
42: Watch
43: Tie
44: Trash bin Can
45: Slippers
46: Bicycle
47: Stool
48: Barrel/bucket
49: Van
50: Couch
51: Sandals
52: Basket
53: Drum
54: Pen/Pencil
55: Bus
56: Wild Bird
57: High Heels
58: Motorcycle
59: Guitar
60: Carpet
61: Cell Phone
62: Bread
63: Camera
64: Canned
65: Truck
66: Traffic cone
67: Cymbal
68: Lifesaver
69: Towel
70: Stuffed Toy
71: Candle
72: Sailboat
73: Laptop
74: Awning
75: Bed
76: Faucet
77: Tent
78: Horse
79: Mirror
80: Power outlet
81: Sink
82: Apple
83: Air Conditioner
84: Knife
85: Hockey Stick
86: Paddle
87: Pickup Truck
88: Fork
89: Traffic Sign
90: Balloon
91: Tripod
92: Dog
93: Spoon
94: Clock
95: Pot
96: Cow
97: Cake
98: Dining Table
99: Sheep
100: Hanger
101: Blackboard/Whiteboard
102: Napkin
103: Other Fish
104: Orange/Tangerine
105: Toiletry
106: Keyboard
107: Tomato
108: Lantern
109: Machinery Vehicle
110: Fan
111: Green Vegetables
112: Banana
113: Baseball Glove
114: Airplane
115: Mouse
116: Train
117: Pumpkin
118: Soccer
119: Skiboard
120: Luggage
121: Nightstand
122: Tea pot
123: Telephone
124: Trolley
125: Head Phone
126: Sports Car
127: Stop Sign
128: Dessert
129: Scooter
130: Stroller
131: Crane
132: Remote
133: Refrigerator
134: Oven
135: Lemon
136: Duck
137: Baseball Bat
138: Surveillance Camera
139: Cat
140: Jug
141: Broccoli
142: Piano
143: Pizza
144: Elephant
145: Skateboard
146: Surfboard
147: Gun
148: Skating and Skiing shoes
149: Gas stove
150: Donut
151: Bow Tie
152: Carrot
153: Toilet
154: Kite
155: Strawberry
156: Other Balls
157: Shovel
158: Pepper
159: Computer Box
160: Toilet Paper
161: Cleaning Products
162: Chopsticks
163: Microwave
164: Pigeon
165: Baseball
166: Cutting/chopping Board
167: Coffee Table
168: Side Table
169: Scissors
170: Marker
171: Pie
172: Ladder
173: Snowboard
174: Cookies
175: Radiator
176: Fire Hydrant
177: Basketball
178: Zebra
179: Grape
180: Giraffe
181: Potato
182: Sausage
183: Tricycle
184: Violin
185: Egg
186: Fire Extinguisher
187: Candy
188: Fire Truck
189: Billiards
190: Converter
191: Bathtub
192: Wheelchair
193: Golf Club
194: Briefcase
195: Cucumber
196: Cigar/Cigarette
197: Paint Brush
198: Pear
199: Heavy Truck
200: Hamburger
201: Extractor
202: Extension Cord
203: Tong
204: Tennis Racket
205: Folder
206: American Football
207: earphone
208: Mask
209: Kettle
210: Tennis
211: Ship
212: Swing
213: Coffee Machine
214: Slide
215: Carriage
216: Onion
217: Green beans
218: Projector
219: Frisbee
220: Washing Machine/Drying Machine
221: Chicken
222: Printer
223: Watermelon
224: Saxophone
225: Tissue
226: Toothbrush
227: Ice cream
228: Hot-air balloon
229: Cello
230: French Fries
231: Scale
232: Trophy
233: Cabbage
234: Hot dog
235: Blender
236: Peach
237: Rice
238: Wallet/Purse
239: Volleyball
240: Deer
241: Goose
242: Tape
243: Tablet
244: Cosmetics
245: Trumpet
246: Pineapple
247: Golf Ball
248: Ambulance
249: Parking meter
250: Mango
251: Key
252: Hurdle
253: Fishing Rod
254: Medal
255: Flute
256: Brush
257: Penguin
258: Megaphone
259: Corn
260: Lettuce
261: Garlic
262: Swan
263: Helicopter
264: Green Onion
265: Sandwich
266: Nuts
267: Speed Limit Sign
268: Induction Cooker
269: Broom
270: Trombone
271: Plum
272: Rickshaw
273: Goldfish
274: Kiwi fruit
275: Router/modem
276: Poker Card
277: Toaster
278: Shrimp
279: Sushi
280: Cheese
281: Notepaper
282: Cherry
283: Pliers
284: CD
285: Pasta
286: Hammer
287: Cue
288: Avocado
289: Hami melon
290: Flask
291: Mushroom
292: Screwdriver
293: Soap
294: Recorder
295: Bear
296: Eggplant
297: Board Eraser
298: Coconut
299: Tape Measure/Ruler
300: Pig
301: Showerhead
302: Globe
303: Chips
304: Steak
305: Crosswalk Sign
306: Stapler
307: Camel
308: Formula 1
309: Pomegranate
310: Dishwasher
311: Crab
312: Hoverboard
313: Meatball
314: Rice Cooker
315: Tuba
316: Calculator
317: Papaya
318: Antelope
319: Parrot
320: Seal
321: Butterfly
322: Dumbbell
323: Donkey
324: Lion
325: Urinal
326: Dolphin
327: Electric Drill
328: Hair Dryer
329: Egg tart
330: Jellyfish
331: Treadmill
332: Lighter
333: Grapefruit
334: Game board
335: Mop
336: Radish
337: Baozi
338: Target
339: French
340: Spring Rolls
341: Monkey
342: Rabbit
343: Pencil Case
344: Yak
345: Red Cabbage
346: Binoculars
347: Asparagus
348: Barbell
349: Scallop
350: Noddles
351: Comb
352: Dumpling
353: Oyster
354: Table Tennis paddle
355: Cosmetics Brush/Eyeliner Pencil
356: Chainsaw
357: Eraser
358: Lobster
359: Durian
360: Okra
361: Lipstick
362: Cosmetics Mirror
363: Curling
364: Table Tennis
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from tqdm import tqdm
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.downloads import download
from ultralytics.utils.ops import xyxy2xywhn
import numpy as np
from pathlib import Path
check_requirements(('pycocotools>=2.0',))
from pycocotools.coco import COCO
# Make Directories
dir = Path(yaml['path']) # dataset root dir
for p in 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
for q in 'train', 'val':
(dir / p / q).mkdir(parents=True, exist_ok=True)
# Train, Val Splits
for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
print(f"Processing {split} in {patches} patches ...")
images, labels = dir / 'images' / split, dir / 'labels' / split
# Download
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
if split == 'train':
download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir) # annotations json
download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, threads=8)
elif split == 'val':
download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir) # annotations json
download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, threads=8)
download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, threads=8)
# Move
for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
f.rename(images / f.name) # move to /images/{split}
# Labels
coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
for cid, cat in enumerate(names):
catIds = coco.getCatIds(catNms=[cat])
imgIds = coco.getImgIds(catIds=catIds)
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
width, height = im["width"], im["height"]
path = Path(im["file_name"]) # image filename
try:
with open(labels / path.with_suffix('.txt').name, 'a') as file:
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
for a in coco.loadAnns(annIds):
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
except Exception as e:
print(e)
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
# Documentation: https://docs.ultralytics.com/datasets/detect/sku-110k/
# Example usage: yolo train data=SKU-110K.yaml
# parent
# ├── ultralytics
# └── datasets
# └── SKU-110K ← downloads here (13.6 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/SKU-110K # dataset root dir
train: train.txt # train images (relative to 'path') 8219 images
val: val.txt # val images (relative to 'path') 588 images
test: test.txt # test images (optional) 2936 images
# Classes
names:
0: object
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import shutil
from pathlib import Path
import numpy as np
import pandas as pd
from tqdm import tqdm
from ultralytics.utils.downloads import download
from ultralytics.utils.ops import xyxy2xywh
# Download
dir = Path(yaml['path']) # dataset root dir
parent = Path(dir.parent) # download dir
urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
download(urls, dir=parent)
# Rename directories
if dir.exists():
shutil.rmtree(dir)
(parent / 'SKU110K_fixed').rename(dir) # rename dir
(dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
# Convert labels
names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
images, unique_images = x[:, 0], np.unique(x[:, 0])
with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
f.writelines(f'./images/{s}\n' for s in unique_images)
for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
cls = 0 # single-class dataset
with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
for r in x[images == im]:
w, h = r[6], r[7] # image width, height
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
# Documentation: # Documentation: https://docs.ultralytics.com/datasets/detect/voc/
# Example usage: yolo train data=VOC.yaml
# parent
# ├── ultralytics
# └── datasets
# └── VOC ← downloads here (2.8 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/VOC
train: # train images (relative to 'path') 16551 images
- images/train2012
- images/train2007
- images/val2012
- images/val2007
val: # val images (relative to 'path') 4952 images
- images/test2007
test: # test images (optional)
- images/test2007
# Classes
names:
0: aeroplane
1: bicycle
2: bird
3: boat
4: bottle
5: bus
6: car
7: cat
8: chair
9: cow
10: diningtable
11: dog
12: horse
13: motorbike
14: person
15: pottedplant
16: sheep
17: sofa
18: train
19: tvmonitor
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import xml.etree.ElementTree as ET
from tqdm import tqdm
from ultralytics.utils.downloads import download
from pathlib import Path
def convert_label(path, lb_path, year, image_id):
def convert_box(size, box):
dw, dh = 1. / size[0], 1. / size[1]
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
return x * dw, y * dh, w * dw, h * dh
in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
out_file = open(lb_path, 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
names = list(yaml['names'].values()) # names list
for obj in root.iter('object'):
cls = obj.find('name').text
if cls in names and int(obj.find('difficult').text) != 1:
xmlbox = obj.find('bndbox')
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
cls_id = names.index(cls) # class id
out_file.write(" ".join(str(a) for a in (cls_id, *bb)) + '\n')
# Download
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
download(urls, dir=dir / 'images', curl=True, threads=3, exist_ok=True) # download and unzip over existing paths (required)
# Convert
path = dir / 'images/VOCdevkit'
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
imgs_path = dir / 'images' / f'{image_set}{year}'
lbs_path = dir / 'labels' / f'{image_set}{year}'
imgs_path.mkdir(exist_ok=True, parents=True)
lbs_path.mkdir(exist_ok=True, parents=True)
with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
image_ids = f.read().strip().split()
for id in tqdm(image_ids, desc=f'{image_set}{year}'):
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
f.rename(imgs_path / f.name) # move image
convert_label(path, lb_path, year, id) # convert labels to YOLO format
\ No newline at end of file
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
# Documentation: https://docs.ultralytics.com/datasets/detect/visdrone/
# Example usage: yolo train data=VisDrone.yaml
# parent
# ├── ultralytics
# └── datasets
# └── VisDrone ← downloads here (2.3 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/VisDrone # dataset root dir
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
# Classes
names:
0: pedestrian
1: people
2: bicycle
3: car
4: van
5: truck
6: tricycle
7: awning-tricycle
8: bus
9: motor
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import os
from pathlib import Path
from ultralytics.utils.downloads import download
def visdrone2yolo(dir):
from PIL import Image
from tqdm import tqdm
def convert_box(size, box):
# Convert VisDrone box to YOLO xywh box
dw = 1. / size[0]
dh = 1. / size[1]
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
for f in pbar:
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
lines = []
with open(f, 'r') as file: # read annotation.txt
for row in [x.split(',') for x in file.read().strip().splitlines()]:
if row[4] == '0': # VisDrone 'ignored regions' class 0
continue
cls = int(row[5]) - 1
box = convert_box(img_size, tuple(map(int, row[:4])))
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
with open(str(f).replace(f'{os.sep}annotations{os.sep}', f'{os.sep}labels{os.sep}'), 'w') as fl:
fl.writelines(lines) # write label.txt
# Download
dir = Path(yaml['path']) # dataset root dir
urls = ['https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-train.zip',
'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-val.zip',
'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-dev.zip',
'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-challenge.zip']
download(urls, dir=dir, curl=True, threads=4)
# Convert
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# African-wildlife dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
# Example usage: yolo train data=african-wildlife.yaml
# parent
# ├── ultralytics
# └── datasets
# └── african-wildlife ← downloads here (100 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/african-wildlife # dataset root dir
train: train/images # train images (relative to 'path') 1052 images
val: valid/images # val images (relative to 'path') 225 images
test: test/images # test images (relative to 'path') 227 images
# Classes
names:
0: buffalo
1: elephant
2: rhino
3: zebra
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/african-wildlife.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Brain-tumor dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/brain-tumor/
# Example usage: yolo train data=brain-tumor.yaml
# parent
# ├── ultralytics
# └── datasets
# └── brain-tumor ← downloads here (4.05 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/brain-tumor # dataset root dir
train: train/images # train images (relative to 'path') 893 images
val: valid/images # val images (relative to 'path') 223 images
test: # test images (relative to 'path')
# Classes
names:
0: negative
1: positive
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/brain-tumor.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Carparts-seg dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/carparts-seg/
# Example usage: yolo train data=carparts-seg.yaml
# parent
# ├── ultralytics
# └── datasets
# └── carparts-seg ← downloads here (132 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/carparts-seg # dataset root dir
train: train/images # train images (relative to 'path') 3516 images
val: valid/images # val images (relative to 'path') 276 images
test: test/images # test images (relative to 'path') 401 images
# Classes
names:
0: back_bumper
1: back_door
2: back_glass
3: back_left_door
4: back_left_light
5: back_light
6: back_right_door
7: back_right_light
8: front_bumper
9: front_door
10: front_glass
11: front_left_door
12: front_left_light
13: front_light
14: front_right_door
15: front_right_light
16: hood
17: left_mirror
18: object
19: right_mirror
20: tailgate
21: trunk
22: wheel
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/carparts-seg.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO 2017 Keypoints dataset https://cocodataset.org by Microsoft
# Documentation: https://docs.ultralytics.com/datasets/pose/coco/
# Example usage: yolo train data=coco-pose.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco-pose ← downloads here (20.1 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco-pose # dataset root dir
train: train2017.txt # train images (relative to 'path') 56599 images
val: val2017.txt # val images (relative to 'path') 2346 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://codalab.lisn.upsaclay.fr/competitions/7403
# Keypoints
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
# Classes
names:
0: person
# Download script/URL (optional)
download: |
from ultralytics.utils.downloads import download
from pathlib import Path
# Download labels
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
urls = [url + 'coco2017labels-pose.zip'] # labels
download(urls, dir=dir.parent)
# Download data
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
download(urls, dir=dir / 'images', threads=3)
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO 2017 dataset https://cocodataset.org by Microsoft
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco ← downloads here (20.1 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ./coco # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: |
from ultralytics.utils.downloads import download
from pathlib import Path
# Download labels
segments = True # segment or box labels
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
download(urls, dir=dir.parent)
# Download data
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
download(urls, dir=dir / 'images', threads=3)
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/coco/
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco128-seg ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128-seg # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128-seg.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco128 ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128 # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
# Example usage: yolo train data=coco8-pose.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco8-pose ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8-pose # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
# Keypoints
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
# Classes
names:
0: person
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
# Example usage: yolo train data=coco8-seg.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco8-seg ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8-seg # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-seg.zip
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8/
# Example usage: yolo train data=coco8.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco8 ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8 # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8.zip
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment