from ultralytics import YOLOv10 model = YOLOv10() # If you want to finetune the model with pretrained weights, you could load the # pretrained weights like below # model = YOLOv10('yolov10s.pt') # Or # model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}') # model.train(data='coco.yaml', model='yolov10s.yaml', epochs=500, batch=256, imgsz=640, resume=True, device='0,1,2,3') # for resume model.train(data='coco.yaml', model='yolov10s.yaml', epochs=500, batch=256, imgsz=640, device='0,1,2,3') # Note that you can upload your trained model to HuggingFace Hub like below # model.push_to_hub("reponame", config={"model": "yolov10n/s/m/b/l/x.yaml"}) ''' if you want to resume, need to add something here: ultralytics/engine/trainer.py:__init__: overrides["resume"] = 'runs/detect/train/weights/last.pt' self.args.resume = True '''