from ultralytics import YOLOE from ultralytics.models.yolo.yoloe.train_pe import YOLOEPEFreeTrainer import os from ultralytics.nn.tasks import guess_model_scale from ultralytics.utils import yaml_load, LOGGER import torch os.environ["PYTHONHASHSEED"] = "0" data = dict( train=dict( yolo_data=["Objects365v1.yaml"], grounding_data=[ dict( img_path="../datasets/flickr/full_images/", json_file="../datasets/flickr/annotations/final_flickr_separateGT_train_segm.json", ), dict( img_path="../datasets/mixed_grounding/gqa/images", json_file="../datasets/mixed_grounding/annotations/final_mixed_train_no_coco_segm.json", ), ], ), val=dict(yolo_data=["lvis.yaml"]), ) model_path = "yoloe-v8l.yaml" scale = guess_model_scale(model_path) cfg_dir = "ultralytics/cfg" default_cfg_path = f"{cfg_dir}/default.yaml" extend_cfg_path = f"{cfg_dir}/{scale}_train.yaml" defaults = yaml_load(default_cfg_path) extends = yaml_load(extend_cfg_path) assert(all(k in defaults for k in extends)) LOGGER.info(f"Extends: {extends}") model = YOLOE("yoloe-v8l-seg-det.pt") # Ensure pe is set for classes names = ["object"] tpe = model.get_text_pe(names) pe_path = "free-pe.pt" torch.save({"names": names, "pe": tpe}, pe_path) head_index = len(model.model.model) - 1 freeze = [str(f) for f in range(0, head_index)] for name, child in model.model.model[-1].named_children(): if 'cv3' not in name: freeze.append(f"{head_index}.{name}") freeze.extend([f"{head_index}.cv3.0.0", f"{head_index}.cv3.0.1", f"{head_index}.cv3.1.0", f"{head_index}.cv3.1.1", f"{head_index}.cv3.2.0", f"{head_index}.cv3.2.1"]) model.train(data=data, batch=128, epochs=1, **extends, close_mosaic=1, \ optimizer='AdamW', lr0=2e-3, warmup_bias_lr=0.0, \ weight_decay=0.025, momentum=0.9, workers=4, \ trainer=YOLOEPEFreeTrainer, device='0,1,2,3,4,5,6,7', freeze=freeze, single_cls=True, train_pe_path=pe_path)