set -e set -x conda create -n yoloe python=3.10 -y conda activate yoloe pip install -r requirements.txt # Generate segmentation data # python tools/generate_sam_masks.py --img-path ../datasets/Objects365v1/images/train --json-path ../datasets/Objects365v1/annotations/objects365_train.json --batch # python tools/generate_sam_masks.py --img-path ../datasets/flickr/full_images/ --json-path ../datasets/flickr/annotations/final_flickr_separateGT_train.json # python tools/generate_sam_masks.py --img-path ../datasets/mixed_grounding/gqa/images --json-path ../datasets/mixed_grounding/annotations/final_mixed_train_no_coco.json # Generate data # python tools/generate_objects365v1.py # Generate grounding segmentation cache # python tools/generate_grounding_cache.py --img-path ../datasets/flickr/full_images/ --json-path ../datasets/flickr/annotations/final_flickr_separateGT_train_segm.json # python tools/generate_grounding_cache.py --img-path ../datasets/mixed_grounding/gqa/images --json-path ../datasets/mixed_grounding/annotations/final_mixed_train_no_coco_segm.json # Verify data # python tools/verify_objects365.py # python tools/verify_lvis.py # Generate train label embeddings # python tools/generate_label_embedding.py # python tools/generate_global_neg_cat.py # python tools/generate_lvis_visual_prompt_data.py