Commit af155c51 authored by chenzk's avatar chenzk
Browse files

v1.0

parents
Pipeline #2732 failed with stages
in 0 seconds
---
description: Explore the utility functions in FastSAM for adjusting bounding boxes and calculating IoU, benefiting computer vision projects.
keywords: FastSAM, bounding boxes, IoU, Ultralytics, image processing, computer vision
---
# Reference for `ultralytics/models/fastsam/utils.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/fastsam/utils.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/fastsam/utils.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/fastsam/utils.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.fastsam.utils.adjust_bboxes_to_image_border
<br><br>
---
description: Discover FastSAM Validator for segmentation in Ultralytics YOLO. Learn how to validate with custom metrics and avoid common errors. Contribute on GitHub!.
keywords: FastSAM Validator, Ultralytics, YOLO, segmentation, validation, metrics, GitHub, contribute, documentation
---
# Reference for `ultralytics/models/fastsam/val.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/fastsam/val.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/fastsam/val.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/fastsam/val.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.fastsam.val.FastSAMValidator
<br><br>
---
description: Explore the YOLO-NAS model interface and learn how to utilize pre-trained YOLO-NAS models for object detection with Ultralytics.
keywords: Ultralytics, YOLO, YOLO-NAS, object detection, pre-trained models, machine learning, deep learning, NAS model
---
# Reference for `ultralytics/models/nas/model.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/nas/model.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/nas/model.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/nas/model.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.nas.model.NAS
<br><br>
---
description: Learn about NASPredictor in Ultralytics YOLO for efficient object detection. Explore its attributes, methods, and usage with examples.
keywords: Ultralytics, YOLO, NASPredictor, object detection, machine learning, AI, non-maximum suppression, bounding boxes, image processing
---
# Reference for `ultralytics/models/nas/predict.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/nas/predict.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/nas/predict.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/nas/predict.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.nas.predict.NASPredictor
<br><br>
---
description: Explore the Ultralytics NASValidator for efficient YOLO model validation. Learn about NMS and post-processing configurations.
keywords: Ultralytics, YOLO, NASValidator, object detection, non-maximum suppression, NMS, YOLO models, machine learning
---
# Reference for `ultralytics/models/nas/val.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/nas/val.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/nas/val.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/nas/val.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.nas.val.NASValidator
<br><br>
---
description: Explore the interface for Baidu's RT-DETR, a Vision Transformer-based real-time object detector in the Ultralytics Docs. Learn more about its efficient hybrid encoding and IoU-aware query selection.
keywords: RT-DETR, real-time object detection, Vision Transformer, Ultralytics, model interface, Baidu, hybrid encoding, IoU-aware query selection, machine learning, AI
---
# Reference for `ultralytics/models/rtdetr/model.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/model.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/model.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/rtdetr/model.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.rtdetr.model.RTDETR
<br><br>
---
description: Access the complete reference for the RTDETRPredictor class in Ultralytics. Learn about its attributes, methods, and example usage for real-time object detection.
keywords: RTDETRPredictor, Ultralytics, Real-Time Detection Transformer, object detection, Vision Transformers, documentation, RT-DETR, Python class
---
# Reference for `ultralytics/models/rtdetr/predict.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/predict.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/predict.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/rtdetr/predict.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.rtdetr.predict.RTDETRPredictor
<br><br>
---
description: Explore RTDETRTrainer for efficient real-time object detection leveraging Vision Transformers. Learn configuration, dataset handling, and advanced model training.
keywords: RTDETRTrainer, real-time object detection, Vision Transformers, YOLO, RT-DETR model, model training, dataset handling
---
# Reference for `ultralytics/models/rtdetr/train.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/train.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/train.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/rtdetr/train.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.rtdetr.train.RTDETRTrainer
<br><br>
---
description: Explore the RTDETRValidator and RTDETRDataset classes for real-time detection and tracking. Understand initialization, transformations, and post-processing.
keywords: RTDETR, Ultralytics, object detection, tracking, YOLO, RTDETRDataset, RTDETRValidator, real-time detection
---
# Reference for `ultralytics/models/rtdetr/val.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/val.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/val.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/rtdetr/val.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.rtdetr.val.RTDETRDataset
<br><br><hr><br>
## ::: ultralytics.models.rtdetr.val.RTDETRValidator
<br><br>
---
description: Explore the detailed API reference for Ultralytics SAM/AMG models, including functions for mask stability scores, crop box generation, and more.
keywords: Ultralytics, SAM, AMG, API Reference, models, mask stability, crop boxes, data processing, YOLO
---
# Reference for `ultralytics/models/sam/amg.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/amg.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/amg.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/amg.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.sam.amg.is_box_near_crop_edge
<br><br><hr><br>
## ::: ultralytics.models.sam.amg.batch_iterator
<br><br><hr><br>
## ::: ultralytics.models.sam.amg.calculate_stability_score
<br><br><hr><br>
## ::: ultralytics.models.sam.amg.build_point_grid
<br><br><hr><br>
## ::: ultralytics.models.sam.amg.build_all_layer_point_grids
<br><br><hr><br>
## ::: ultralytics.models.sam.amg.generate_crop_boxes
<br><br><hr><br>
## ::: ultralytics.models.sam.amg.uncrop_boxes_xyxy
<br><br><hr><br>
## ::: ultralytics.models.sam.amg.uncrop_points
<br><br><hr><br>
## ::: ultralytics.models.sam.amg.uncrop_masks
<br><br><hr><br>
## ::: ultralytics.models.sam.amg.remove_small_regions
<br><br><hr><br>
## ::: ultralytics.models.sam.amg.batched_mask_to_box
<br><br>
---
description: Discover detailed instructions for building various Segment Anything Model (SAM) and Segment Anything Model 2 (SAM 2) architectures with Ultralytics, including SAM ViT and Mobile-SAM.
keywords: Ultralytics, SAM model, Segment Anything Model, SAM 2 model, Segment Anything Model 2, SAM ViT, Mobile-SAM, model building, deep learning, AI
---
# Reference for `ultralytics/models/sam/build.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/build.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/build.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/build.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.sam.build.build_sam_vit_h
<br><br><hr><br>
## ::: ultralytics.models.sam.build.build_sam_vit_l
<br><br><hr><br>
## ::: ultralytics.models.sam.build.build_sam_vit_b
<br><br><hr><br>
## ::: ultralytics.models.sam.build.build_mobile_sam
<br><br><hr><br>
## ::: ultralytics.models.sam.build.build_sam2_t
<br><br><hr><br>
## ::: ultralytics.models.sam.build.build_sam2_s
<br><br><hr><br>
## ::: ultralytics.models.sam.build.build_sam2_b
<br><br><hr><br>
## ::: ultralytics.models.sam.build.build_sam2_l
<br><br><hr><br>
## ::: ultralytics.models.sam.build._build_sam
<br><br><hr><br>
## ::: ultralytics.models.sam.build._build_sam2
<br><br><hr><br>
## ::: ultralytics.models.sam.build.build_sam
<br><br>
---
description: Explore the SAM (Segment Anything Model) and SAM 2 (Segment Anything Model 2) interface for real-time image segmentation. Learn about promptable segmentation and zero-shot capabilities.
keywords: Ultralytics, SAM, Segment Anything Model, SAM 2, Segment Anything Model 2, image segmentation, real-time segmentation, zero-shot performance, promptable segmentation, SA-1B dataset
---
# Reference for `ultralytics/models/sam/model.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/model.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/model.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/model.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.sam.model.SAM
<br><br>
---
description: Explore detailed documentation of various SAM and SAM 2 modules such as MaskDownSampler, CXBlock, and more, available in Ultralytics' repository.
keywords: Ultralytics, SAM encoder, SAM 2 encoder, DropPath, MaskDownSampler, CXBlock, Fuser, TwoWayTransformer, TwoWayAttentionBlock, RoPEAttention, MultiScaleAttention, MultiScaleBlock. PositionEmbeddingSine, do_pool
---
# Reference for `ultralytics/models/sam/modules/blocks.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/blocks.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/blocks.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/modules/blocks.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.sam.modules.blocks.DropPath
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.blocks.MaskDownSampler
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.blocks.CXBlock
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.blocks.Fuser
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.blocks.SAM2TwoWayAttentionBlock
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.blocks.SAM2TwoWayTransformer
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.blocks.RoPEAttention
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.blocks.MultiScaleAttention
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.blocks.MultiScaleBlock
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.blocks.PositionEmbeddingSine
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.blocks.PositionEmbeddingRandom
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.blocks.Block
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.blocks.REAttention
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.blocks.PatchEmbed
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.blocks.do_pool
<br><br>
---
description: Explore the MaskDecoder and MLP modules in Ultralytics for efficient mask prediction using transformer architecture. Detailed attributes, functionalities, and implementation.
keywords: Ultralytics, MaskDecoder, MLP, machine learning, transformer architecture, mask prediction, neural networks, PyTorch modules
---
# Reference for `ultralytics/models/sam/modules/decoders.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/decoders.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/decoders.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/modules/decoders.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.sam.modules.decoders.MaskDecoder
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.decoders.SAM2MaskDecoder
<br><br>
---
description: Explore detailed documentation of various SAM encoder modules such as ImageEncoderViT, PromptEncoder, and more, available in Ultralytics' repository.
keywords: Ultralytics, SAM encoder, ImageEncoderViT, PromptEncoder, PositionEmbeddingRandom, Block, Attention, PatchEmbed
---
# Reference for `ultralytics/models/sam/modules/encoders.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/encoders.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/encoders.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/modules/encoders.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.sam.modules.encoders.ImageEncoderViT
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.encoders.PromptEncoder
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.encoders.MemoryEncoder
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.encoders.ImageEncoder
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.encoders.FpnNeck
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.encoders.Hiera
<br><br>
---
description: Explore detailed documentation of various SAM 2 encoder modules such as MemoryAttentionLayer, MemoryAttention, available in Ultralytics' repository.
keywords: Ultralytics, SAM 2 encoder, MemoryAttentionLayer, MemoryAttention
---
# Reference for `ultralytics/models/sam/modules/memory_attention.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/memory_attention.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/memory_attention.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/modules/memory_attention.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.sam.modules.memory_attention.MemoryAttentionLayer
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.memory_attention.MemoryAttention
<br><br>
---
description: Discover the Ultralytics SAM and SAM 2 module for object segmentation. Learn about its components, such as image encoders and mask decoders, in this comprehensive guide.
keywords: Ultralytics, SAM Module, SAM 2 Module, object segmentation, image encoder, mask decoder, prompt encoder, AI, machine learning
---
# Reference for `ultralytics/models/sam/modules/sam.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/sam.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/sam.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/modules/sam.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.sam.modules.sam.SAMModel
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.sam.SAM2Model
<br><br>
---
description: Explore the detailed implementation of TinyViT architecture including Conv2d_BN, PatchEmbed, MBConv, and more in Ultralytics.
keywords: Ultralytics, TinyViT, Conv2d_BN, PatchEmbed, MBConv, Attention, PyTorch, YOLO, Deep Learning
---
# Reference for `ultralytics/models/sam/modules/tiny_encoder.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/tiny_encoder.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/tiny_encoder.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/modules/tiny_encoder.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.sam.modules.tiny_encoder.Conv2d_BN
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.tiny_encoder.PatchEmbed
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.tiny_encoder.MBConv
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.tiny_encoder.PatchMerging
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.tiny_encoder.ConvLayer
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.tiny_encoder.Mlp
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.tiny_encoder.Attention
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.tiny_encoder.TinyViTBlock
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.tiny_encoder.BasicLayer
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.tiny_encoder.TinyViT
<br><br>
---
description: Explore the TwoWayTransformer module in Ultralytics, designed for simultaneous attention to image and query points. Ideal for object detection and segmentation tasks.
keywords: Ultralytics, TwoWayTransformer, module, deep learning, transformer, object detection, image segmentation, attention mechanism, neural networks
---
# Reference for `ultralytics/models/sam/modules/transformer.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/transformer.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/transformer.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/modules/transformer.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.sam.modules.transformer.TwoWayTransformer
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.transformer.TwoWayAttentionBlock
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.transformer.Attention
<br><br>
---
description: Explore the detailed API reference for Ultralytics SAM and SAM 2 models.
keywords: Ultralytics, SAM, SAM 2, API Reference, models, window partition, data processing, YOLO
---
# Reference for `ultralytics/models/sam/modules/utils.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/utils.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/utils.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/modules/utils.py) 🛠️. Thank you 🙏!
<br>
## ::: ultralytics.models.sam.modules.utils.select_closest_cond_frames
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.utils.get_1d_sine_pe
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.utils.init_t_xy
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.utils.compute_axial_cis
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.utils.reshape_for_broadcast
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.utils.apply_rotary_enc
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.utils.window_partition
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.utils.window_unpartition
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.utils.get_rel_pos
<br><br><hr><br>
## ::: ultralytics.models.sam.modules.utils.add_decomposed_rel_pos
<br><br>
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment