from ultralytics import YOLO # 1.train # Load a model model = YOLO("yolo11s.pt") # Train the model train_results = model.train( data="coco8.yaml", # path to dataset YAML, i.e. coco2017: coco.yaml epochs=500, # number of training epochs batch=128, # batchsize, i.e. yolo11s: 128 imgsz=640, # training image size device="0,1,2,3", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu ) # Evaluate model performance on the validation set metrics = model.val() ''' # 2.infer # model = YOLO("runs/detect/train/weights/last.pt") # Load custom train model # Perform object detection on an image results = model("bus.jpg") results[0].show() ''' ''' # 3.export onnx # Export the model to ONNX format path = model.export(format="onnx") # return path to exported model '''