import argparse import functools import os from faster_whisper import WhisperModel from utils.utils import print_arguments, add_arguments os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) add_arg("audio_path", type=str, default="dataset/test.wav", help="预测的音频路径") add_arg("model_path", type=str, default="models/whisper-tiny-finetune-ct2", help="转换后的模型路径,转换方式看文档") add_arg("language", type=str, default="zh", help="设置语言,必须简写,如果为None则自动检测语言") add_arg("task", type=str, default="transcribe", choices=['transcribe', 'translate'], help="模型的任务") add_arg("use_gpu", type=bool, default=True, help="是否使用gpu进行预测") add_arg("use_int8", type=bool, default=False, help="是否使用int8进行预测") add_arg("beam_size", type=int, default=10, help="解码搜索大小") add_arg("num_workers", type=int, default=1, help="预测器的并发数量") add_arg("vad_filter", type=bool, default=False, help="是否使用VAD过滤掉部分没有讲话的音频") add_arg("local_files_only", type=bool, default=True, help="是否只在本地加载模型,不尝试下载") args = parser.parse_args() print_arguments(args) # 检查模型文件是否存在 assert os.path.exists(args.model_path), f"模型文件{args.model_path}不存在" # 加载模型 if args.use_gpu: if not args.use_int8: model = WhisperModel(args.model_path, device="cuda", compute_type="float16", num_workers=args.num_workers, local_files_only=args.local_files_only) else: model = WhisperModel(args.model_path, device="cuda", compute_type="int8_float16", num_workers=args.num_workers, local_files_only=args.local_files_only) else: model = WhisperModel(args.model_path, device="cpu", compute_type="int8", num_workers=args.num_workers, local_files_only=args.local_files_only) # 支持large-v3模型 if 'large-v3' in args.model_path: model.feature_extractor.mel_filters = \ model.feature_extractor.get_mel_filters(model.feature_extractor.sampling_rate, model.feature_extractor.n_fft, n_mels=128) # 预热 _, _ = model.transcribe("dataset/test.wav", beam_size=5) # 语音识别 segments, info = model.transcribe(args.audio_path, beam_size=args.beam_size, language=args.language, task=args.task, vad_filter=args.vad_filter) for segment in segments: text = segment.text print(f"[{round(segment.start, 2)} - {round(segment.end, 2)}]:{text}\n")