import argparse import functools import json import os import struct import numpy as np import torch from transformers import WhisperForConditionalGeneration from utils.utils import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) add_arg("model_dir", type=str, default="models/whisper-tiny-finetune", help="需要转换的模型路径") add_arg("output_path", type=str, default="models/ggml-model.bin", help="转换保存模型的路径") add_arg("use_f16", type=bool, default=True, help="是否量化为半精度") args = parser.parse_args() print_arguments(args) conv_map = { 'self_attn.k_proj': 'attn.key', 'self_attn.q_proj': 'attn.query', 'self_attn.v_proj': 'attn.value', 'self_attn.out_proj': 'attn.out', 'self_attn_layer_norm': 'attn_ln', 'encoder_attn.q_proj': 'cross_attn.query', 'encoder_attn.v_proj': 'cross_attn.value', 'encoder_attn.out_proj': 'cross_attn.out', 'encoder_attn_layer_norm': 'cross_attn_ln', 'fc1': 'mlp.0', 'fc2': 'mlp.2', 'final_layer_norm': 'mlp_ln', 'encoder.layer_norm.bias': 'encoder.ln_post.bias', 'encoder.layer_norm.weight': 'encoder.ln_post.weight', 'encoder.embed_positions.weight': 'encoder.positional_embedding', 'decoder.layer_norm.bias': 'decoder.ln.bias', 'decoder.layer_norm.weight': 'decoder.ln.weight', 'decoder.embed_positions.weight': 'decoder.positional_embedding', 'decoder.embed_tokens.weight': 'decoder.token_embedding.weight', 'proj_out.weight': 'decoder.proj.weight', } def bytes_to_unicode(): bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) cs = bs[:] n = 0 for b in range(2 ** 8): if b not in bs: bs.append(b) cs.append(2 ** 8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) encoder = json.load(open(f"{args.model_dir}/vocab.json", "r", encoding="utf8")) encoder_added = json.load(open(f"{args.model_dir}/added_tokens.json", "r", encoding="utf8")) hparams = json.load(open(f"{args.model_dir}/config.json", "r", encoding="utf8")) # 支持large-v3模型 if "max_length" not in hparams.keys(): hparams["max_length"] = hparams["max_target_positions"] model = WhisperForConditionalGeneration.from_pretrained(args.model_dir) n_mels = hparams["num_mel_bins"] with np.load(f"tools/mel_filters.npz") as f: filters = torch.from_numpy(f[f"mel_{n_mels}"]) tokens = json.load(open(f"{args.model_dir}/vocab.json", "r", encoding="utf8")) os.makedirs(os.path.dirname(args.output_path), exist_ok=True) fout = open(args.output_path, "wb") fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex fout.write(struct.pack("i", hparams["vocab_size"])) fout.write(struct.pack("i", hparams["max_source_positions"])) fout.write(struct.pack("i", hparams["d_model"])) fout.write(struct.pack("i", hparams["encoder_attention_heads"])) fout.write(struct.pack("i", hparams["encoder_layers"])) fout.write(struct.pack("i", hparams["max_length"])) fout.write(struct.pack("i", hparams["d_model"])) fout.write(struct.pack("i", hparams["decoder_attention_heads"])) fout.write(struct.pack("i", hparams["decoder_layers"])) fout.write(struct.pack("i", hparams["num_mel_bins"])) fout.write(struct.pack("i", args.use_f16)) fout.write(struct.pack("i", filters.shape[0])) fout.write(struct.pack("i", filters.shape[1])) for i in range(filters.shape[0]): for j in range(filters.shape[1]): fout.write(struct.pack("f", filters[i][j])) byte_encoder = bytes_to_unicode() byte_decoder = {v: k for k, v in byte_encoder.items()} fout.write(struct.pack("i", len(tokens))) tokens = sorted(tokens.items(), key=lambda x: x[1]) for key in tokens: text = bytearray([byte_decoder[c] for c in key[0]]) fout.write(struct.pack("i", len(text))) fout.write(text) list_vars = model.state_dict() for name in list_vars.keys(): # this seems to not be used if name == "proj_out.weight": print('Skipping', name) continue src = name nn = name if name != "proj_out.weight": nn = nn.split(".")[1:] else: nn = nn.split(".") if nn[1] == "layers": nn[1] = "blocks" if ".".join(nn[3:-1]) == "encoder_attn.k_proj": mapped = "attn.key" if nn[0] == "encoder" else "cross_attn.key" else: mapped = conv_map[".".join(nn[3:-1])] name = ".".join(nn[:3] + [mapped] + nn[-1:]) else: name = ".".join(nn) name = conv_map[name] if name in conv_map else name print(src, ' -> ', name) data = list_vars[src].squeeze().numpy() data = data.astype(np.float16) # reshape conv bias from [n] to [n, 1] if name in ["encoder.conv1.bias", "encoder.conv2.bias"]: data = data.reshape(data.shape[0], 1) print(" Reshaped variable: ", name, " to shape: ", data.shape) n_dims = len(data.shape) print(name, n_dims, data.shape) # looks like the whisper models are in f16 by default # so we need to convert the small tensors to f32 until we fully support f16 in ggml # ftype == 0 -> float32, ftype == 1 -> float16 ftype = 1 if args.use_f16: if n_dims < 2 or \ name == "encoder.conv1.bias" or \ name == "encoder.conv2.bias" or \ name == "encoder.positional_embedding" or \ name == "decoder.positional_embedding": print(" Converting to float32") data = data.astype(np.float32) ftype = 0 else: data = data.astype(np.float32) ftype = 0 # header str_ = name.encode('utf-8') fout.write(struct.pack("iii", n_dims, len(str_), ftype)) for i in range(n_dims): fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) fout.write(str_) # data data.tofile(fout) fout.close() print(f"导出模型: {args.output_path}")