nohup: ignoring input INFO:ljs_base:{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 20000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 64, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/ljs_audio_text_train_filelist.txt.cleaned', 'validation_files': 'filelists/ljs_audio_text_val_filelist.txt.cleaned', 'text_cleaners': ['english_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 0, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False}, 'model_dir': './logs/ljs_base'} WARNING: Logging before InitGoogleLogging() is written to STDERR I0829 14:14:48.131174 68339 ProcessGroupNCCL.cpp:686] [Rank 1] ProcessGroupNCCL initialization options:NCCL_ASYNC_ERROR_HANDLING: 1, NCCL_DESYNC_DEBUG: 0, NCCL_ENABLE_TIMING: 0, NCCL_BLOCKING_WAIT: 0, TIMEOUT(ms): 1800000, USE_HIGH_PRIORITY_STREAM: 0, TORCH_DISTRIBUTED_DEBUG: OFF, NCCL_DEBUG: OFF, ID=94222121121904 WARNING: Logging before InitGoogleLogging() is written to STDERR I0829 14:14:48.142663 68338 ProcessGroupNCCL.cpp:686] [Rank 0] ProcessGroupNCCL initialization options:NCCL_ASYNC_ERROR_HANDLING: 1, NCCL_DESYNC_DEBUG: 0, NCCL_ENABLE_TIMING: 0, NCCL_BLOCKING_WAIT: 0, TIMEOUT(ms): 1800000, USE_HIGH_PRIORITY_STREAM: 0, TORCH_DISTRIBUTED_DEBUG: OFF, NCCL_DEBUG: OFF, ID=94043438289712 /usr/local/lib/python3.10/site-packages/torch/nn/utils/weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm. warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.") /usr/local/lib/python3.10/site-packages/torch/nn/utils/weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm. warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.") I0829 14:14:50.271715 68338 ProcessGroupNCCL.cpp:1340] NCCL_DEBUG: N/A SynthesizerTrn( (enc_p): TextEncoder( (emb): Embedding(178, 192) (encoder): Encoder( (drop): Dropout(p=0.1, inplace=False) (attn_layers): ModuleList( (0-5): 6 x MultiHeadAttention( (conv_q): Conv1d(192, 192, kernel_size=(1,), stride=(1,)) (conv_k): Conv1d(192, 192, kernel_size=(1,), stride=(1,)) (conv_v): Conv1d(192, 192, kernel_size=(1,), stride=(1,)) (conv_o): Conv1d(192, 192, kernel_size=(1,), stride=(1,)) (drop): Dropout(p=0.1, inplace=False) ) ) (norm_layers_1): ModuleList( (0-5): 6 x LayerNorm() ) (ffn_layers): ModuleList( (0-5): 6 x FFN( (conv_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,)) (conv_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,)) (drop): Dropout(p=0.1, inplace=False) ) ) (norm_layers_2): ModuleList( (0-5): 6 x LayerNorm() ) ) (proj): Conv1d(192, 384, kernel_size=(1,), stride=(1,)) ) (dec): Generator( (conv_pre): Conv1d(192, 512, kernel_size=(7,), stride=(1,), padding=(3,)) (ups): ModuleList( (0): ConvTranspose1d(512, 256, kernel_size=(16,), stride=(8,), padding=(4,)) (1): ConvTranspose1d(256, 128, kernel_size=(16,), stride=(8,), padding=(4,)) (2): ConvTranspose1d(128, 64, kernel_size=(4,), stride=(2,), padding=(1,)) (3): ConvTranspose1d(64, 32, kernel_size=(4,), stride=(2,), padding=(1,)) ) (resblocks): ModuleList( (0): ResBlock1( (convs1): ModuleList( (0): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,)) (1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,)) (2): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,)) ) (convs2): ModuleList( (0-2): 3 x Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,)) ) ) (1): ResBlock1( (convs1): ModuleList( (0): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(3,)) (1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,)) (2): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,)) ) (convs2): ModuleList( (0-2): 3 x Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(3,)) ) ) (2): ResBlock1( (convs1): ModuleList( (0): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(5,)) (1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,)) (2): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,)) ) (convs2): ModuleList( (0-2): 3 x Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(5,)) ) ) (3): ResBlock1( (convs1): ModuleList( (0): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,)) (1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,)) (2): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,)) ) (convs2): ModuleList( (0-2): 3 x Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,)) ) ) (4): ResBlock1( (convs1): ModuleList( (0): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(3,)) (1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,)) (2): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,)) ) (convs2): ModuleList( (0-2): 3 x Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(3,)) ) ) (5): ResBlock1( (convs1): ModuleList( (0): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(5,)) (1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,)) (2): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,)) ) (convs2): ModuleList( (0-2): 3 x Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(5,)) ) ) (6): ResBlock1( (convs1): ModuleList( (0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,)) (1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,)) (2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,)) ) (convs2): ModuleList( (0-2): 3 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,)) ) ) (7): ResBlock1( (convs1): ModuleList( (0): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(3,)) (1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,)) (2): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,)) ) (convs2): ModuleList( (0-2): 3 x Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(3,)) ) ) (8): ResBlock1( (convs1): ModuleList( (0): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(5,)) (1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,)) (2): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,)) ) (convs2): ModuleList( (0-2): 3 x Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(5,)) ) ) (9): ResBlock1( (convs1): ModuleList( (0): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(1,)) (1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,)) (2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,)) ) (convs2): ModuleList( (0-2): 3 x Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(1,)) ) ) (10): ResBlock1( (convs1): ModuleList( (0): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(3,)) (1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,)) (2): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,)) ) (convs2): ModuleList( (0-2): 3 x Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(3,)) ) ) (11): ResBlock1( (convs1): ModuleList( (0): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(5,)) (1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,)) (2): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,)) ) (convs2): ModuleList( (0-2): 3 x Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(5,)) ) ) ) (conv_post): Conv1d(32, 1, kernel_size=(7,), stride=(1,), padding=(3,), bias=False) ) (enc_q): PosteriorEncoder( (pre): Conv1d(513, 192, kernel_size=(1,), stride=(1,)) (enc): WN( (in_layers): ModuleList( (0-15): 16 x Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,)) ) (res_skip_layers): ModuleList( (0-14): 15 x Conv1d(192, 384, kernel_size=(1,), stride=(1,)) (15): Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (drop): Dropout(p=0, inplace=False) ) (proj): Conv1d(192, 384, kernel_size=(1,), stride=(1,)) ) (flow): ResidualCouplingBlock( (flows): ModuleList( (0): ResidualCouplingLayer( (pre): Conv1d(96, 192, kernel_size=(1,), stride=(1,)) (enc): WN( (in_layers): ModuleList( (0-3): 4 x Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,)) ) (res_skip_layers): ModuleList( (0-2): 3 x Conv1d(192, 384, kernel_size=(1,), stride=(1,)) (3): Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (drop): Dropout(p=0, inplace=False) ) (post): Conv1d(192, 96, kernel_size=(1,), stride=(1,)) ) (1): Flip() (2): ResidualCouplingLayer( (pre): Conv1d(96, 192, kernel_size=(1,), stride=(1,)) (enc): WN( (in_layers): ModuleList( (0-3): 4 x Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,)) ) (res_skip_layers): ModuleList( (0-2): 3 x Conv1d(192, 384, kernel_size=(1,), stride=(1,)) (3): Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (drop): Dropout(p=0, inplace=False) ) (post): Conv1d(192, 96, kernel_size=(1,), stride=(1,)) ) (3): Flip() (4): ResidualCouplingLayer( (pre): Conv1d(96, 192, kernel_size=(1,), stride=(1,)) (enc): WN( (in_layers): ModuleList( (0-3): 4 x Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,)) ) (res_skip_layers): ModuleList( (0-2): 3 x Conv1d(192, 384, kernel_size=(1,), stride=(1,)) (3): Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (drop): Dropout(p=0, inplace=False) ) (post): Conv1d(192, 96, kernel_size=(1,), stride=(1,)) ) (5): Flip() (6): ResidualCouplingLayer( (pre): Conv1d(96, 192, kernel_size=(1,), stride=(1,)) (enc): WN( (in_layers): ModuleList( (0-3): 4 x Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,)) ) (res_skip_layers): ModuleList( (0-2): 3 x Conv1d(192, 384, kernel_size=(1,), stride=(1,)) (3): Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (drop): Dropout(p=0, inplace=False) ) (post): Conv1d(192, 96, kernel_size=(1,), stride=(1,)) ) (7): Flip() ) ) (dp): StochasticDurationPredictor( (log_flow): Log() (flows): ModuleList( (0): ElementwiseAffine() (1): ConvFlow( (pre): Conv1d(1, 192, kernel_size=(1,), stride=(1,)) (convs): DDSConv( (drop): Dropout(p=0.0, inplace=False) (convs_sep): ModuleList( (0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192) (1): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192) (2): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192) ) (convs_1x1): ModuleList( (0-2): 3 x Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (norms_1): ModuleList( (0-2): 3 x LayerNorm() ) (norms_2): ModuleList( (0-2): 3 x LayerNorm() ) ) (proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,)) ) (2): Flip() (3): ConvFlow( (pre): Conv1d(1, 192, kernel_size=(1,), stride=(1,)) (convs): DDSConv( (drop): Dropout(p=0.0, inplace=False) (convs_sep): ModuleList( (0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192) (1): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192) (2): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192) ) (convs_1x1): ModuleList( (0-2): 3 x Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (norms_1): ModuleList( (0-2): 3 x LayerNorm() ) (norms_2): ModuleList( (0-2): 3 x LayerNorm() ) ) (proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,)) ) (4): Flip() (5): ConvFlow( (pre): Conv1d(1, 192, kernel_size=(1,), stride=(1,)) (convs): DDSConv( (drop): Dropout(p=0.0, inplace=False) (convs_sep): ModuleList( (0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192) (1): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192) (2): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192) ) (convs_1x1): ModuleList( (0-2): 3 x Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (norms_1): ModuleList( (0-2): 3 x LayerNorm() ) (norms_2): ModuleList( (0-2): 3 x LayerNorm() ) ) (proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,)) ) (6): Flip() (7): ConvFlow( (pre): Conv1d(1, 192, kernel_size=(1,), stride=(1,)) (convs): DDSConv( (drop): Dropout(p=0.0, inplace=False) (convs_sep): ModuleList( (0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192) (1): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192) (2): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192) ) (convs_1x1): ModuleList( (0-2): 3 x Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (norms_1): ModuleList( (0-2): 3 x LayerNorm() ) (norms_2): ModuleList( (0-2): 3 x LayerNorm() ) ) (proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,)) ) (8): Flip() ) (post_pre): Conv1d(1, 192, kernel_size=(1,), stride=(1,)) (post_proj): Conv1d(192, 192, kernel_size=(1,), stride=(1,)) (post_convs): DDSConv( (drop): Dropout(p=0.5, inplace=False) (convs_sep): ModuleList( (0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192) (1): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192) (2): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192) ) (convs_1x1): ModuleList( (0-2): 3 x Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (norms_1): ModuleList( (0-2): 3 x LayerNorm() ) (norms_2): ModuleList( (0-2): 3 x LayerNorm() ) ) (post_flows): ModuleList( (0): ElementwiseAffine() (1): ConvFlow( (pre): Conv1d(1, 192, kernel_size=(1,), stride=(1,)) (convs): DDSConv( (drop): Dropout(p=0.0, inplace=False) (convs_sep): ModuleList( (0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192) (1): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192) (2): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192) ) (convs_1x1): ModuleList( (0-2): 3 x Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (norms_1): ModuleList( (0-2): 3 x LayerNorm() ) (norms_2): ModuleList( (0-2): 3 x LayerNorm() ) ) (proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,)) ) (2): Flip() (3): ConvFlow( (pre): Conv1d(1, 192, kernel_size=(1,), stride=(1,)) (convs): DDSConv( (drop): Dropout(p=0.0, inplace=False) (convs_sep): ModuleList( (0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192) (1): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192) (2): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192) ) (convs_1x1): ModuleList( (0-2): 3 x Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (norms_1): ModuleList( (0-2): 3 x LayerNorm() ) (norms_2): ModuleList( (0-2): 3 x LayerNorm() ) ) (proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,)) ) (4): Flip() (5): ConvFlow( (pre): Conv1d(1, 192, kernel_size=(1,), stride=(1,)) (convs): DDSConv( (drop): Dropout(p=0.0, inplace=False) (convs_sep): ModuleList( (0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192) (1): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192) (2): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192) ) (convs_1x1): ModuleList( (0-2): 3 x Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (norms_1): ModuleList( (0-2): 3 x LayerNorm() ) (norms_2): ModuleList( (0-2): 3 x LayerNorm() ) ) (proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,)) ) (6): Flip() (7): ConvFlow( (pre): Conv1d(1, 192, kernel_size=(1,), stride=(1,)) (convs): DDSConv( (drop): Dropout(p=0.0, inplace=False) (convs_sep): ModuleList( (0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192) (1): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192) (2): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192) ) (convs_1x1): ModuleList( (0-2): 3 x Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (norms_1): ModuleList( (0-2): 3 x LayerNorm() ) (norms_2): ModuleList( (0-2): 3 x LayerNorm() ) ) (proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,)) ) (8): Flip() ) (pre): Conv1d(192, 192, kernel_size=(1,), stride=(1,)) (proj): Conv1d(192, 192, kernel_size=(1,), stride=(1,)) (convs): DDSConv( (drop): Dropout(p=0.5, inplace=False) (convs_sep): ModuleList( (0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192) (1): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192) (2): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192) ) (convs_1x1): ModuleList( (0-2): 3 x Conv1d(192, 192, kernel_size=(1,), stride=(1,)) ) (norms_1): ModuleList( (0-2): 3 x LayerNorm() ) (norms_2): ModuleList( (0-2): 3 x LayerNorm() ) ) ) ) MultiPeriodDiscriminator( (discriminators): ModuleList( (0): DiscriminatorS( (convs): ModuleList( (0): Conv1d(1, 16, kernel_size=(15,), stride=(1,), padding=(7,)) (1): Conv1d(16, 64, kernel_size=(41,), stride=(4,), padding=(20,), groups=4) (2): Conv1d(64, 256, kernel_size=(41,), stride=(4,), padding=(20,), groups=16) (3): Conv1d(256, 1024, kernel_size=(41,), stride=(4,), padding=(20,), groups=64) (4): Conv1d(1024, 1024, kernel_size=(41,), stride=(4,), padding=(20,), groups=256) (5): Conv1d(1024, 1024, kernel_size=(5,), stride=(1,), padding=(2,)) ) (conv_post): Conv1d(1024, 1, kernel_size=(3,), stride=(1,), padding=(1,)) ) (1-5): 5 x DiscriminatorP( (convs): ModuleList( (0): Conv2d(1, 32, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0)) (1): Conv2d(32, 128, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0)) (2): Conv2d(128, 512, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0)) (3): Conv2d(512, 1024, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0)) (4): Conv2d(1024, 1024, kernel_size=(5, 1), stride=(1, 1), padding=(2, 0)) ) (conv_post): Conv2d(1024, 1, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0)) ) ) ) ./logs/ljs_base/G_0.pth INFO:ljs_base:Loaded checkpoint './logs/ljs_base/G_0.pth' (iteration 1) ./logs/ljs_base/G_0.pth INFO:root:Loaded checkpoint './logs/ljs_base/G_0.pth' (iteration 1) ./logs/ljs_base/D_0.pth INFO:ljs_base:Loaded checkpoint './logs/ljs_base/D_0.pth' (iteration 1) INFO:ljs_base:====> Epoch: 1 | Total Samples: 12492 ./logs/ljs_base/D_0.pth INFO:root:Loaded checkpoint './logs/ljs_base/D_0.pth' (iteration 1) /usr/local/lib/python3.10/site-packages/torch/autograd/__init__.py:251: UserWarning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance. grad.sizes() = [1, 9, 96], strides() = [46944, 96, 1] bucket_view.sizes() = [1, 9, 96], strides() = [864, 96, 1] (Triggered internally at /data/jenkins_workspace/workspace/pytorch@4/torch/csrc/distributed/c10d/reducer.cpp:320.) Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass /usr/local/lib/python3.10/site-packages/torch/autograd/__init__.py:251: UserWarning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance. grad.sizes() = [1, 9, 96], strides() = [48096, 96, 1] bucket_view.sizes() = [1, 9, 96], strides() = [864, 96, 1] (Triggered internally at /data/jenkins_workspace/workspace/pytorch@4/torch/csrc/distributed/c10d/reducer.cpp:320.) Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass INFO:ljs_base:Train Epoch: 1 [0%] INFO:ljs_base:[4.670844554901123, 2.8319339752197266, 0.3068731725215912, 73.78945922851562, 1.4018142223358154, 91.56964874267578, 0, 0.0002] DEBUG:matplotlib:matplotlib data path: /usr/local/lib/python3.10/site-packages/matplotlib/mpl-data DEBUG:matplotlib:CONFIGDIR=/root/.config/matplotlib DEBUG:matplotlib:interactive is False DEBUG:matplotlib:platform is linux INFO:ljs_base:Saving model and optimizer state at iteration 1 to ./logs/ljs_base/G_0.pth INFO:ljs_base:Saving model and optimizer state at iteration 1 to ./logs/ljs_base/D_0.pth INFO:ljs_base:====> Epoch: 1 INFO:ljs_base:====> FPS: 25.03245151912063 INFO:ljs_base:====> Epoch: 2 | Total Samples: 12492 run.sh: line 13: 68143 Killed python train.py -c configs/ljs_base.json -m ljs_base