# -*- coding: utf-8 -*- import time import torch from transformers import AutoModelForCausalLM, AutoTokenizer from vita.constants import GLOBAL_WEIGHTS_PATH model_dir = f"{GLOBAL_WEIGHTS_PATH}/Mixtral-8x7B_New/mg2hg" tokenizer = AutoTokenizer.from_pretrained(model_dir) # 给定的 ID 列表 id_list = [ 1, 1587, 28747, 29383, 28971, 28518, 32350, 33702, 28944, 13, 28733, 28705, 29383, 28971, 32569, 32730, 32606, 28914, 29050, 35267, 32315, 28944, 29383, 28914, 32626, 39797, 28971, 32311, 29041, 41993, 29958, 46454, 28944, 13, 28733, 28705, 29383, 32585, 32474, 32599, 32683, 28914, 29292, 29824, 35267, 32100, 44797, 33089, 29457, 38038, 32599, 28914, 32509, 28944, 13, 28733, 47068, 32599, 38201, 29383, 37676, 28914, 34559, 35845, 28924, 29383, 29179, 29478, 32599, 41534, 29457, 29551, 32599, 35702, 34415, 28914, 35845, 28944, 2, 28705, 13, 1838, 28747, ] id_list = [ 28991, 34275, 29105, 33216, 30344, 29675, 28914, 46018, 29131, 29086, 28944, 29087, 29960, 28991, 34700, 43072, 28914, 28971, 28518, 29046, ] id_list = [ 28705, 13, 2, 28705, 13, 10093, 28747, 51497, 40994, 30162, 32980, 39944, 29105, 28518, 41772, 28914, 34796, 32703, 28924, 29450, 28991, 34275, 29105, 33216, 30344, 29675, 28914, 46018, 29131, 29086, 28944, 29087, 29960, 28991, 34700, 43072, 28914, 28971, 28518, 29046, 29003, 28835, 4712, 28743, 12673, 28838, 28914, 46018, 28924, 29450, 33778, 31224, 29222, 29146, 33280, 29010, 36599, 28914, 49363, 29054, 28944, 32641, 46018, 29074, 29450, 34526, 28914, 32626, 40497, 28924, 32590, 28518, 30308, 29251, 30912, 29677, 29131, 28518, 35545, 28914, 51009, 29169, 28944, 13, 29010, 33292, 28991, 28924, 32012, 32924, 29450, 29440, 34051, 46018, 28924, 33837, 46018, 33421, 32587, 28914, 33103, 28944, 29450, 28991, 28518, 46018, 28998, 28518, 36101, 28914, 33778, 28924, 29746, 31127, 28518, 29310, 35348, 30163, 32813, 28914, 31249, 31861, 28944, 32663, 46018, 29054, 28914, 33114, 29302, 29010, 32155, 33053, 28924, 41192, 29992, 30163, 42747, 28924, 29746, 41192, 29310, 30150, 29010, 49460, 29169, 49565, 28944, 13, 33238, 33015, 29458, 29366, 29366, 28914, 41261, 29061, 28914, 36599, 38437, 30131, 30631, 28924, 34249, 29065, 48245, 29746, 32850, 28914, 33857, 28944, 33257, 32031, 41772, 28924, 44169, 28969, 29824, 34239, 30266, 28924, 33837, 35115, 29460, 39676, 40016, 29074, 33158, 35523, 29276, 28914, 43604, 28944, 36286, 28991, 28914, 36096, 32557, 28971, 37478, 28914, 28924, 33070, 35155, 49059, 49550, 28914, 36096, 47444, 28924, 29118, 36101, 29131, 32813, 28914, 33778, 28944, 44488, 28914, 29367, 29051, 33151, 33647, 29176, 28971, 28518, 36059, 32710, 28914, 32703, 32854, 28924, 49323, 29010, 32857, 35049, 29276, 32789, 28944, 2, ] # 将 ID 列表转换为 PyTorch 张量 id_tensor = torch.tensor(id_list) # 使用 tokenizer 解码 decoded_text = tokenizer.decode(id_tensor, skip_special_tokens=True) print(f"Decoded text: {decoded_text}")