Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ViT_migraphx
Commits
cc0cc70c
Commit
cc0cc70c
authored
Sep 12, 2023
by
lijian6
Browse files
Update
Signed-off-by:
lijian
<
lijian6@sugon.com
>
parent
7abdf740
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
34 additions
and
33 deletions
+34
-33
README.md
README.md
+28
-30
docker/Dockerfile
docker/Dockerfile
+1
-0
model.properties
model.properties
+5
-3
No files found.
README.md
View file @
cc0cc70c
# ViT
_MIGraphX
# ViT
## 目录
## 论文
-
[
目录结构
](
#目录结构
)
`An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
-
[
项目介绍
](
#项目介绍
)
-
https://arxiv.org/abs/2010.11929
-
[
环境配置
](
#环境配置
)
## 模型结构
-
[
编译运行
](
#编译运行
)
Vision Transformer先将图像用卷积进行分块以降低计算量,再对每一块进行展平处理变成序列,然后将序列添加位置编码和cls token,再输入多层Transformer结构提取特征,最后将cls tooken取出来通过一个MLP(多层感知机)用于分类。
-
[
参考数据
](
#参考数据
)
-
[
历史版本
](
#历史版本
)
## 目录结构

```
## 算法原理
├── Images
图像领域借鉴《Transformer is all you need!》算法论文中的Encoder结构提取特征,Transformer的核心思想是利用注意力模块attention提取特征:
├── Makefile
├── Models
│ └── model.onnx
├── Python
├── README.md
└── src
└── main.cpp
```
## 项目介绍
ViT是将Transformer应用到视觉领域的模型结构,本项目是ViT模型在MIGraphX推理框架上的分类推理示例

## 环境配置
## 环境配置
### Docker(方法一)
推荐使用docker方式运行,提供
[
光源
](
https://www.sourcefind.cn/#/service-list
)
拉取的docker镜像
```
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:decode-ffmpeg-dtk23.04
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:decode-ffmpeg-dtk23.04
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
docker run --shm-size 10g --network=host --name=vit_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v path_to_vit_migraphx:/home/vit_migraphx -it <your IMAGE ID> bash
```
### Dockerfile(方法二)
```
cd vit_migraphx/docker
docker build --no-cache -t vit_migraphx:test .
docker run --rm --shm-size 10g --network=host --name=vit_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v path_to_vit_migraphx:/home/vit_migraphx -it vit_migraphx:test bash
```
```
## 编译运行
## 编译运行
### 编译
### 编译
...
@@ -71,7 +63,13 @@ tar -zxvf flower_photos.tgz
...
@@ -71,7 +63,13 @@ tar -zxvf flower_photos.tgz
| MIGraphX | models/model.onnx | sunflowers | 97.4 |
| MIGraphX | models/model.onnx | sunflowers | 97.4 |
| MIGraphX | models/model.onnx | tulips | 94.1 |
| MIGraphX | models/model.onnx | tulips | 94.1 |
## 源码仓库及问题反馈
https://developer.hpccube.com/codes/modelzoo/vit_migraphx.git
## 应用场景
### 算法类别
`图像分类`
### 热点应用行业
`制造,环境,医疗,气象`
## 源码仓库及问题反馈
-
https://developer.hpccube.com/codes/modelzoo/vit_migraphx.git
## 参考资料
-
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing
docker/Dockerfile
0 → 100644
View file @
cc0cc70c
FROM
image.sourcefind.cn:5000/dcu/admin/base/custom:decode-ffmpeg-dtk23.04
model.properties
View file @
cc0cc70c
# 模型编码
modelCode
=
230
# 模型名称
# 模型名称
modelName
=
Vi
sion_Transformer
modelName
=
Vi
T_MIGraphX
# 模型描述
# 模型描述
modelDescription
=
ViT是一个基于transformer的视觉图像分类模型
modelDescription
=
ViT是一个基于transformer的视觉图像分类模型
# 应用场景(多个标签以英文逗号分割)
# 应用场景(多个标签以英文逗号分割)
appScenario
=
训练,推理,
train,inference,Pytorch,MIGraphX,图像分类,C++
appScenario
=
训练,推理,
图像分类
# 框架类型(多个标签以英文逗号分割)
# 框架类型(多个标签以英文逗号分割)
frameType
=
MIGraphX
frameType
=
MIGraphX
,Pytorch
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment