Commit cc0cc70c authored by lijian6's avatar lijian6
Browse files

Update


Signed-off-by: lijian6's avatarlijian <lijian6@sugon.com>
parent 7abdf740
# ViT_MIGraphX
# ViT
## 目录
- [目录结构](#目录结构)
- [项目介绍](#项目介绍)
- [环境配置](#环境配置)
- [编译运行](#编译运行)
- [参考数据](#参考数据)
- [历史版本](#历史版本)
## 论文
`An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
- https://arxiv.org/abs/2010.11929
## 模型结构
Vision Transformer先将图像用卷积进行分块以降低计算量,再对每一块进行展平处理变成序列,然后将序列添加位置编码和cls token,再输入多层Transformer结构提取特征,最后将cls tooken取出来通过一个MLP(多层感知机)用于分类。
## 目录结构
```
├── Images
├── Makefile
├── Models
│   └── model.onnx
├── Python
├── README.md
└── src
└── main.cpp
```
## 项目介绍
ViT是将Transformer应用到视觉领域的模型结构,本项目是ViT模型在MIGraphX推理框架上的分类推理示例
![img](./doc/vit.png)
## 算法原理
图像领域借鉴《Transformer is all you need!》算法论文中的Encoder结构提取特征,Transformer的核心思想是利用注意力模块attention提取特征:
![img](./doc/attention.png)
## 环境配置
推荐使用docker方式运行,提供[光源](https://www.sourcefind.cn/#/service-list)拉取的docker镜像
### Docker(方法一)
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:decode-ffmpeg-dtk23.04
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
docker run --shm-size 10g --network=host --name=vit_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v path_to_vit_migraphx:/home/vit_migraphx -it <your IMAGE ID> bash
```
### Dockerfile(方法二)
```
cd vit_migraphx/docker
docker build --no-cache -t vit_migraphx:test .
docker run --rm --shm-size 10g --network=host --name=vit_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v path_to_vit_migraphx:/home/vit_migraphx -it vit_migraphx:test bash
```
## 编译运行
### 编译
......@@ -71,7 +63,13 @@ tar -zxvf flower_photos.tgz
| MIGraphX | models/model.onnx | sunflowers | 97.4 |
| MIGraphX | models/model.onnx | tulips | 94.1 |
## 源码仓库及问题反馈
https://developer.hpccube.com/codes/modelzoo/vit_migraphx.git
## 应用场景
### 算法类别
`图像分类`
### 热点应用行业
`制造,环境,医疗,气象`
## 源码仓库及问题反馈
- https://developer.hpccube.com/codes/modelzoo/vit_migraphx.git
## 参考资料
- https://github.com/WZMIAOMIAO/deep-learning-for-image-processing
FROM image.sourcefind.cn:5000/dcu/admin/base/custom:decode-ffmpeg-dtk23.04
# 模型编码
modelCode=230
# 模型名称
modelName=Vision_Transformer
modelName=ViT_MIGraphX
# 模型描述
modelDescription=ViT是一个基于transformer的视觉图像分类模型
# 应用场景(多个标签以英文逗号分割)
appScenario=训练,推理,train,inference,Pytorch,MIGraphX,图像分类,C++
appScenario=训练,推理,图像分类
# 框架类型(多个标签以英文逗号分割)
frameType=MIGraphX
frameType=MIGraphX,Pytorch
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment